"Remarkable property" of antiderivative of $1 / x$.

Alan Chang

Define $L(x)=t \int_{1}^{x} \frac{1}{t} d t$.
The textbook says that the function L satisfies the following "remarkable property":

$$
L(a b)=L(a)+L(b) \text { for all positive numbers } a \text { and } b .
$$

Here is the proof I gave in class for this.
The left-hand side is $L(a b)=\int_{1}^{a b} \frac{1}{t} d t$.
The right-hand side is $L(a)+L(b)=\int_{1}^{a} \frac{1}{t} d t+\int_{1}^{b} \frac{1}{t} d t$.
Step 1: First, let's show that

$$
\begin{equation*}
\int_{1}^{b} \frac{1}{t} d t=\int_{a}^{a b} \frac{1}{t} d t \tag{}
\end{equation*}
$$

Start with the left-hand side of $\left(^{*}\right)$ and make the change of variables $u(t)=a t$. Then $d u=a d t$, and the new upper and lower bounds are $u(b)=a b$ and $u(1)=a$. So:

$$
\int_{1}^{b} \frac{1}{t} d t=\int_{a}^{a b} \frac{1}{\frac{1}{a} u} \cdot \frac{1}{a} d u=\int_{a}^{a b} \frac{1}{u} d u=\int_{a}^{a b} \frac{1}{t} d t
$$

(The first equality is by the u-substitution. The second equality is because the two $1 / a$ cancel each other. The third equality is because for a definite integral, the variable you integrate with respect to is just a dummy variable.)
Thus we have shown (*).
Step 2: Using (*), we have

$$
L(a)+L(b)=\int_{1}^{a} \frac{1}{t} d t+\int_{1}^{b} \frac{1}{t} d t=\int_{1}^{a} \frac{1}{t} d t+\int_{a}^{a b} \frac{1}{t} d t=\int_{1}^{a b} \frac{1}{t} d t=L(a b)
$$

QED
(If you find that there are too many variables, keep in mind that a and b are just constants. You can substitute in values, e.g., $a=3$ and $b=5$.)

