Please present your solutions clearly and in an organized way. Simplify all your final answers. If an answer box is given, write your final answer in the box. If you run out of room, continue on the extra pages provided at the end. The use of a calculator is not allowed. Good luck!! ت

Full Name:

\square

Student ID:
\square

Question	Points	Score
1	5	
2	21	
3	20	
4	21	
5	10	
6	20	
7	20	
Total:	117	

This exam has 7 questions, for a total of 117 points. The maximum possible score for each problem is given on the right side of the problem.

1. Consider the sequence $a_{n}=(-1)^{n} n$ (which starts with a_{1}).

Also consider the sequence of partial sums $s_{n}=\sum_{k=1}^{n} a_{k}$.
(a) Write down the first four terms of the sequence a_{n}. (You do not need to show any work.)

$$
a_{1}, a_{2}, a_{3}, a_{4}=\square
$$

(b) Write down the first four terms of the sequence s_{n}. (You do not need to show any work.)

$$
s_{1}, s_{2}, s_{3}, s_{4}=\square
$$

2. Evaluate the following limits of sequences.
(a) $\lim _{n \rightarrow \infty} \frac{\cos \left(n^{5}\right)}{4 n^{3}+1}=\square$
(continued from the previous page)

(b) $\lim _{n \rightarrow \infty}\left(e^{n}+2\right)^{3 / n}=\square$
(c) $\lim _{n \rightarrow \infty} n \sin (2 \pi n)=\square$
3. For the following, you should use the ϵ, K definition of a limit, but
 you do not need to write a formal proof. It is enough to include a sketch along with a short explanation.
(a) Show that $\lim _{x \rightarrow \infty} e^{-x}=0$.
(b) Show that $\lim _{x \rightarrow \infty} \frac{1}{x} \neq \frac{1}{10}$.
4. For each part, write down a sequence a_{n} which satisfies the given
 properties. If it is not possible, give a reason why.
(a) the sequence a_{n} is bounded and it diverges
(b) the sequence a_{n} diverges and the series $\sum_{k=1}^{\infty} a_{k}$ converges
(c) the sequence a_{n} converges and the series $\sum_{k=1}^{\infty} a_{k}$ diverges
5. For the four boxes in the table, write " Y " if the sequence satisfies the particular property, and write " N " if it does not. Please justify your answers in the space below.

	bounded above	bounded below	increasing	decreasing
$a_{n}=\frac{n^{3}}{n+2}$				

6. Evaluate the following series.

(Note that the starting value of k is different for different parts.)
(a) $\sum_{k=1}^{\infty}\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)=\square$
(b) $\sum_{k=1}^{\infty}(\sqrt{k}-\sqrt{k+1})=\square$
(c) $\sum_{k=0}^{\infty} 2^{k}=\square$
(d) $\sum_{k=0}^{\infty} \frac{1+2^{k}}{4^{k}}=\square$
7. Evaluate the following integrals.
(a) $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}=\square$
(b) $\int_{-1}^{1} \frac{d x}{x}=\square$

This is blank space.

Name a Pokémon (or something else if you prefer):

