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Chapter 2. Data—Numerical

2.1 Histograms

In this chapter we will concentrate on numerical, or, synonymously, quantitative variables. Remember: these
are variables with values that are numbers that are used as numbers (as opposed to variables, such as Gender,
that have values that are not numbers and variables, such as Zip Code, that have values that are numbers
that are not used as numbers). How do we display numerical variables?

In Chapter 1 we learned two simple methods for visualizing the distributions of categorical variables: pie
charts and bar charts. In both types of graphic, a geometric figure, be it a sector of a disk or a bar, is used
to convey the frequency count of each possible category. Without modification, this method of illustration
cannot usefully be applied to numerical variables. Consider, for example, beryllium-11 (11Be in the literature
of chemistry), which is an unstable isotope of beryllium-9. Suppose that we have an initial supply of beryllium-
11 and conduct a statistical study in which the population consists of events: each event is the decay of one
atom of beryllium-11 to stable form. Each such event gives rise to a case of the study. For each case, the
numerical variable Time of Decay records the time elapsed between the start of the study and the radioactive
decay that is the object of the case. Notice that the values of Time of Decay are numbers that can be used
as numbers. For example, if we subtract the value of Time of Decay for one case from that of the next case,
then we obtain a number that has a genuine numerical meaning, namely the time that has elapsed between
two consecutive radioactive decays. In other words, Time of Decay is a numerical variable.

Suppose that we terminated our decay vigil after 26 seconds, and that 10,000 decays occurred in those 26
seconds. In other words, we recorded 10,000 observations of Time of Decay) during our study. How do we
depict the values of Time of Decay? Chances are, if we measured Time of Decay sufficiently accurately, then
we recorded 10,000 different times. If so, then the frequency for each of the 10,000 values of Time of Decay
would be 1. Do we draw 10,000 bars all with unit height? What would be the point?

What we do instead is to divide the 26 second interval containing all the values of Time of Decay into
a convenient number, say 13, of subintervals, which, in the jargon os statistics, are called bins or class
intervals. We then count the number of decays occuring in each bin. Suppose that our frequency counts of
beryllium-11 decays are as follows:

Decay
Time
(sec)

[0,2) [2,4) [4,6) [6,8) [8,10) [10,12) [12,14) [14,16) [16,18) [18,20) [20,22) [22,24) [24,26)

Number
of

Decays
2 21 140 520 1207 1889 2132 1816 1208 646 282 104 33

Table 2.1.1: Beryllium-11 Decays

Remember that the notation [a, b) means that the interval contains the left endpoint a but not the right
endpoint b. The “bar chart” of the frequencies given in Table 2.1.1 is presented in Figure 2.1.1.
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Figure 2.1.1: Number of Beryllium-11 Decays

The graph in Figure 2.1.1 is called a histogram or, a bit more precisely, a frequency histogram (because
we can also graph relative frequency histograms and percentage histograms). The endpoints of the
class intervals are called class limits. Specifically, a left endpoint is called a lower class limit and a
right endpoint is called an upper class limit . In a histogram, each value of the numerical variable whose
frequencies are plotted must fall into exactly one bin. One way to ensure that property is to choose the bins
so that no data value equals any class limit. However, if the data set is large, it can be tedious to carry out
these choices. A simpler solution is to adopt the common (but not universal) convention of placing a value
in the larger bin if it equals the class limit that separates two consecutive bins. Thus, in the beryllium-11
example that we have been considering, we chose the bins so that each includes its left endpoint but excludes
its right endpoint. By specifying the bins in this way, we have conformed to the convention of placing a value
that fall on the upper limit of one class interval in the next class interval to the right. (For example, the value
16 does not belong to the class interval [14,16) but to [16,18), the next higher bin.)

The width h = b−a of a class interval [a, b) is called the class width or class size . For most histograms,
the class widths are the same for all class intervals. Some textbooks require the class intervals of a histogram
to be equally wide. Other texts are more flexible, allowing that, in some exceptional circumstances, variable
class widths can have advantages. Bear in mind, however, that variable class widths necessarily result in a
violation of the Area Principle when the heights of the bars are plain vanilla frequencies. This problem can
be averted by plotting the frequencies per unit width instead of the frequencies, but that complication can
add its own confusion.

To ensure that the bins do not omit any data values, the lower class limit of the leftmost class interval
must be less than or equal to the smallest data value xmin, and the upper class limit of the rightmost class
interval must be greater than or equal to the largest data value xmax. The difference xmax − xmin is called
the range of the data set. Usually the least lower class limit is chosen to be only slightly less than xmin, if at
all, and the greatest upper class limit is chosen to be only slightly greater than xmax. As a result, the width
of the histogram is only slightly greater than the range of the data.

Many textbooks suggest that the number n of bins should satisfy the inequalities 5 ≤ n ≤ 20. This advice
follows the Goldilocks Principle: n should be not too big and not too small. In fact, statisticians have devoted
plenty of thought to the number of bins that should be used in a histogram, but they have not come to a
consensus. For those who are interested, some of the proposals may be found in the next subsection.
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Class Width Formulas (Optional)

If, as is usually the case, the class intervals of a histogram share a common width h, and if n is the number of
bins, then it follows that n · h is not less than the range xmax − xmin. In general, these two numbers will not
differ substantially. That is, n · h ≈ xmax − xmin. Consequently, choosing the number n of bins is equivalent
to choosing the bin width h. As mentioned, this choice is somewhat arbitrary, but there are some rules of
thumb that are in use. For example, the default in Excel is to assign a value to n according to the formula

n =
√
N,

where N is the number of observations of the numerical variable. Some judgment must be used. For our
beryllium-11 example, the choice n =

√
10, 000, or n = 100, would be inconveniently large for our purposes.

In 1926, the American statistician Herbert Sturges proposed the following formula1:

n = ⌈1 + log2(N)⌉ ≈ ⌈1 + 3.3219 · log10(N)⌉.

The notation ⌈x⌉ is read as “the ceiling of x” and is equal to the integer obtained by rounding x up. For
example, ⌈π⌉ is 4. In the beryllium-11 example under discussion, Sturges’s formula leads to n = ⌈1 +
3.321928095 · log10(10, 000)⌉ = 15, a value that is quite close to the value n = 13 that we used. Again,
judgment decides the issue: the choice of 13 leads to conveniently simple integer endpoints for the bins.

There are several other formulas that have been proposed for the number n of bins, and in many of the
alternative formulas, such as the Rice formula n = ⌈2N1/3⌉, the value of n is approximately proportional to
N1/3.

Histogram Conventions

Despite the fact that histograms are composed of bars, they are generally not considered to be bar charts.
For example, one textbook2 states,

“Although a bar chart and a histogram may look somewhat similar, they are not the same display.
You can’t display categorical data in a histogram or quantitative data in a bar chart.”

A contrarian might argue these statements. The process of binning the values of a numerical variable, it might
be claimed, creates categories: the values of the numerical variable are categorized according to the bins they
fall in. This point of view is not far-fetched. Age, for instance, is a numerical variable, but binning the values
of Age amounts to the creation of the categorical variable, Age Group. Height is a numerical variable, but
here too, binning might be perceived as categorizing. For example, suppose that height is measured in inches
and we choose the bins [0,67), [67,77), and [77, ∞). For the purposes of becoming a police officer in many
jurisdictions, these bins are the categories, Too Short, Acceptable Height, and Too Tall. Supposing that 20
applicants to the police academy with heights between 57 and 87 inches are rejected. Suppose further that
7 of them were too short, 3 were too tall, and 10 were of an acceptable height but were rejected for other
reasons (criminal record, weight not proportional to height, surly demeanor, intermittent explosive disorder,
. . . ). Do we say that a frequency graph of this data set is a histogram or a bar chart? To some extent it
depends on how we label the horizontal axis: see Figure 2.1.2, in which the data is illustrated by a histogram,
and Figure 2.1.3, in which the data is displayed by a bar chart. Apart from the axis labeling, the two figures
look very much the same.

1The expression advocated by Sturges for the number of classes is properly known as Sturges’s Formula, but near misses are
common in the literature. The author retains textbooks the way hoarders hoard hoarded things. In his collection of statistics
texts, there are references to both Sturges’ formula and Sturge’s formula.

2Stats: Data and Models, Richard de Veaux, Paul Velleman, Davis Bock, Pearson
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Figure 2.1.2: Histogram of Rejected Police Academy Applicants

Figure 2.1.3: Bar Chart of Rejected Police Academy Applicants

It is worth using Figures 2.1.2 and 2.1.3 to point out a cosmetic difference between histograms and bar charts.
In a histogram, the right side of every rectangle abuts the left side of the next rectangle, as can be seen in
Figure 2.1.2. Thus, the only way there can be a gap between two rectangles of a histogram is if the bin(s)
between then is(are) empty and therefore has(have) 0 height.3 On the other hand, it is standard practice
to position the rectangles of bar charts so that no two are contiguous, as in Figure 2.1.3. Furthermore, the
rectangles of histograms are positioned with an inviolable order determined by the increasing order of the bin
ranges. By contrast, the rectangles of a bar chart can be placed in any order.4 For instance, in Figure 2.1.3,
the last two bars might be interchanged so that the height rejections are grouped together. This swap cannot
be done for the histogram in Figure 2.1.2 because the bin [67,77) must precede the bin [77,87).

3One regrets that, in Statistics, it is often the case that examples can be found to contradict generic truths. At the time
of this writing, Wolfram MathWorld, “the web’s most extensive mathematics resource” (according to Wolfram) illustrates its
article on histograms with a histogram that separates its rectangles with gaps. http://mathworld.wolfram.com/Histogram.html
The histogram shown on the cited web page was not actually created by Wolfram’s premiere product, Mathematica, which does
produce correct histograms.

4Although the rectangles of a bar chart can be placed in any order, it is often desirable to arrange them from left to right in
order of decreasing frequencies. That allows the viewer to take in at a glance the most significant categories. Such a bar chart
is called a Pareto chart.
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Plotting Alternatives

Although histograms are the primary graphic for illustrating numerical variables, there are alternatives. One
is called a stem-and-leaf plot . Consider the mileage data of Table 2.1.2 below.

Vehicle EPA Combined City/Highway Mileage (mpg)

2014 Toyota 4Runner 2WD 6 cyl, 4.0 L, Automatic (S5) 19
2014 Toyota 4Runner 4WD 6 cyl, 4.0 L, Automatic (S5) 18
2014 Toyota Avalon 6 cyl, 3.5 L, Automatic (S6) 25
2014 Toyota Avalon Hybrid 4 cyl, 2.5 L, Auto(AV-S6) 40
2014 Toyota Camry 4 cyl, 2.5 L, Automatic (S6 28
2014 Toyota Camry 6 cyl, 3.5 L, Automatic (S6) 25
2014 Toyota Camry Hybrid LE 4 cyl, 2.5 L, Automatic 41
2014 Toyota Camry Hybrid XLE/SE 4 cyl, 2.5 L, Automatic 40
2014 Toyota Corolla 4 cyl, 1.8 L, Automatic 4-spd 31
2014 Toyota Corolla 4 cyl, 1.8 L, (var. gear ratios) 32
2014 Toyota Corolla 4 cyl, 1.8 L, Manual 6-spd 31
2014 Toyota Corolla LE Eco 4 cyl, 1.8 L, Automatic 35
2014 Toyota Prius 4 cyl, 1.8 L, (var. gear ratios) 50
2014 Toyota Prius v 4 cyl, 1.8 L, (var. gear ratios) 42
2014 Toyota RAV4 4 cyl, 2.5 L, Automatic (S6) 26
2014 Toyota RAV4 AWD 4 cyl, 2.5 L, Automatic (S6) 25
2014 Toyota Venza 4 cyl, 2.7 L, Automatic (S6) 23
2014 Toyota Venza 6 cyl, 3.5 L, Automatic (S6) 22
2014 Toyota Venza 4WD 4 cyl, 2.7 L, Automatic (S6) 22
2014 Toyota Yaris 4 cyl, 1.5 L, Manual 5-spd 33
2014 Toyota Yaris 4 cyl, 1.5 L, Automatic 4-spd 32

Table 2.1.2: Combined EPA Mileage: 2014 Toyota Fleet (Trucks and Land Cruisers excluded)
Source: U.S. Department of Energy, http://www.fueleconomy.gov/feg/bymake/Toyota2014.shtml

First we will bin this data using the class intervals [15,19), [20,24), [25,29), [30,34), [35,39), [40,44), [45,49),
and [50,54). In doing so, we will arrange the data in a way that leads not only to a histogram but to a stem-
and-leaf plot.

class intervals EPA Combined City/Highway Mileage (mpg)

[50,54) 50
[45,49)
[40,44) 40, 40, 41, 42
[35,39) 35
[30,34) 31, 31, 32, 32, 33
[25,29) 25, 25, 25, 26, 28
[20,24) 22, 22, 23
[15,19) 18, 19

Table 2.1.3: Combined EPA Mileage: 2014 Toyota Fleet (Trucks and Land Cruiser’s
excluded)—Binned

From the arrangement of the data in Table 2.1.3, we can quickly record the frequencies: 2, 3, 5, 5, 1, 4, 0, 1
for the class intervals in ascending order. These counts lead to the histogram in Figure 2.1.4.
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Figure 2.1.4: Histogram of EPA Combined Mileage for 2014 Toyota Fleet

Now we record the data of Table 2.1.3 in a new table, Table 2.1.4, which has the appearance of a histogram.
Table 2.1.4 has the same number of rows as Table 2.1.3. For each row, the cell of the left column of Table
2.1.4 contains the first digit of the data in the right cell of the corresponding row of Table 2.1.3. These entries
constitute the “stem” of the stem-and-leaf diagram we are creating. For each row of Table 2.1.4, the entry
of the right cell is the sequence of second digits of the numbers in the right cell of the corresponding row of
Table 2.1.3. These entries constitute the “leaf” of the stem-and-leaf diagram we are creating. The result is
the stem-and-leaf diagram shown in Table 2.1.4.

5 0
4
4 0 0 1 2
3 5
3 1 1 2 2 3
2 5 5 5 6 8
2 2 2 3
1 8 9

Table 2.1.4: Stem-and-Leaf Diagram of EPA Combined Mileage for 2014 Toyota Fleet

Now imagine that Table 2.1.4 is rotated 90◦ counterclockwise, or turn your head 90◦ clockwuse: from this
point of view the resulting figure has exactly the shape of the histogram that appears in Figure 2.1.4 (although
the represented data decreases rather than increases from left to right). One advantage of a stem-and-leaf
plot is that the details of the data are visible. Thus, we can see from Table 2.1.4 that three Toyotas have 25
mpg for their combined EPA mileage ratings. From histogram 2.1.4, all we can say about this point is that
the number of Toyotas with a combined EPA rating of 25 is between 0 and 5.

Another alternative to a histogram is the frequency polygon . Suppose that the leftmost class interval
is [x0, x1) and that the frequency count for this class is N1. Instead of plotting a rectangle of height N1 and
class interval [x0, x1) for the base, we plot the single point (m1, N1) where m1 = (x0 + x1) /2 is the midpoint
of the class interval [x0, x1). (The midpoint of a class interval is called a class mark .) This is repeated for
the second bin, the third bin, and so on. Then consecutive plotted points are connected with line segments.
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This is like a childhood activity, but instead of a sketch of a bunny rabbit appearing, a surrogate histogram
(i.e. frequency polygon) materializes. In the beryllium-11 example, the plotted points would be (1,2), (3,21),
(5,140), (7,520), (9,1207), (11,1889), (13,2132), (15,1816), (17,1208), (19,646), (21,282), (23,104), and (25,33).
The resulting frequency polygon is graphed in Figure 2.1.5, superimposed on the histogram it replaces.

Figure 2.1.5: Frequency Polygon of EPA Combined Mileage for 2014 Toyota Fleet

Histograms in R (Optional)

It is very easy to graph histograms in R. All it takes is the command hist(list) where list is the sequence
x1, x2, . . . xN of numbers, encoded as the vector c(x1, . . . , xN) in R, that constitutes the data set that is to
be binned. In a less barebones call, optional parameters are included in the argument list of hist. Among
the embellishments available to us, we can tint the bars, label the horizontal axis, and suggest the number of
bins that are to be used. For example, the code

> ToyotaFleet_MPG <- c(19,18,25,40,28,25,41,40,31,32,31,35,50,42,26,25,23,22,22,33,32)

> hist(ToyotaFleet_MPG, breaks = 9, col = "lemonchiffon", xlab = "Toyota Fleet MPG")

begins by assigning the name “ToyotaFleet MPG” to the column of MPG values in Table 2.1.2. This step
is merely one of convenience—in all future references to the data, we may use the short name that has been
assigned rather than write out all the numbers in the data set. Here we have used R’s assignment operator
<- . We usually will use an equality sign for assignment because it looks more natural, but <- has greater
geek appeal and it appears to be a more popular choice. The second line of the code creates a histogram
of the data. The bars of the histogram are shaded with the specified designer color lemonchiffon5 and the
horizontal axis is labeled “Toyota Fleet MPG”. An attempt to use 9 bins has been made, but, as you can see
from the result of this code, Figure 2.1.6, the program rejected our choice in favor of bins that have simple
integer class limits.

5See http://research.stowers-institute.org/efg/R/Color/Chart/index.htm for the extensive list of colors that are avail-
able in R.
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Histogram of ToyotaFleet_MPG
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Figure 2.1.6: Histogram for 2014 Toyota Fleet (Produced using R)

By comparing the data set with the frequency counts shown in Figure 2.1.6, you will also notice that when a
data value equals a class limit, the default action is to place it in the smaller bin (contrary to the convention
adopted in these notes). We can enforce our preferred choice by using the argument right = FALSE. To
ensure our choice of the number of bins, we assign the sequence of desired class limits to break rather than
the number of bins. Thus, the second line of the code

> ToyotaFleet_MPG <- c(19,18,25,40,28,25,41,40,31,32,31,35,50,42,26,25,23,22,22,33,32)

> nodes <- c(seq(15, 55, by = 5))

> hist(ToyotaFleet_MPG, breaks=nodes, right=FALSE, col="peachpuff", xlab="Toyota Fleet MPG")

assigns the name nodes to the sequence that begins at 5, is augmented by 5 for each new term in the sequence,
and ends at 55. (This is the sequence of class limits that we used to produce Figure 2.1.4.) In the last line,
a histogram is created using nodes as the sequence of bin endpoints. The argument right=FALSE means “It
is false that the right endpoint of a bin belongs to the bin.” The resulting histogram, tinted with the lovely
color peachpuff, is shown in Figure 2.1.7.
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Figure 2.1.7: Histogram for 2014 Toyota Fleet (Produced using R)

Stem and Leaf Plots in R (Optional)

It is very easy to graph stem and leaf plots in R. All it takes is the command stem(list) where list is the
sequence x1, x2, . . . xN of numbers, encoded as the vector c(x1, . . . , xN) in R, that constitutes the data set
that is to be stem-plotted. Figure 2.1.8, a screen capture of an R session, illustrates:

Figure 2.1.8: Stem and Leaf Plot for 2014 Toyota Fleet (R Session Screen Capture)

The returned information about the decimal point tells a person looking at the plot that the numbers are
18.0, 19.0, and so on. The following table for municipal solid waste (garbage, both landfill and recyclable)
will involve numbers that do have decimal points.

Food scraps 31.7
Glass 13.6
Metals 20.8
Paper 83.0
Plastics 30.7
Rubber, leather, textiles 19.4
Wood 14.2
Yard waste 32.6
Other 8.2

Table 2.1.5: Municipal Solid Waste (Millions of Tons), U.S. E.P.A., 2007

Figure 2.1.9, a screen capture of an R session, shows that the default stem and leaf plot is not very good.
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Figure 2.1.9: Stem and Leaf Plot for Municipal Solid Waste (R Session Screen Capture)

We can include the parameter scale = ... to do better. When the right side is filled in with 2, this argument
will roughly double the height of the plot:

Figure 2.1.10: Stem and Leaf Plot for Municipal Solid Waste, Rescaled (R Session Screen
Capture)

2.2 The Shape of a Distribution

The camel has a single hump;
The dromedary, two;
Or else the other way around.
I’m never sure. Are you?

The author is sure. It’s the other way around, Ogden.
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In this section we consider the peaks, the center, and the spread of a distribution. These three terms will
not be given formal, precise definitions, and will be used only in their intuitive senses. That is not to say
that there will not be any formal, precise definitions in this section. We will precisely define the term “mode”
and then use it somewhat loosely to describe the peaks of a distribution. We will precisely define the “mean”
and “standard deviation” of a distribution. They are, respectively, measures of the center and spread of a
distribution. But they are not the only ones. In the next section we will define alternative measures of the
center and spread.

The Mode

Given a set of data (such as the observed values of a numerical variable), the value in the set that occurs
the most frequently is called the mode . Thus, the mode of the observations 5, 1, 2, 2, 1, 4, 3, 2, 3, 6 is 2.
Strictly speaking, referring to “the mode” rather than “a mode” is, in general, imprecise, because a data set
may have more than one mode. Both 4 and 6 are modes of the data set 5, 7, 6, 5, 4, 4, 6, 3, 4, 6. The data
set 5, 5, 5, 6, 6, 6, 7, 7, 7 has three modes. A data set with precisely one mode is said to be unimodal . A
data set with precisely two modes is said to be bimodal . A data set with more than two modes is said to be
multimodal .6

The definition of mode just given is the official one. The scope of the term, however, has been widened to
encompass several related meanings. Consider the beryllium example of Section 2.1. The data set of 10,000
decays was not provided (let us give thanks), but, as was remarked, had the timings of the decays been
measured with sufficient accuracy, there would have been 10,000 different numbers in the data set. In other
words, the frequency of every value in the data set would be 1. No value in the data set would appear more
frequently than the other values! What would be gained by talking about the modes of a data set consisting
of 10,000 entries, each a mode? On the other hand, even though we were not furnished with the timing of
any particular decay, we were presented with the frequency distribution of the set of all decays. Whether
we consult Table 2.1.1 or Figure 2.1.1, we see that [12,14) is the bin in which the greatest number of decays
occurred. We refer to this bin as the mode of the distribution. This usage of mode as the name for a range
of values of a numerical variable is not precisely the same as the original usage of mode in which it stood for
a particular value of the variable.

Until now, we have defined “mode” to refer to the greatest frequency among all values in the data set.
In the language of calculus, a global maximum occurs at a mode. However, the term “mode” is also used to
describe a bin that has the greatest frequency count when compared only with those of neighboring bins. In
this sense, a bin might be a mode even if a distant bin has a greater frequency count. Phrased using the
language of calculus, “mode” describes a bin at which a local maximum occurs. The terms unimodal, bimodal,
and multimodal are extended to encompass these neologisms. Thus, Figure 2.1.1 of Section 2.1 is said to
display a unimodal distribution. It is the dromedary of histograms. Figure 2.2.1, which presents a histogram
of the age of onset of Hodgkin Lymphoma in the United States, is an illustration of a bimodal distribution:
it is the bactrian camel of histograms.

6In his informative book, Number: The Language of Science, Tobias Dantzig noted, “The Bushmen of South Africa have
no number words beyond ‘one,’ ‘two,’ and ‘many’.” More recently, it has been observed that members of the Pirahã, a small
Amazonian tribe, use the “one-two-many” system of counting. See: Numerical cognition without words: evidence from Amazonia,
P. Gordon, Science 306 no. 5695, 496-9. Focusing on important linguistic clues of this nature, anthropologists have theorized
that modern statisticians are the descendants of a numeracy-challenged people not yet identified.
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Figure 2.2.1: Age of Onset of Hodgkin Lymphoma: Rate per 100,000

Figure 2.2.2 below arose in an investigation during the years 1996–2002 of a possible link between the
incidence of invasive breast cancer and the operation of a municipal solid waste incinerator in Besançon,
France (Source: http://openi.nlm.nih.gov/detailedresult.php?img=2267447_1476-072X-7-4-2&req=

4, Retrieved 09/02/2014)).
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Figure 2.2.2: Age at Diagnosis of Invasive Breast Cancer

How many modes does the histogram in Figure 2.2.2 have? Nobody would disagree with the assertion that
modes occur around the ages 50 and 70. What about the local maxima that occur in the late 70s and early
90s? If these are true modes, then the distribution is multimodal. But the maxima occuring there are not very
pronounced. These maxima might even disappear if a different class width is chosen. Perhaps the distribution
is really bimodal. The author leans to this judgment.

Figure 2.2.3 presents another situation that calls for careful consideration. It shows a histogram for a data
set of 500 random two-digit integers.
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Figure 2.2.3: Histogram of 500 Random Two-Digit Numbers

Strictly speaking, four local maxima appear in the histogram. But these maxima do not stand out at all.
They, along with the two local minima, seem to be insignificant peaks and valleys in what is an essentially
flat distribution—in statistical jargon, a uniform distribution . We are justified in asserting that this
distribution has no mode.

Symmetry

Suppose that a histogram has a central bar, that the first bar to its left and the first bar to its right have equal
heights, that the second bar to its left and the second bar to its right have equal heights, and so on. Then the
histogram (and the distribution it represents) is said to be symmetric. If a vertical axis is drawn through
the class mark of the central bar, and if the histogram is folded along the vertical axis, so that the left side
is folded over onto the right, then it coincides exactly with the right side. Figure 2.2.4 shows a symmetric
distribution of exam scores in a class of 110 students.
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Figure 2.2.4: Histogram of Exam Scores (Bin width 10)

It should be noted that we must be a bit tolerant in deciding when a histogram is symmetric. Suppose
that the histogram in Figure 2.2.4 is based on the following data:

Exam Score [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100)
Frequency 6 15 21 26 21 15 6

Table 2.2.1: Histogram of Exam Scores (Bin width 10)

Now suppose that we refine the data by reducing the class width from 10 to 5. In order to fit the data on
the page, we will tabulate using the bin numbers from left to right, namely 1, 2, 3, . . . 14, instead of the class
intervals [30,35), [35,40), [40,45), . . . [95,100).

Bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Frequency 2 4 6 9 10 11 12 14 12 9 8 7 4 2

Table 2.2.2: Histogram of Exam Scores (Bin width 5)

The resulting histogram is shown in Figure 2.2.5.
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Figure 2.2.5: Histogram of Exam Scores (Bin width 5)

In contrast to the histogram in Figure 2.2.4, the symmetry of the histogram in Figure 2.2.5 is not perfect. To
allow some real world imperfections, we use our judgment as to the meaning of “nearly equal” and relax the
definition of symmetry as follows: If a histogram has a central bar, if the first bar to its left and the first bar
to its right have nearly equal heights, if the second bar to its left and the second bar to its right have nearly
equal heights, and so on., then the histogram (and the distribution it represents) is said to be symmetric.
A histogram or distribution that is not symmetric is said to be asymmetric.

Skewness

A tail of a distribution is the collection of bins, generally representing decreasing frequencies as the bins
become farther from the center of the range, that extends to either side of a distribution. It is, one admits, a
vaguely defined term, but, like the tail of a dog, be it long, short, bushy, or, curly, one tends to recognize one
when one sees one. Figure 2.1.1 illustrates a distribution with both a left tail and a right tail. When a right
tail extends further to the right than the left tail extends to the left, as in Figure 2.1.1, the distribution is
said to be skewed right or positively skewed (because positive numbers stretch to the right on the number
line). Similarly, if a left tail extends further to the left than the right tail extends to the right, then the
distribution is said to be skewed left or negatively skewed (because negative numbers stretch to the left
on the number line). Figure 2.2.6 shows a negatively skewed distribution.
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Figure 2.2.6: Histogram of a Negatively Skewed Distribution

The Sample Mean

The sample mean of a data set x1, x2, x3, . . . , xN , which we are regarding as a sample drawn from a larger
population, is denoted by x̄ and defined to be

x̄ =
1

N
(x1 + x2 + x3 + · · ·+ xN ) . (2.2.1)

Outside of statistics, this number would more commonly be called the average value of the numbers in the data
set. There is a shorthand notation for the sum x1+x2+x3+· · ·+xN that appears in the definition of the mean.
The shorthand notation of which we speak, known as sigma-notation because it involves the Greek letter
sigma (Σ), can be used to express many sums. In sigma-notation, we denote the sum a1 + a2 + a3 + · · ·+ aN
by

∑N
j=1 aj . The “j” in the notation is called the index of summation . Any other letter could have been

used without changing the value of the sum. That is because we calculate
∑N

j=1 aj by first replacing the j in
aj with the lower limit of summation, here specified to be 1, next replacing the j in aj with 2, then with 3,
and so on until we reach the upper limit of summation N . Finally, we add up all the expressions obtained by
the replacements. Using sigma-notation, the formula for the mean is given by

x̄ =
1

N

N∑
j=1

xj . (2.2.2)

The Sample Variance

Well, that’s the news from Lake Wobegon7, where all the women are strong, all the men are good
looking, and all the children are above average.
–Garrison Keillor

7See http://en.wikipedia.org/wiki/Lake_Wobegon
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It may happen that all numbers in a data set x1, x2, x3, . . . , xN are equal. That is, it may happen that
there is one number ξ such that x1 = x2 = x3 = · · · = xN = ξ. In this case, the mean x̄ is also equal to
ξ. There is no variation or dispersion from the mean, and, by any standards, such a data set is especially
uninteresting. In every other happenstance, there is at least one number in a data set that is above the mean,
and at least one number that is below the mean. (It is an inviolable mathematical truth that numbers cannot
all be above their average.) So, if a data set does not consist of one number repeated many times, then there
is some variation from the mean in the set, and some of the variation comes from numbers above the mean
and some of the variation comes from numbers below the mean. We desire a measure of the total dispersion
of the numbers in a data set from their mean. We will call this measure, once we find a suitable formula for
it, the sample variance of the data set. Now, one way to measure how far apart two numbers are is to
calculate their difference. Thus, for each value xj in the set we can calculate the difference xj − x̄ and add
up all these deviations from the mean:

candidate sample variance = (x1 − x̄) + (x2 − x̄) + · · ·+ (xN − x̄) .

The problem with candidate sample variance is that some of its summands are positive and some are negative.
When they are summed, there will be cancellations. The resulting sum will therefore be too small to accurately
reflect the true, total variation.8 For instance, if Ben gets 50 on each of two tests, and if Jerry gets 0 and 100,
then the mean for both Ben and Jerry is 50. The candidate sample variance for Ben is (50− 50) + (50− 50),
or 0, and who can argue with that value for the variance? However, thanks to cancellation, the candidate
sample variance for Jerry, namely (0− 50) + (100− 50), is also 0,9 and who would not believe that Jerry had
the maximum possible variance!

The solution is to make all contributions to variance nonnegative so that there are no cancellations. Using
the absolute value of each summand of candidate variance would do the job, but it would introduce a problem:
the absolute value function is not differentiable at one point of its domain, and that failure would be enough
to prevent statisticians from using the differential calculus to study candidate sample variance. Another way
to make each summand of candidate variance nonnegative so that there are no cancellations is to square it.
Squaring is a differentiable function, so the application of calculus is not disabled by using

candidate sample variance = (x1 − x̄)
2
+ (x2 − x̄)

2
+ · · ·+ (xN − x̄)

2
.

There is still a problem with candidate sample variance: it can become a huge number just by taking a very
large sample size. To understand what we mean by this, suppose that 0.001 ≤ |xj − x̄| ≤ 0.002 for every
member xj in our data set. Clearly, there is very little variation in this data set. But suppose that there are
one trillion (1,000,000,000,000) values is our data set. Then,

candidate sample variance ≥ (0.001)2 + (0.001)2 + · · ·+ (0.001)2︸ ︷︷ ︸
one trillion summands

= 1012 · 10−6 = 1, 000, 000.

We do not want variance to inflate just because we have a large sample size. A natural solution to this problem
is to divide by the sample size:

candidate sample variance =
1

N

(
(x1 − x̄)

2
+ (x2 − x̄)

2
+ · · ·+ (xN − x̄)

2
)
.

There remains a problem with our latest candidate sample variance, but this problem is not so easily detected.
To understand the essence of the remaining problem, let us return to the beryllium-11 example. We know the
half-life of beryllium-11, that is, the time it takes the mass of a sample to be reduced to half the initial mass.

8In fact, the sum of all deviations from the mean is always 0, as will be shown in the optional subsection Degrees of Freedom
that is found later in this section.

9As remarked in the preceding footnote, the sum of all deviations from the mean is always 0, so there is no surprise that the
calculation for Jerry results in the same number as for Ben.
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That knowledge together with the general law of radioactive decay determines a theoretical distribution for
the time until decay of a beryllium-11 isotope. That theoretical distribution has a mean, which we will denote
by µ, and a variance, which we will denote by σ2. Because the parameters µ and σ2 are theoretical numbers
that pertain to all beryllium-11 isotopes, and not only the isotopes that decayed during our study, we call µ
and σ2 the population mean and population variance respectively. We expect that, if the sample size is
sufficiently large, then the sample mean x̄ will closely approximate the population mean µ, and it does. We
also want candidate sample variance to closely approximate the population variance σ2 when the sample size is
large, and our latest stab at candidate sample variance fulfills our wish. However, it also tends to consistently
underestimate the value it should approximate. And this tendency to underestimate exists generally—it is a
defect that is not particular to the beryllium-11 decay distribution. In a more advanced statistics course, it is
shown that this flaw of estimation can be avoided by replacing N with N − 1 in the denominator of candidate
sample variance. That is, we define the variance, which is denoted by the symbol s2, as follows:

sample variance = s2 =
1

N − 1

(
(x1 − x̄)

2
+ (x2 − x̄)

2
+ · · ·+ (xN − x̄)

2
)
, (2.2.3)

or, using sigma-notation,

s2 =
1

N − 1

N∑
j=1

(xj − x̄)
2
. (2.2.4)

Standard Deviation

You will note that sample variance does not scale in an optimal way. Suppose, for example, that the data
set x1, x2, x3, . . . , xN consists of distances measured in feet (ft). Then the units of variance are square feet
(ft2). If we switch to inches, then the numerical values of the data are increased by a factor of 12, but the
numerical value of the sample variance is increased by a factor of 122, or 144. To obtain a quantity that
reflects the spread of the data from the mean but which scales the same way as the data, we square-root the
sample variance. The resulting quantity, which is called the sample standard deviation10, is denoted by s
(what else?) and is defined by

sample standard deviation = s =
√
sample variance =

√√√√ 1

N − 1

N∑
j=1

(xj − x̄)
2
. (2.2.5)

Degrees of Freedom of the Sample variance and Sample Standard Deviation

Earlier in this section we observed that the sums of the deviations for hypothetical test-takers Ben and Jerry
were both zero. We now observe that this is true for any data set. Let x̄ denote the mean of x1, x2, . . . , xN .
If we multiply both sides of equation (2.2.2) by N , then we obtain

N∑
j=1

xj = N x̄. (2.2.6)

10Sir Francis Galton (1822–1911) introduced the notion of standard deviation in the early 1870s. However, he used the deviation
from the median rather than the mean. The definition of “median” will be given in the next section.
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We use this equation to calculate the sum of all (non-squared) deviations from the mean as follows:

N∑
j=1

(xj − x̄) =

 N∑
j=1

xj

−

 N∑
j=1

x̄


= N x̄−

N∑
j=1

x̄ using equation (2.2.6)

= N x̄−N x̄ adding N copies of the constant x̄

= 0.

One way to interpret this result is that the last deviation from the mean is determined by the values of all
the preceding deviations:

N−1∑
j=1

(xj − x̄) + (xN − x̄) =

N∑
j=1

(xj − x̄) = 0,

so

xN − x̄ = −
N−1∑
j=1

(xj − x̄) . (2.2.7)

This equation for xN − x̄ reveals an important distinction between the data set x1, x2, x3, . . . xN−1, xN

and the deviations x1 − x̄, x2 − x̄, x3 − x̄, . . . xN−1 − x̄, xN − x̄ from the mean. No value in the data set
x1, x2, x3, . . . xN−1, xN is predetermined. There are N observations and so there are N “degrees of freedom.”
By contrast, the set x1 − x̄, x2 − x̄, x3 − x̄, . . . xN−1 − x̄, xN − x̄ of deviations from the mean has only N − 1
degrees of freedom: once N − 1 deviations from the mean are specified, the N th is determined by equation
(2.2.7). We say that the sample variance and the sample standard deviation have N−1 degrees of freedom .
You will note that the formulas for sample variance and sample standard deviation both use this number in
their denominators.

Transformations—What They Change, What They Do Not Change

One common way to transform a data set is to add one fixed number to every member of the data set. The
number that is added may be negative, in which case the transforming operation might be considered to be
the subtraction of a positive number. For example, we could transform a set of temperature measurements
in degrees centigrade to a set of temperature measurements in degrees Kelvin by adding −273.15 to each
centigrade measurement (or, equivalently, subtracting +273.15 from each). Such a transformation is called a
translation .

Annother common way to transform a data set is to divide every member of the data set by a fixed nonzero
number λ. Equivalently, we can think of the transforming operation as multiplication by 1/λ. For example,
if a set consists of changes of temperatures in degrees centigrade, we could, by either multiplying by 5/9 or
dividing by 9/5. Such a transformation is called a scaling .

Suppose c is a constant and that the translation T defined by

x
T7→ T (x) = x+ c

is applied to a data set X consisting of numbers x1, x2, . . . , xN with mean x̄ and standard deviation sX. Let
yj = T (xj) = xj + c for every j, 1 ≤ j ≤ N . Then the mean ȳ and standard deviation sY of the data set Y
consisting of numbers y1, y2, . . . , yN are given by

ȳ = x̄+ c and sY = sX. (2.2.8)
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Proofs of the formulas in line (2.2.8) are routine. We have

ȳ =
1

N

N∑
j=1

yj =
1

N

N∑
j=1

(xj + c) =
1

N

N∑
j=1

xj +
1

N

N∑
j=1

c = x̄+
1

N
N · c = x̄+ c.

The jth deviation from the mean in the Y data set is given by yj − ȳ, or (xj + c)− (x̄+ c), or xj − x̄, which
is the jth deviation from the mean in the X data set. Since the sets X and Y have the same deviations from
their means, they have the same standard deviation.

Suppose λ is a nonzero constant and that the scaling S defined by

x
S7→ S(x) =

x

λ

is applied to a data set X consisting of numbers x1, x2, . . . , xN with mean x̄ and standard deviation sX. Let
yj = S (xj) = xj/λ for every j, 1 ≤ j ≤ N . Then the mean ȳ and standard deviation sY of the data set Y
consisting of numbers y1, y2, . . . , yN are given by

ȳ =
x̄

λ
and sY =

sX
λ
. (2.2.9)

Proofs of the formulas in line (2.2.9) are routine. We have

ȳ =
1

N

N∑
j=1

yj =
1

N

N∑
j=1

xj

λ
=

1

λ

1

N

N∑
j=1

xj =
1

λ
x̄.

The calculation of the standard deviation sY will proceed via the calculation of the variance s2Y to avoid the
inclusion of square roots:

s2Y =
1

N − 1

N∑
j=1

(yj − ȳ)
2

=
1

N − 1

N∑
j=1

(xj

λ
− x̄

λ

)2

=
1

λ2

1

N − 1

N∑
j=1

(xj − x̄)
2

=
1

λ2
s2X.

Sample Mean, Sample Variance, Sample Standard Deviation in R (Optional)

The calculation of sample mean, sample variance, and sample standard deviation of a data set X with
data values u, v, w, . . . in R could not be easier. We first convert the data set to a vector in R using the
code c(u,v,w,...). For convenience, we would ordinarily name the vector using R’s assignment operation
leftName <- rightObject, which assigns the object on the right to the name on the left. As we have
mentuioned, the sign of equality, namely =, can be used instead of <-, but this alternative seems to have
less geek-appeal. Once X <- c(u,v,w,...) or X = c(u,v,w,...) has been entered, we use the commands
mean(X), var(X), and sd(X) to calculate the sample mean, sample variance, and sample standard deviation
of X. If X is a large data set, which is to say that the sample size N is large, then it is often convenient to use
R to determine the sample size. The code N = length(X) counts the size of the data set and assigns it to N.

The following R session is a detailed illustration. Each line is commented with non-code that follows the
sharp symbol #: in this example our comments are nothing more than line number references. The lines in
blue are responses by R, where called for.
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Figure 2.2.7: Screen Capture of an R Session

In line 1, the data set 1, 4, 22, 25 is converted to a vector in R and assigned the name X. In Line 2, we create
a vector, which we name stats, the first entry of which is the size of the sample, the second entry the mean,
the third the standard deviation, and the fourth the variance. In general, v[j] picks out the jth entry of
vector v. Thus, Lines 3, 4, 5, and 6 cause R to respond with the size of the data set X, namely 4, the mean
of X, namely 13, the standard deviation 12.2475, and the variance 150.

Figure 2.2.8 is a continuation of the R session shown in Figure 2.2.7. Its purpose is to show some additional
functionality of R, to indicate looping capabilities, and to verify that the denominator R uses for both the
variance and standard deviation of a sample of size N is N − 1.

Figure 2.2.8: Screen Capture of an R Session, Continued from Figure 2.2.7

Lines 7, 8, and 9 assign conveniently concise names for the sample size, sample mean, and sample variance.
Line 10 creates an empty vector ⟨ , , , ⟩ with N = 4 entries. Line 10 also names this vector SD. Think of
this vector as an empty egg carton that we will fill with four eggs. Well, numbers actually. Line 11 does that,
one at a time, by making four assignments. The first is SD[1] = (X[1] - Xbar) 2 = (1 − 13)2 = 144, the
second is SD[2] = (X[2] - Xbar) 2 = (4−13)2 = 81, the third is SD[3] = (X[3] - Xbar) 2 = (22−13)2 =
81, and the fourth is SD[4] = (X[4] - Xbar) 2 = (25 − 13)2 = 144. After this line, the vector SD is equal
to ⟨144, 81, 81, 144⟩. Line 12 then sums these four vector entries and assigns the result, 450, to SSD, the Sum
of the Square Deviations from the mean. Now, if d is the denominator R uses to calculate the variance, then
it follows that Var = SSD/d, or d = SSD/Var. Line 13 calculates the ratio SSD/Var and returns the value 3,
which is, indeed, N - 1.
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2.3 Quartiles and the Five-Number Summary

There are five numbers associated with a data set x1, x2, x3, . . . , xN that provide us with a decent overview
of the distribution of the data set. Taken together, they form the legendary five-number summary of the
data set. If the size N of the data set is large, then obtaining a useful sense of the distribution with only
five numbers amounts to very good compression ratio. Better yet, we have already encountered two of these
numbers: the minimum value xmin and the maximum value xmax. Seems like smooth sailing: only three more
numbers to go. They are denoted Q1, Q2, Q3: the middle number, Q2, competes with x̄ as a measurement
of the center of the distribution, and Q3 − Q1 competes with sX as a measurement of the spread from the
center.

Percentiles

Suppose that 0 ≤ p ≤ 100. Roughly speaking, the pth-percentile of a data set x1, x2, x3, . . . , xN is a number
that separates the lower p% of values in the data set from the upper (100 − p)%. Defining such a number
precisely is less straightforward than one might think and there is no standard way to do so. Several different
definitions are in fairly common use—one statistical program lets the user choose from five different formulas.

In order to define percentiles, it will be convenient to have a notation for the data set x1, x2, x3, . . . , xN

when it is reordered from smallest value to largest value. To that end, we let x[1], x[2], x[3], . . . , x[N ] be a
rearrangement of the data so that

x[1] ≤ x[2] ≤ x[3] ≤ · · · ≤ x[N ].

Notice that x[1] = xmin and x[N ] = xmax.

Example 1. For the data set 29, 23, 26, 23, 28, 26, 27, 28, 34, 33, 20, 22, 29, 33 what are N and x[j] for
1 ≤ j ≤ N?

Solution. The data set 29, 23, 26, 23, 28, 26, 27, 28, 34, 33, 20, 22, 29, 33 reordered from smallest to
largest is 20, 22, 23, 23, 26, 26, 27, 28, 28, 29, 29, 33, 33, 34. Notice that, whichever order we use, the
data set has 14 terms (even though some of the terms are repeated, with the result that fewer than 14 different
numbers compose the set). Thus, N = 14. Reading the terms of the ordered list from left to right, we see that
x[1] = 20, x[2] = 22, x[3] = 23, x[4] = 23, x[5] = 26, x[6] = 26, x[7] = 27, x[8] = 28, x[9] = 28, x[10] = 29, x[11] =
29, x[12] = 33, x[13] = 33, and x[14] = 34.

We define the pth-percentile to be the number x[m] where m is the smallest index such that at least p%
of the values in the data set are less than or equal to x[m]. This definition is commonly used, but there are
other formulas that are also commonly used. In other words, there is no standard definition of percentile.
Kind of surprising, eh? Notice that, in this definition, the pth-percentile is always a member of the data set.
In some of the other definitions out there, a percentile need not necessarily be a number in the data set.

There is actually an explicit formula for the index m of the pth-percentile x[m]:

m =

⌈
p ·N
100

⌉
.

The definition of the ceiling function that appears in this formula is given in Section 2.1. Basically it means,
that if the number inside the upside down Ls is an integer, then leave it alone, but if it has a fractional part,
then round up to the next larger integer.

Example 2. What is the 25th-percentile of the data set 29, 23, 26, 23, 28, 26, 27, 28, 34, 33, 20, 22, 29, 33
of the preceding example? What is the 50th-percentile?
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Solution. In this example, N = 14 and x[1] = 20, x[2] = 22, x[3] = 23, x[4] = 23, x[5] = 26, x[6] = 26, x[7] =

27, x[8] = 28, x[9] = 28, x[10] = 29, x[11] = 29, x[12] = 33, x[13] = 33, and x[14] = 34. For the 25th-percentile, we
calculate

m =

⌈
25 · 14
100

⌉
=

⌈
7

2

⌉
= ⌈3.5⌉ = 4.

Therefore, the 25th-percentile is x[4], or 23. For the 50th-percentile, we calculate

m =

⌈
50 · 14
100

⌉
=

⌈
14

2

⌉
= ⌈7⌉ = 7.

Therefore, the 50th-percentile is x[7], or 27.

Quartiles

For every data set (with at least 4 members), there are three numbers, Q1, Q2, and Q3 that divide the values
of the data set into approximately equal fourths. (If the sample size N is not an integer multiple of 4, such
as 4, 8, 12, 16, and so on, then exactly equal fourths is not possible.) Roughly speaking, Q1 is approximately
the 25th-percentile, Q2 is approximately the 50th-percentile, and Q3 is approximately the 75th-percentile.
Remember that percentiles are always members of the data set (in our definition), but we will not define the
quartiles in a way that requires them to be members of the data set. As with percentiles, statistics does not
provide a standard way of defining quartiles—there are several different definitions in common use.

We will define Q2 first, because the definitions of Q1 and Q3 depend on it. The name for Q2 is middle
quartile or, synonymously and more commonly, median . For us, the terms middle quartile and median
will not be synonymous with the term “50th-percentile”. According to the definition we have adopted, the
50th-percentile, like all other percentiles, is a member of the data set. In the definition of the median that we
will soon describe, the median might be the average of two consecutive members of the ordered data set. If
those two members of the data set are unequal, then the median will not be a member of the data set. If so,
it cannot equal the 50th-percentile.

If a data set x1, x2, x3, . . . , xN has an odd number N of members, then the ordered rearrangement has a
(unique) middle value, and we define Q2 to be that middle value. If N is not large, then this easiest done by
inspection. For example, if N = 7, then at a glance we see that x[4] is the middle value of the ordered list

x[1] x[2] x[3] x[4] x[5] x[6] x[7].

Inspection is not feasible when N is large, so it is useful to have a formula. Set k = ⌊N/2⌋. The floor
symbol is used like the ceiling symbol that we have encountered, but, whereas we round up to calculate a
ceiling, we round down to calculate the floor. Thus, ⌊3⌋ = 3 and ⌊3.5⌋ = 3. It is not difficult to see that,
with this definition of k, we have N = 2k + 1 when N is an odd number. For example, if N = 7, then
k = ⌊7/2⌋ = ⌊3.5⌋ = 3, and N = 2 · 3 + 1 = 2 · k + 1. The middle value of the data set is x[k+1].

If a data set x1, x2, x3, . . . , xN has an even number N of members, then the ordered rearrangement has
two “middle values”. They are not exactly in the middle: one is the term on the left side closest to the middle
and the other is the term on the right side closest to the middle. We define Q2 to be the average of the two
middle values. f N is not large, then this easiest done by inspection. For example, if N = 8, then at a glance
we see that x[4], the last term of the left half of the data, and x[5], the first term of the right half of the data,
are the two middle values of the ordered list:

x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8].

Inspection is not feasible when N is large, so it is useful to have a formula. As in the previous case, set
k = ⌊N/2⌋. In this case N/2 is an integer, so the floor symbol does not change anything—there is no rounding
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to be done—and can be disregarded. For N = 8, we have k = ⌊8/2⌋ = ⌊4⌋ = 4, and N = 8 = 2 · 4 = 2k̇ It
is easy to see that N = 2k is always true when N is even. The two middle values are x[k] and x[k+1]. As a

result, Q2 =
(
x[k] + x[k+1]

)
/2.

The number Q1, which, roughly speaking, separates the lowest 25% of the data from the highest 75% of
the data, is called the lower quartile . The number Q3, which, roughly speaking, separates the lowest 75%
of the data from the highest 25% of the data, is called the upper quartile . If the sample size N is even, i.e.,
if N = 2k, then the ordered data list splits into two halves, each with k members. We define Q1 to be the
median of the left half and Q3 to be the median of the right half.

If the sample size N is odd, i.e., if N = 2k+1, then the ordered data list contains k members to the left of
the middle value x[k+1] and k members to the right. The question becomes, What do we do with the middle
value itself? Apparently, one strategy is to discard it. That strategy does not fit in the author’s game plan.
The middle value is a genuine data value, not an avergae. The author retains data values the way hoarders
hoard hoarded things. Our strategy is to include the middle value in both halves. Thus, we define Q1 to be
the median of the left half

x[1] x[2] x[3] . . . x[k+1]

and Q3 to be the median of the right half.

x[k+1] x[k+2] x[k+3] . . . x[2k+1]

The terms for the four subsets of the data set that are separated by the quartiles are bottom quartile ,
lower middle quartile , upper middle quartile , and top quartile . The difference Q3 −Q1 is called the
interquartile range , which is abbreviated as IRQ. The nondecreasing sequence xmin, Q1, Q2, Q3, xmax is
called the five number summary .

Four Prototype Quartile Calculations

According to the definition of the median that we have adopted, the median is the middle value of an ordered
data set with an odd number of terms or the average of the two middle values if the ordered data set has
an even number of terms. Because the upper and lower quartiles are defined to be medians of a subset of
the full data set, they too are either middle values or averages. Thus, every one of the three quartiles is a
middle value, which we will abbreviate by mv, or an average, which we will abbreviate by avg. Because of
the symmetric definitions of Q1 and Q3, we see that Q1 and Q3 are both middle values or both averages. In
the four examples of this subsection, we will see that the way the three quartiles are obtained is determined
by the remainder that results when the population size is divided by 4.

It is a simple fact of arithmetic that when we divide an integer N by 4, we obtain a remainder equal to 0,
1, 2, or 3. Using the values 8, 9, 10, 11, 12, 13, 14, and 15 to illustrate, we have 8 = 2 ·4+0, 9 = 2 ·4+1, 10 =
2 · 4 + 2, 11 = 2 · 4 + 3, 12 = 3 · 4 + 0, 13 = 3 · 4 + 1, 14 = 3 · 4 + 2, and 15 = 3 · 4 + 3. We will use the values
N = 8, N = 9, N = 10, and N = 11 for our examples. The behavior that will be seem for these valuesof N
are representative of the behaviors that occur for all values of N .

Example 3. Calculate the quartiles for the presorted data set 13, 17, 18, 20, 24, 28, 30, 31.

Solution. In this example, N = 8 = 4 · 2+0 = 4 · ℓ+0 with ℓ = 2. Because N is even, the ordered data splits
into two equal-sized halves, 13, 17, 18, 20 and 24, 28, 30, 31, with the median Q2 being the average of the
values in each half closest to the middle: Q2 = (20 + 24)/2 = 22. The lower quartile Q1 is the median of the
numbers in the lower half, namely the average of 17 and 18, or 17.5. The upper quartile Q3 is the median of
the numbers in the upper half, namely the average of 28 and 30, or 29. For the purposes of filling in the table
that follows these examples,, we remark that all three quartiles were obtained by averaging: Q1: avg, Q2: avg,
Q3: avg.
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Example 4. Calculate the quartiles for the presorted data set 13, 17, 18, 20, 24, 28, 30, 31, 35.

Solution. In this example, N = 9 = 4 · 2+ 1 = 4 · ℓ+1 with ℓ = 2. Because N is odd, the ordered data splits
into two equal-sized halves separated by a middle value:

13, 17, 18, 20, 24, 28, 30, 31, 35.

The median Q2 is the middle value, 24. To calculate Q1 and Q3 when there is a middle value, another copy
of the middle value is included in the data set so that the augmented set has an even number of terms and
splits into equal-sized halves:

13, 17, 18, 20, 24, 24, 28, 30, 31, 35.

The lower quartile Q1 is the median of the numbers in the lower half, namely the middle value 18. The upper
quartile Q3 is the median of the numbers in the upper half, namely the middle value 30. For the purposes of
filling in the table that follows these examples,, we remark that all three quartiles were obtained by identifying
middle values: Q1: mv, Q2: mv, Q3: mv.

Example 5. Calculate the quartiles for the presorted data set 9, 13, 17, 18, 20, 24, 28, 30, 31, 35.

Solution. In this example, N = 10 = 4 ·2+2 = 4 ·ℓ+2 with ℓ = 2. Because N is even, the ordered data splits
into two equal-sized halves, 9, 13, 17, 18, 20 and 24, 28, 30, 31, 35, with the median Q2 being the average of
the values in each half closest to the middle: Q2 = (20 + 24)/2 = 22. The lower quartile Q1 is the median
of the numbers 9, 13, 17, 18, 20 in the lower half, namely the middle value 17. The upper quartile Q3 is the
median of the numbers 24, 28, 30, 31, 35 in the upper half, namely the middle value 30. For the purposes of
filling in the table that follows these examples, we remark that the median was obtained by averaging, whereas
the upper and lower quartiles were obtained by identifying middle values: Q1: mv, Q2: avg, Q3: mv.

Example 6. Calculate the quartiles for the presorted data set 9, 13, 17, 18, 20, 24, 28, 30, 31, 35, 36.

Solution. In this example, N = 11 = 4 · 2 + 3 = 4 · ℓ + 3 with ℓ = 2. Because N is odd, the ordered data
splits into two equal-sized halves separated by a middle value:

9, 13, 17, 18, 20, 24, 28, 30, 31, 35, 36.

The median Q2 is the middle value, 24. To calculate Q1 and Q3 when there is a middle value, another copy
of the middle value is included in the data set so that the augmented set has an even number of terms and
splits into equal-sized halves:

9, 13, 17, 18, 20, 24 24, 28, 30, 31, 35, 36.

The lower quartile Q1 is the median of the numbers in the lower half, which has an even number of terms.
Therefore, Q1 is the average (17+18)/2 of the two middle values, or 17.5 The upper quartile Q3 is the median
of the numbers in the upper half, the average (30+31)/2 of the two middle values, or 30.5 For the purposes
of filling in the table that follows, we remark that the upper and lower quartiles were obtained by averaging,
whereas the median was obtained by identifying a middle value: Q1: avg, Q2: mv, Q3: avg.

In the table that follows, we summarize our observations.

N Q1 Q2 Q3

4 · ℓ+ 0 avg avg avg
4 · ℓ+ 1 mv mv mv
4 · ℓ+ 2 mv avg mv
4 · ℓ+ 3 avg mv avg

Table 2.3.1: Quartile Calculation and the Remainder of N Upon Division by 4
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Skewness, the Mean and the Median

In a skewed distribution, the mean is farther out in the long tail than is the median.
–David S. Moore, George P. McCabe11

In an archetypal unimodal distribution that is skewed left (as shown in Figure 2.2.6), the mean, median, and
mode occur from left to right in alphabetical order. In an archetypal unimodal distribution that is skewed right,
the mode, median, and mean occur from left to right in reverse alphabetical order. Figure 2.3.1 illustrates
the second of these assertions, sometimes cited as the Mean-Median-Mode Inequality.

Figure 2.3.1: Histogram of a Positively Skewed Unimodal Distribution

Let us understand the basis of the Mean-Median-Mode Inequality, using a positively skewed unimodal
distribution (as in Figure 2.3.1) for our discussion. The location of the (roughly central) mode speaks for
itself. Because it is longer, we expect the right tail to have a greater effect on the mean and on the median
than the left tail. The numbers to the right on the horizontal axis are the large values of the data set. The
contribution of these numbers (as summands) to the numerator of the mean, tends to make the mean larger
and, geometrically speaking, push it to the right. These large values that compose the right tail tend to push
the median to the right, but to a lesser extent. That is because the median is about frequencies, frequencies
are measured by the vertical axis, and the bars for the large values are short. Thus, the large data values
that prominently effect the mean occur infrequently and have little effect on the median.

It should be emphasized that the Mean-Median-Mode Inequality is merely a rule of thumb. As in the
quote with which this subsection opened, this rule of thumb is often stated without any qualifications as if it
were a universal truth. It is not. Expect the Mean-Median-Mode Inequality to hold for a distribution that
has a histogram similar to those of Figures 2.2.6 and 2.3.1. Otherwise, do not take it for granted that the
Mean-Median-Mode Inequality holds.

11Introduction to the Practice of Statistics, Third Edition, David S. Moore, George P. McCabe, W.H. freeman and Co., p.43
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Outliers

Roughly speaking, an outlier is a data value that is distant from the main group of data values. So say we.
The handbook of the National Institute of Standards and Technology says, “An outlier is an observation that
lies an abnormal distance from other values in a random sample from a population.” Wikipedia says pretty
much the same thing: “An outlier is an observation point that is distant from other observations.”

Clearly these definitions are somewhat vague. In the NIST definition, how do we decide what is “ab-
normal”? The NIST handbook acknowledges that its definition “leaves it up to the analyst (or a consensus
process) to decide what will be considered abnormal.” In the Wikipedia definition, how distant from other
points must an observation be in order to be deemed “distant”? Wikipedia acknowledges, “Determining
whether or not an observation is an outlier is ultimately a subjective exercise.”

Even worse, the NIST and Wikipedia definitions allow logical complications. Suppose we have a data set
with 1000 observations, of which 990 are between 0 and 50 and 10 are between 77 and 78. The observations
in this small cluster do not satisfy either the NIST or the Wikipedia definition of outlier (because each one is
close to nine other data values). Nevertheless, most statisticians would consider them to be outliers.

There is no universally accepted mathematical criterion for categorizing an isolated data value as an
outlier. Several have been proposed (and we will describe one of them later in this section), but, ultimately,
classifying a data value as an outlier is a judgment call. Outliers should always be investigated—frequently
outliers are due to error and it is always beneficial to root out errors. Standard scientific practice is to report
outliers. If an outlier is to be disregarded from an analysis, then that decision should be explained.12

Box and Whisker Plot

A box and whisker plot or boxplot uses a box and two whiskers to display some of the salient features
of a numerical distribution. We will illustrate this graphing procedure with the EPA mpg data for the 2013
Toyota fleet, which we considered in Section 2.1: 18, 19, 22, 22, 23, 25, 25, 25, 26, 28, 31, 31, 32, 32, 33, 35,
40, 40, 41, 42, 50. The five-number summary for this set is xmin = 18, Q1 = 25, Q2 = 31, Q3 = 35, xmax = 50.
We draw a horizontal axis that spans the data set. Next, we draw equal length vertical segments at each of
the three quartiles. The outer segments, i.e., the segments at Q1 and Q3, form the vertical sides of a box.
How tall should the vertical segments be? That is an aesthetic judgment. A box that looks like a shoe box
aligned heel-to-toe horizontally is common.

Nearly one third of the way done! With the box out of the way, we start growing whiskers. For the
whiskers, draw two vertical “fences”, one 1.5 IQRs to the left of the left side of the box, and one 1.5 IQRs to
the right of the right side of the box. Draw these lightly so they can be erased—they are merely guidelines and
not part of the finished boxplot. In our example, IQR = 35-25 = 10, so the left fence is at x = 25−1.5 ·10 = 10
and the right fence is at x = 35 + 1.5 · 10 = 50. Next, extend a left whisker (a horizontal line segment) that
starts half-way up the left side of the box and stretches horizontally to the data value that, among all data
values to the left of the box, is the one farthest from the box but still within the fenced region. In our
example, the horizontal line extends leftward from x = 25 to x = 18. Draw the right whisker analogously. In
our example, the right whisker extends horizontally to the right from x = 35 to x = 50. (We remark that had
the value 50 been 51, it would have been outside the fence. In that case the whisker would have extended only
to x = 42, which would have been the greatest data value inside the fence.) Short vertical lines are usually
added to the ends of the whiskers. See Figure 2.3.2.

12In the older literature, outliers that were questionable observations were routinely discarded without comment. Some
statisticians nowadays continue to discard without comment outliers that can be traced to error. Other statisticians maintain
that all outliers must be reported.
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Figure 2.3.2: Box and Whisker Plot of Toyota EPA Combined Mileage, 2013 Fleet

For the last step, in creating a boxplot, outliers are plotted by using symbols such as a small circle or an
⊕. Different symbols may be used in the same boxplot (without signifying any particular difference between
the data values they represent). There are no outliers in our Toyota mileage example, but if the data value 50
had been 51, then it would have been outside the fence, and arguably far emough away from the nearest data
value 42 to be considered an outlier. The boxplot of this hypothetical distribution appears in Figure 2.3.3.

Figure 2.3.3: Box and Whisker Plot of Hypothetical Toyota EPA Combined Mileage, 2013
Fleet

There are a number of variations on the basic boxplot theme. The boxplot we have described is called the
Tukey boxplot . We have drawn our boxplots horizontally only because the graphics in these notes fit better
with lanscape orientation rather than portrait orientation. Vertically oriented boxplots work just as well and
are extremely common.

Boxplots are particularly effective when a variable is tabulated for every value of a group, a boxplot is
created for every value of the group, and the boxplots are placed side-by-side for comparison. For example,
we might want to compare EPA combined mielage for the fleets of Toyota, Ford, and General Motors. Or
we might want to compare weather features by month. During the winter of 2013-2014, the winter of the
polar vortex, which month was coldest: December, January, or February? Boxplots for these months can be
inspected in Figure 2.3.4.
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Figure 2.3.4: Boxplots for the Average Daily Temperatures in St. Louis for Dec 2013, Jan
2014, Feb 2014

Outliers on the Other Sides of the Fences

In the previous subsection, we described fences drawn at the values Q1 − 1.5 × IQR and Q3 + 1.5 × IQR.
These are sometimes called the lower inner fence and the upper inner fence respectively. Fences drawn
at Q1 − 3× IQR and Q3 + 3× IQR are called the lower outer fence and upper outer fence respectively.

As our discussion of boxplots suggests, observations that are not within the inner fences are suspected
outliers. In fact, if such an observation is within the outer fences, it is, according to the NIST handbook,
considered to be a mild outlier . If an observation is not within the outer fences, then it is, according to the
NIST handbook, considered to be an extreme outlier . It need hardly be mentioned that these definitions
are not universally adopted.

Five-Number Summaries and Boxplots in R (Optional)

To calculate the five-number summary of a data set u, v, w, . . . in R, assign the data set to a name such
as X by means of the code X <- c(u,v,w,...), and then call on the fivenum command with argument X:
fivenum(X). For this command, R uses the same definitions for the three quartiles Q1, Q2, Q3 as are found
in these notes, so there will be no surprises. The command summary(X) can also be used, but the method of
calculating Q1 and Q3 is not the one described in these notes. For example, if X is the data set 1,2,3,4,7,9,
then the command summary(X) prompts this output:

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.250 3.500 4.333 6.250 9.000
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There is no need to discuss the method of calculation that summary uses for Q1 and Q3: we have already
made our choice of method and we will stick to it.

In R, a boxplot for a data set X <- c(u,v,w, ...) can be obtained by simply entering boxplot(X), but
this call does not result in the Tukey boxplot: the whiskers extend to the smallest and largest values of the
data set X. For a Tukey boxplot, an additional parameter must be specified: boxplot(X, range = 1.5). The
default orientation for a boxplot in R is vertical. If you desire a horizontal boxplot, then include a parameter
to overrule the default: boxplot(X, range = 1.5, horizontal=TRUE). Because boxplots are so useful for
comparing the values of a variable when they are split into groups, it might be worthwhile to show the R code
that we used to create Figure 2.3.4. In order to fit the lines on the page, we suppressed many of the daily
averages and replaced them with ellipses.

> DecAvgTemp <- c(46,49,53,55,31,20, ...,39,42,49,31,21,34)

> JanAvgTemp <- c(36,16,17,37,19,-3,...,43,16,12,24,36,34)

> FebAvgTemp <- c(33,21,19,25,17,6,...,20,24,34,25.5,25.5,25.5)

> data <- data.frame(DecAvgTemp,JanAvgTemp,FebAvgTemp)

> boxplot(data, range=1.5)

2.4 Chebyshev’s Inequality

In this section we will assume that every data set X under consideration contains at least two distinct
observations. In other words, the standard deviation sX of X satisfies sX > 0, and so we may fearlessly divide
by sX.

If we know the size N , the mean x̄, and the standard deviation sX of a data set X, then we can infer some
simple facts about values of X. For example, let

ρ =

√
N − 1

N
× sX.

Then there must be at least one observation that does not lie inside the open interval (x̄− ρ, x̄+ ρ). Otherwise,

all the absolute deviations |xj − x̄| from the mean would satisfy |xj − x̄| < ρ, or (xj − x̄)
2
< ρ2, or

(xj − x̄)
2
<

N − 1

N
× s2X ,

and, as a result,

s2X =
1

N − 1

N∑
j=1

(xj − x̄)
2
<

1

N − 1

N∑
j=1

N − 1

N
× s2X =

1

N − 1
N

N − 1

N
× s2X = s2X,

which is impossible. For example, in a data set of size 10 with mean 0 and standard deviation 1, at least one
observation must have absolute value greater than or equal to

√
9/10 = 0.948683 . . . .

Chebyshev’s Upper Bound for the Number of Peripheral Observations

Suppose that X = x1, x2, . . . , xN is a data set with mean x̄ and standard deviation sX (as given by formulas
(2.2.2) and (2.2.5)). Let λ be a fixed positive number—other than requiring that λ > 0, there is no restriction
in what λ might be: it might be less than 1 but it might be greater than 1, it might be a positive integer, but
it might not be an integer, it might be a rational number like 3/2, but it might be an irrational number like√
2. We will use λ as a measure of whether a data value is located centrally or peripherally. To be specific,

we will say that xj is centrally located if it is less than λ standard deviations away from the mean. That is,
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xj is centrally located if |x− x̄| < λ · sX. On the other hand, if xj is at least λ standard deviations away from
the mean, which is to say that |x− x̄| ≥ λ · sX, then we say that xj is peripherally located.

Let I = {1, 2, 3, . . . , N}. This is the set of all indices of the data set X. Let Ic(λ) be the subset of I
consisting of all those j in I for which xj is centrally located. Let Ip(λ) be the subset of I consisting of all
those j in I for which xj is peripherally located. Let Nc(λ), respectively Np(λ), be the number of centrally,
respectively peripherally, located data values. Because a data value is either central or peripheral, it is clear
that N = Nc(λ) +Np(λ). Additional reflection suggests that the value of s must place another constraint on
the value of Np(λ). For each peripheral datum xj , the absolute deviation |xj − x̄| is no less than λ · sX, and
so the square deviation is no less than λ2 · s2X . If we sum only the square deviations from peripheral data,
then we obtain at least Np(λ) · λ2 · s2X. Thus,

Np(λ) · λ2 · s2X ≤
∑

j∈Ip(λ)

(xj − x̄)
2 ≤

N∑
j=1

(xj − x̄)
2
= (N − 1) s2X < N s2X.

If we divide both sides of this inequality by N · λ2 · s2X, then we obtain

Np(λ)

N
<

1

λ2
. (2.4.1)

Inequality (2.4.1) is one member of a family of similar inequalities that Pafnuty Lvovich Chebyshev, a Russian
mathematician of many accomplishments, derived in 1867. In words, Chebyshev’s Inequality states,

If λ is any positive number and X is any data set, then the fraction of points in X that lie at least
λ standard deviations from the mean of X is less than 1/λ2.

It will be noted that, although we assumed only that λ > 0, the left size of inequality (2.4.1) can obviously
not exceed 1. Therefore, inequality (2.4.1) is only of interest for λ satisfying λ ≥ 1.

Example 1. Suppose that a data set X of 16 observations has mean x̄ = 36.4375 and standard deviation
sX = 15.57335. How many of the observations can be at least 1.25 standard deviations from the mean?

Solution. Let Np(1.25) be the number of observations that are at least 1.25 standard deviations from the
mean. Then inequality (2.4.1) tells us that Np(1.25) < 16/(1.25)2, or Np(1.25) < 10.24. Because Np(1.25) is
an integer, we infer that Np(1.25) ≤ 10: there are ten or fewer observations that are at least 1.25 standard
deviations from the mean. Calculating x̄− 1.25× sX = 16.9708 and x̄+1.25× sX = 55.9042. Thus, there are
at most ten observations that are either less than or equal to 16.9708 or greater than or equal to 55.9042.

The given information for this example was obtained from the data set X = 10, 11, 13, 25, 28, 29, 33, 40, 43, 43, 48, 48, 51, 52, 54, 55.
The three observations 10, 11, 13 are the only ones that are at least 1.25 standard deviations from the mean.
We can see from this example that the upper bound provided by inequality (2.4.1) need not be sharp.

Example 2. Suppose that a data set X of 32 observations has mean x̄ = 10 and standard deviation sX = 3.
How many of the observations can be less than or equal to 4?

Solution. Observe that 4 = 10 − 6 = 10 − 2 × 3 = x̄ − 2 × sX. An observation less than or equal to 4 is
therefore at least 2 standard deviations from the mean. According to inequality (2.4.1), the fraction Np(2)/32
of observations that distance from the mean satisfies Np(2)/32 < 1/(2)2, or Np(2) < 8. Thus, at most seven
of the observations can be less than or equal to 4.

Chebyshev’s Lower Bound for the Number of Central Observations

We retain the notation that Nc(λ) represents the number of observations xj that satisfy |x− x̄| < λ ·sX. Then
Nc(λ) = N −Np(λ), or Nc(λ)/N = 1−Np(λ)/N . Using inequality (2.4.1), and remembering that multiplying
both sides of an inequality by a negative number reverses the inequality, we obtain

Nc(λ)

N
> 1− 1

λ2
. (2.4.2)
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Inequality (2.4.2) is equivalent to inequality (2.4.1) and it might also be called Chebyshev’s Inequality (but
rarely is). In words, it states,

If λ is any positive number and X is any data set, then the fraction of observations in X that are
less than λ standard deviations from the mean of X is greater than 1− 1/λ2.

Example 3. Fill in the blanks with a percentage:
In data set X, at least % of the observations are within

√
2 standard deviations of the mean.

In data set X, at least % of the observations are within 1.5 standard deviations of the mean.
In data set X, at least % of the observations are within 2 standard deviations of the mean.
In data set X, at least % of the observations are within 3 standard deviations of the mean.
In data set X, at least % of the observations are within 5 standard deviations of the mean.
In data set X, at least % of the observations are within 10 standard deviations of the mean.

Solution. If we replace λ with
√
2 in inequality (2.4.2), then 1 − 1/λ2 = 1/2, and, as a result, we see that

at least 50% of the observations are within
√
2 standard deviations of the mean. Similarly, at least 55.55% of

the observations are within 1.5 standard deviations of the mean, at least 75% of the observations are within 2
standard deviations of the mean, at least 88.88% of the observations are within 3 standard deviations of the
mean, at least 96% of the observations are within 5 standard deviations of the mean, and at least 99% of the
observations are within 10 standard deviations of the mean.

Exercises

1. A data set is binned as in the following table:

Bin [0,10) [10,20) [20,30) [30,40)

Frquency 4 6 10 4
Mean per Bin 5 14 24 34

The last row of the table gives, for each bin, the average of the data values that fall inside that bin.
What is the mean of the entire data set?

2. What is the interquartile range for the data set consisting of all the integers, 126, 127, 128, . . . , 223, 224, 225,
from 126 to 225 inclusive? (Washington University exam, Fall 2010)

3. Consider the following stem-and-leaf plot:

10 0 3 5 6
9 0 2 2 4 4 7 9
8 0 1 2 3 4 5 6 7 8
7 4 5 5 6 6 7 7 9
6 0 1 2 3 6 9
5 0 6 8 8
4 0 0 7
3 4 4 4
2 2 5
1 9
0 2
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a) What are the modes? This is a confusing question—the answer depends on the meaning of mode.
Identify two modes, one of each type that the definition allows.
b) Which of the adjectives, uniform, unimodal, bimodal, multimodal, symmetric, negatively skewd,
positively skewed, describe the distribution?
c) What is the class width of the implicit histogram that results from the stem-and-leaf plot?
d) What are the quartiles and IQR of this distribution?
e) Draw a box-and-whiskers plot of the distribution.
f) Draw a frequency polygon of the distribution.

4. A computer recorded the defects of a product manufactured by a new process. The mean number of
defects per manufactured item was 100 and standard deviation was 10. An investigation of these sus-
piciously large numbers revealed that a programming bug caused a 0 to be appended at the right to
every defect count (so that, for example, 13 defects were recorded as 130). Can the correct mean and
standard deviation be determined from the incorrect values?

A) No.
B) Yes; The correct mean is 1 and the correct standard deviation is 1.
C) Yes; The correct mean is 10 and the correct standard deviation is 1.
D) Yes; The correct mean is 10 and the correct standard deviation is 10.
E) Yes; The correct mean is 100 and the correct standard deviation is 100.
F) Yes; The correct mean is 1000 and the correct standard deviation is 100.

(Washington University exam, Fall 2010)

5. Suppose that a quantitative variable takes the values 1, 1, 2, 3, 3. Use appropriate numbers to omplete
the following sentences about the whiskers of its vertical Tukey boxplot: The lower fence is at
and the upper fence is at . The bottom whisker extends from (at the bottom edge
of the box) to , and the top whisker extends from (at the top edge of the box) to

. (Washington University exam, Fall 2010)

6. The five-number summary of a data set X is 10, 24, 46, 60, 80. A histogram is created by using x[1] as
the lowest class limit and setting the class width to be IQR/3. There are no empty bins.
a) What is the class width?
b) Counting from the left, what is the first class mark?
c) How many bins are there?
d) What is the largest class limit?
e) In what bin, counting from the left, does the median fall (whether or not it is a datum)?
f) In a Tukey boxplot of X, how long are the whiskers?

7. In a survey of undergraduates designed to study the average number of hours of sleep per night, the data
was split into two groups: one during the holidays at home, and one during term in school. Boxplots
for the two groups are shown in the figure below:



69

Consider the following conslusions:

i) The maximum sleep duration overall was 12 hours.
ii) The distribution of sleep hours at home is skewed to the right.
iii) The distribution of sleep hours in the dorm is skewed to the right.
iv) The minimum sleep duration at home was 6 hours.

Which is the correct assessment of the correctness of the preceding conclusions?

A) Every one of (i), (ii), (iii), and (iv) is true.
B) Only (ii) is true.
C) Only (iii) is true.
D) Only (iii) and (iv) are true.
E) Only (ii) and (iv) are true.
F) Only (iii) is false.

(Washington University exam, Fall 2010)

8. Which of these variables is most likely to be bimodal? (Washington University exam, Spring 2014)
A) eye color
B) number of TV sets at home
C) hours of homework last week
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D) number of cigarettes smoked daily
E) head circumference

9. (Washington University exam, Spring 2014)
The advantage of making a stem-and-leaf display instead of a dotplot is that a stem-and-leaf display:
A) is for quantitative data, while a dotplot shows categorical data.
B) preserves the individual data values.
C) shows the shape of the distribution better than a dotplot.
D) satisfies the area principle.
E) none of these

10. An application of Chebyshev’s Inequality to a particular data set X of size 25 tells us that the fraction
of observations in the open interval (18,38) is greater than 16/25. What are x̄ and sX?


