Math 153001/14 Final exam solutions

Alan Chang

March 2020

1. (a) Let $a_{n}=-1$.
(b) One possible answer is $\sum_{n=0}^{\infty} \frac{1}{2^{n}}=2$.
(c) Let $f(x)=1 / x$. Then f is a positive and decreasing function, and $\int_{1}^{\infty} f(x) d x=$ ∞, so $\sum \frac{1}{n}$ diverges by the integral test.
2. $\|\vec{u}+\vec{v}\|^{2}=(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v})=\vec{u} \cdot \vec{u}+\vec{v} \cdot \vec{v}+2 \vec{u} \cdot \vec{v}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}+2 \vec{u} \cdot \vec{v}$ Since \vec{u}, \vec{v} are unit vectors, we know $\|\vec{u}\|=\|\vec{v}\|=1$. For the dot product, we have $\vec{u} \cdot \vec{v}=$ $\|\vec{u}\|\|\vec{v}\| \cos (\pi / 3)=1 \cdot 1 \cdot \frac{1}{2}$.
This gives $\|\vec{u}+\vec{v}\|^{2}=1+1+2 \cdot \frac{1}{2}=3$, so $\|\vec{u}+\vec{v}\|=\sqrt{3}$.
3. $\nabla f=($ ovid, cvid, coid, covd, covi). (Sorry, this was a dumb question...)
4. (a) $\nabla f(x, y)=(2,-1)$. The direction, rescaled to be a unit vector is $\frac{1}{5}(3,-4)$. So

$$
f_{\vec{u}}^{\prime}(1,2)=\nabla f(1,2) \cdot \vec{u}=(2,-1) \cdot \frac{1}{5}(3,-4)=\frac{(2)(3)+(-1)(-4)}{5}=2
$$

(b)

$$
\begin{aligned}
f_{\vec{u}}^{\prime}(1,2) & =\lim _{h \rightarrow 0} \frac{f((1,2)+h \vec{u})-f(1,2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f\left(\left(1+\frac{3}{5} h, 2-\frac{4}{5} h\right)\right)-f(1,2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2\left(1+\frac{3}{5} h\right)-\left(2-\frac{4}{5} h\right)-0}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h} \\
& =2
\end{aligned}
$$

5. (a) $\nabla f(x, y)=\left(y^{2}, 2 x y\right) \cdot \vec{r}^{\prime}(t)=\left(3 t^{2}, 2 t\right)$. So

$$
\frac{d}{d t} f(\vec{r}(t))=\nabla f(\vec{r}(t)) \cdot \cdot^{\prime}(t)=\nabla f\left(t^{3}, t^{2}\right) \cdot\left(3 t^{2}, 2 t\right)=\left(t^{4}, 2 t^{5}\right) \cdot\left(3 t^{2}, 2 t\right)=3 t^{6}+4 t^{6}=7 t^{6}
$$

(b) $\nabla f(1,2)=(4,4)$. So the unit vector is $\frac{1}{\sqrt{2}}(1,1)$. The rate of change in that direction is $\|\nabla f(1,2)\|=\|(4,4)\|=4 \sqrt{2}$.
6. (a) The graph of f is given by $z=x y^{2}$ so it is a level curve of the function $g(x, y, z)=$ $x y^{2}-z . \nabla g=\left(y^{2}, 2 x y,-1\right) . \nabla g(1,2,4)=(4,4,-1)$.
So the normal line goes through $(1,2,4)$ and has direction $(4,4,-1)$. This means the scalar parametric equations for the line are $x(t)=1+4 t, y(t)=2+4 t, z(t)=$ $4-t$
(b) The tangent plane contains $(1,2,4)$ and has normal $(4,4,-1)$. This means its equation is given by $4(x-1)+4(y-2)-(z-4)=0$.
7. (a) Here is a sketch.

(b) The point $(1,0)$ is on the level curve $c=1$, so ∇f at that point must be perpendicular to the curve. This narrows it down to two possible directions: up-left, or down-right. Since ∇f points in a direction in which f is increasing, it must be down-right.
8. (a) Here is Ω.

$\iint_{\Omega} 1 d x d y=$ area of $\Omega=2$
(b) Using horizontal lines:

$$
\iint_{\Omega} x y d x d y=\int_{0}^{2} \int_{0}^{y} x y d x d y=\int_{0}^{2}\left[\frac{x^{2} y}{2}\right]_{0}^{y} d y=\int_{0}^{2} \frac{y^{3}}{2} d y=\left[\frac{y^{4}}{8}\right]_{0}^{2}=2
$$

(Alternatively, you could use vertical lines: $\iint_{\Omega} x y d x d y=\int_{0}^{2} \int_{x}^{2} x y d y d x$.)

