
Homework 5

Math 308

Due: 1 March

Guidelines:

• You are strongly encouraged to work together to understand the problems, but what you turn in must
be your own work.

• Your submission must be clearly written and stapled. Homework will only be accepted up to the
beginning of lecture, or you can drop it off at my office before class.

(1) (6.2.2)

(a) Show that if f and g are functions with second derivatives, then u = f(x − vt) + g(x + vt) is a
solution of the wave equation; this is called the d’Alembert solution and is physically interpreted as
a superposition of two waves moving in opposite directions.

(b) Show that u(r, t) = 1
rf(r−vt)+ 1

r g(r+vt) is a solution of the wave equation in spherical coordinates.
(See, e.g. p. 294 for the gradient in spherical coordinates). Again, this can be interpreted in terms
of waves moving in and out from the origin.

Solution. This is a special case of a more general method known as the Method of Characteristics, which
is a technique for solving hyperbolic equations. This class of equations is a natural generalization of the
wave equation. In essence, we can get equations like this by reducing the problem to a one-dimensional
setting (represented by the variable x± vt), at which point we’re left with an ODE that can be studied
with more elementary methods.

(a) This is an application of the chain rule. Note that

∂u

∂t
= f ′(x− vt) · d(x− vt)

dt
+ g′(x− vt) · d(x+ vt)

dt
= −vf ′(x− vt) + vg′(x− vt).

Taking a second derivative gives

∂2u

∂t2
= v2 (f ′′(x− vt) + g′′(x− vt)) .

Proceeding in the same way gives us

∂2u

∂x2
= f ′′(x− vt) + g′′(x− vt)

from which the claim follows.

(b) In spherical coordinates, the Laplacian is given (see p. 298) by

∇2F =
1

r2
(r2Fr)r +

1

r2 sin θ
(sin θFθ)θ +

1

r2 sin2 θ
Fϕϕ.

Because of the angular symmetries here, any term that involves a ϕ or θ derivative vanishes and
we’re left with

∇2F =
1

r2
(r2Fr)r =

1

r2
(r2Frr + 2rFr) = Frr +

2

r
Fr.
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So now we can compute the Laplacian of u. Let’s start with(
f(r − vt) + g(r + vt)

r

)
r

= −f(r − vt) + g(r + vt)

r2
+
f ′(r − vt) + g′(r + vt)

r
.

and (
f(r − vt) + g(r + vt)

r

)
rr

= 2
f(r − vt) + g(r + vt)

r3
− 2

f ′(r − vt) + g′(r + vt)

r2
+

+
f ′′(r − vt) + g′′(r + vt)

r
.

Putting it all together,

∇2u = 2
f(r − vt) + g(r + vt)

r3
− 2

f ′(r − vt) + g′(r + vt)

r2
+
f ′′(r − vt) + g′′(r + vt)

r
+

+
2

r

(
−f(r − vt) + g(r + vt)

r2
+
f ′(r − vt) + g′(r + vt)

r

)
=
f ′′(r − vt) + g′′(r + vt)

r
.

On the other hand, the t-derivative is much easier to compute and we already did it in part (a). It
is immediate then that

∇2u =
1

v2
utt

and we’re done.

(2) (See 6.3.2) A bar of length 10 centimeters is initially at 100◦, and starting at time t = 0 the ends are
held at 0◦. Find the temperature distribution at time t. For any time t, determine where the maximum
temperature in the bar is. Roughly how long does it take for the temperature to drop to 1◦? What
about 0.1◦?

Solution. We’ll apply separation of variables. Collecting our information, we have

uxx = ut for 0 < x < 10, t > 0

u(x, 0) = 100 for 0 < x < 10

u(0, t) = u(10, t) = 0 for t > 0.

Following our examples in class, we can reduce to

X ′′

X
= −λ2 =

T ′

T

which leads us to X(x) = A sinλx + B cosλx and T (t) = Ce−λ
2t. The boundary conditition X(0) = 0

eliminates the cosine terms, while X(10) = 0 implies that 10λ is an integer multiple of π; thus the
corresponding eigenvalues are {0, π/10, 2π/10, ...}. Superimposing, we are looking for a solution of the
form

u(x, t) =

∞∑
n=1

cne
−(nπ/10)2t sin

(nπx
10

)
.

In order to find the Fourier coefficients cn, we set t = 0 and use the initial condition:

100 =

∞∑
n=1

cn sin
(nπx

10

)
.

Multiplying by sin(mπx/10) and integrating from 0 to 10, we get

ˆ 10

0

100 sin
(mπx

10

)
dx =

∞∑
n=1

cn

ˆ 10

0

sin
(nπx

10

)
sin
(mπx

10

)
dx = 5cm.
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The final inequality follows from computing the integral, and finding that it is zero for m 6= n, and 1
2 ·10

if m = n. Therefore,

cm = 20

ˆ 10

0

sin
(mπx

10

)
dx = −200(cos(mπ)− 1)

mπ
=

200

π

(
1− cos(mπ)

m

)
Using the fact that cos(mπ) = (−1)m, this is zero for m even; otherwise, 1− cos(mπ) = 2. Finally, this
leads to

u(x, t) =
400

π

∑
n≥1
odd

1

n
e−(nπ/10)

2t sin
(nπx

10

)
.

The highest temperature in the bar should be at the center, because the bar is dissipating heat from
either end and the temperature distribution is symmetric. Therefore, the maximum temperature at time
t is just

u(5, t) =
400

π

∑
n≥1
odd

1

n
e−(nπ/10)

2t sin
(nπ

2

)
.

Since the sine term vanishes when n is even and alternates between ±1 otherwise, we have that the
maximum temperature is

u(5, t) =
400

π

(
e−(π/10)

2t − 1

3
e−(3π/10)

2t +
1

5
e−(5π/10)

2t − 1

7
e−(7π/10)

2t + · · ·
)

This series converges very rapidly because of the growth of the exponents and is very well approximated
by its first term. In fact, after t = 20, the error involved is less than 3 × 10−6 degrees, due to the
alternating series test. Therefore,

u(5, t) ≈ 400

π
e−(π/10)

2t.

The temperature at the midpoint therefore drops to 1◦ after t ≈ 49, and 0.1◦ after t ≈ 72. The
temperature drops by a factor of 10 roughly every 23 time units.

(3) (See 6.3.8) A bar of length 2 is initially at temperature 0◦. From t = 0 on, the x = 0 end is held at
0◦ and the x = 2 end is held at 100◦. Find the time dependent temperature distribution u(x, t). Then
compute limt→∞ u(x, t) for any x; explain what this means physically.

Solution. We again proceed by separation of variables. From our physical reasoning, we know that the
steady-state temperature distribution must be

lim
t→∞

u(x, t) = 50x

in order to linearly interpolate the boundary data at each side of the bar. (Alternatively, in the steady
state case we are left with uxx = 0 with u(0) = 0 and u(2) = 100). Subtract this term to get w(x, t) =
u(x, t)− 50x; this is still a solution to the heat equation, and our problem is now

wxx = wt for 0 < x < 2, t > 0

w(x, 0) = −50x for 0 < x < 10

w(0, t) = 0 for t > 0

w(2, t) = 0 for t > 0.

Following the process of the previous problem, we end up with

w(x, t) =

∞∑
n=1

cne
−(nπ/2)2t sin

(nπx
2

)
.
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Now using our initial data, we have

−50x = w(x, 0) =

∞∑
n=1

cn sin
(nπx

2

)
.

The Fourier coefficients are therefore given by

cm =

´ 2
0
−50x sin

(
mπx
2

)
dx´ 2

0
sin2

(
mπx
2

)
dx

=
200(mπ cos(mπ)− sin(mπ))/(m2π2)

1
= (−1)m

200

mπ

Putting it all together, we have u = 50x+ w, so

u(x, t) = 50x+
200

π

∞∑
n=1

(−1)n

n
e−(nπ/2)

2t sin
(nπx

2

)
.

Physically, we have the steady state term 50x, together with an exponentially decaying transient term
that disippates quite quickly.

(4) (6.2.16) Suppose we have a closed region D and a harmonic function u which takes certain values on the
boundary of the region. That is, we have a solution to the PDE{

∇2u = 0 in D
u = f on ∂D

Show that there is only one such function (that is, the solution with given boundary data is unique). To
do this, suppose that u1 and u2 are two solutions; then U := u1 − u2 satisfies Laplace’s equation with
zero boundary data. Use Green’s first identity (from a previous homework) with the function U to show
that ∇U ≡ 0. Then explain why this is enough.

Solution. Recall that Green’s first identity said that

˚
D

(ϕ∇2ψ +∇ϕ · ∇ψ) dV =

‹
∂D

(ϕ∇ψ) · ~n dσ.

Apply this with ϕ = ψ = u1 − u2. Note that ψ is harmonic, so ∇2ψ = 0. Moreover, ϕ vanishes on the
boundary (see the remark in the problem statement!), so the integral on the right is zero. This leads us
to the conclusion ˚

D

∇U · ∇U dV = 0.

Now the integrand here is just |∇U |2, which is always nonnegative. A continuous function which is
nonnegative but has zero integral is necessarily zero everywhere, so ∇U ≡ 0.

This is enough to prove the claim, because a function with zero gradient must be constant. The boundary
values of U are zero, and so this constant must be zero. Unpacking, we have

U ≡ 0 =⇒ u1 − u2 ≡ 0 =⇒ u1 ≡ u2

as desired.
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