## Math 153001/14 Final exam solutions

## Alan Chang

## March 2020

- 1. (a) Let  $a_n = -1$ .
  - (b) One possible answer is  $\sum_{n=0}^{\infty} \frac{1}{2^n} = 2$ .
  - (c) Let f(x) = 1/x. Then f is a positive and decreasing function, and  $\int_1^{\infty} f(x) dx = \infty$ , so  $\sum \frac{1}{n}$  diverges by the integral test.
- 2.  $\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} + 2\vec{u} \cdot \vec{v} = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u} \cdot \vec{v}$  Since  $\vec{u}, \vec{v}$  are unit vectors, we know  $\|\vec{u}\| = \|\vec{v}\| = 1$ . For the dot product, we have  $\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos(\pi/3) = 1 \cdot 1 \cdot \frac{1}{2}$ .

This gives  $\|\vec{u} + \vec{v}\|^2 = 1 + 1 + 2 \cdot \frac{1}{2} = 3$ , so  $\|\vec{u} + \vec{v}\| = \sqrt{3}$ .

- 3.  $\nabla f = (ovid, cvid, coid, covd, covi)$ . (Sorry, this was a dumb question...)
- 4. (a)  $\nabla f(x,y) = (2,-1)$ . The direction, rescaled to be a unit vector is  $\frac{1}{5}(3,-4)$ . So

$$f'_{\vec{u}}(1,2) = \nabla f(1,2) \cdot \vec{u} = (2,-1) \cdot \frac{1}{5}(3,-4) = \frac{(2)(3) + (-1)(-4)}{5} = 2$$

(b)

$$f'_{\vec{u}}(1,2) = \lim_{h \to 0} \frac{f((1,2) + h\vec{u}) - f(1,2)}{h}$$
$$= \lim_{h \to 0} \frac{f((1 + \frac{3}{5}h, 2 - \frac{4}{5}h)) - f(1,2)}{h}$$
$$= \lim_{h \to 0} \frac{2(1 + \frac{3}{5}h) - (2 - \frac{4}{5}h) - 0}{h}$$
$$= \lim_{h \to 0} \frac{2h}{h}$$
$$= 2$$

- 5. (a)  $\nabla f(x,y) = (y^2, 2xy)$ .  $\vec{r'}(t) = (3t^2, 2t)$ . So  $\frac{d}{dt}f(\vec{r}(t)) = \nabla f(\vec{r}(t))\cdot\vec{r'}(t) = \nabla f(t^3, t^2)\cdot(3t^2, 2t) = (t^4, 2t^5)\cdot(3t^2, 2t) = 3t^6 + 4t^6 = 7t^6$ 
  - (b)  $\nabla f(1,2) = (4,4)$ . So the unit vector is  $\frac{1}{\sqrt{2}}(1,1)$ . The rate of change in that direction is  $\|\nabla f(1,2)\| = \|(4,4)\| = 4\sqrt{2}$ .

- 6. (a) The graph of f is given by  $z = xy^2$  so it is a level curve of the function  $g(x, y, z) = xy^2 z$ .  $\nabla g = (y^2, 2xy, -1)$ .  $\nabla g(1, 2, 4) = (4, 4, -1)$ . So the normal line goes through (1, 2, 4) and has direction (4, 4, -1). This means the scalar parametric equations for the line are x(t) = 1 + 4t, y(t) = 2 + 4t, z(t) = 4 - t
  - (b) The tangent plane contains (1, 2, 4) and has normal (4, 4, -1). This means its equation is given by 4(x 1) + 4(y 2) (z 4) = 0.
- 7. (a) Here is a sketch.



- (b) The point (1,0) is on the level curve c = 1, so  $\nabla f$  at that point must be perpendicular to the curve. This narrows it down to two possible directions: up-left, or down-right. Since  $\nabla f$  points in a direction in which f is increasing, it must be down-right.
- 8. (a) Here is  $\Omega$ .



 $\iint_{\Omega} 1 \, dx \, dy = \text{ area of } \Omega = 2$ 

(b) Using horizontal lines:

$$\iint_{\Omega} xy \, dx \, dy = \int_{0}^{2} \int_{0}^{y} xy \, dx \, dy = \int_{0}^{2} \left[\frac{x^{2}y}{2}\right]_{0}^{y} \, dy = \int_{0}^{2} \frac{y^{3}}{2} \, dy = \left[\frac{y^{4}}{8}\right]_{0}^{2} = 2$$

(Alternatively, you could use vertical lines:  $\iint_{\Omega} xy \, dx \, dy = \int_{0}^{2} \int_{x}^{2} xy \, dy \, dx.$ )