
Math 11200/20 lectures outline

I will update this document after every lecture to keep track of what we covered.

“Textbook” refers to the book by Diane Herrmann and Paul Sally.

“Intro to Cryptography” refers to:

• Introduction to Cryptography with Coding Theory, Second Edition, by Wade Trappe
and Lawrence Washington.
• http://calclab.math.tamu.edu/~rahe/2014a_673_700720/textbooks.html.

week 1

9/26/16. Reference: Textbook, Chapter 0

(1) introductions
(2) syllabus (boring stuff)
(3) Triangle game

(a) some ideas: parity, symmetry, balancing large/small, largest possible sum
(b) There are 6 “symmetries of the triangle.” They form a “group.” (just for fun)

9/28/16. Reference: Textbook, Chapter 1, pages 11–19

(1) Russell’s paradox (just for fun)
(2) Number systems: N,Z,Q,R.

(a) π ∈ R but π 6∈ Q. (this is actually hard to prove)
(3) Set theory

(a) unions, intersections. (remember: “A or B” means “at least one of A, B is true”)
(b) drawing venn diagrams is very useful!
(c) empty set. “vacuously true”
(d) commutative property, associative, identity (the empty set is the identity for

union), inverse, (distributive?)
(i) how to show that there is no such thing as “distributive property of addi-

tion over multiplication” (a+ (b · c) = (a · b) + (a · c))
(4) Functions

9/30/16. Reference: Textbook, Chapter 1, pages 20–32

(1) functions (recap). f : A→ B. A is domain, B is range.
(2) binary operations are functions of the form f : S × S → S.

(a) “+ is a function R × R → R.” Same thing as “+ is a binary operation on R.”
Same thing as “R is closed under +.” (closed because you cannot escape!)

(b) N,Z are also closed under addition. Q is as well! a
b

+ c
d

= ad+bc
bd

. (Note: Z ⊂ Q.)
(c) N is not closed under subtraction, since 1− 2 6∈ N.

(3) Recall: additive identity and inverse, multiplicative identity and inverse.
(4) Define Z10. Define + and · as binary operations on Z10.

(a) “clock arithmetic” (with 10-hour clock!)
(b) Additive identity for Z10 is 0. Multiplicative identity for Z10 is 1.
(c) additive inverses? multiplicative inverses?

1

http://calclab.math.tamu.edu/~rahe/2014a_673_700720/textbooks.html


2

week 2

10/3/16. Reference: Textbook, Chapter 1, pages 20–32

(1) warmup problem: solve for x in Z10: 3 + x = 5, 5 + x = 3, 3 · x = 1, , 3 · x = 2, 2 · x =
1, 2 · x = 2.

(2) properties A1–A4, M1–M4, D. (see textbook, section 1.2).
(a) Z10 has all properties except M4 (multiplicative inverses)

(3) 1, 3, 7, 9 are the only elements in Z10 with multiplicative inverses.
(a) For x · y = 1 in Z10, need (in Z): x · y to be 1, 11, 21, 31, 41, 51, 61, 71, 81.
(b) Any multiple of 2 (in Z) ends in 0, 2, 4, 6, 8.
(c) Any multiple of 5 (in Z) ends in 0, 5.

(4) Defining Zn
(a) Do it in analogy to Z10.
(b) To add x, y in Zn: first add x, y in Z, then divide by n and take reminder:
(c) (Remark: What is the last digit of k in base n? It is the remainder when you

divide k by n.)
(d) When does an element have an inverse in Zn? We’ll come back to this later.

(5) Solving 3 + x = 5 in R: Add −3 to both sides. Then use axioms to simplify. (Note,
we never subtracted!)
(a) Solving 3 + x = 5 in Z10. Add 7 to both sides. Then use the exact same axioms

to simplify. (Note, we never subtracted!)
(6) Solving 3 · x = 1 in Z10. Multiply both sides by 7. Same for 3 · x = 2.
(7) Solving 2 ·x = 2 in Z10: the answers are 1, 6. We cannot divide both sides by 2! Why

not? Because Z10 does not satisfy axiom M4
(a) Method 1: brute force (try everything in Z10).
(b) Method 2: nicer! in Z, 2 · x has to be 2 or 12.
(c) We’ll see a more general method later in class (maybe)

(8) Applications of Zn arithmetic (a.k.a. “modular arithmetic”) to cryptography, and
ISBN, UPC numbers. (We’ll see this later)

10/5/16. Reference: Textbook, Chapter 2, pages 45–49

(1) warmup problem: Suppose S with binary operation + : S × S → S satisfies axioms
A1–A4. Suppose a, bc ∈ S and a+ c = b+ c. Can you show a = b? Is there an axiom
you didn’t need?

(2) proofs by axioms: forget everything you learned about math, just use the axioms.
build everything from the foundations. it’s like a puzzle. (this is what you do in
abstract algebra)
(a) how to do these proofs? justify each step with an axiom or with something

you’ve already proved. (see examples in textbook or examples from lecture for
different styles)

(b) Ancient Greeks liked to do this for fun!
(3) Theorem 2.1 (Cancellation law for addition).

(a) Idea to lead to proof: it’s what we have been doing to solve equations like
x+ 3 = 2.

(b) We never use A1 in the proof.
(4) Theorem 2.2: a · 0 = 0.
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(a) Some ideas: 0 is additive identity. The dot (·) is multiplication. We need to
relate addition and multiplication, so we have to use axiom D.

(b) First attempt: a · 0 + 0 = a · 0 = (a+ 0) · 0 = a · 0 + 0 · 0. Then cancellation law
implies 0 = 0 · 0. Not what we wanted... but we showed 0 · 0 = 0!

(c) Second attempt: Do a · 0 = a · (0 + 0) instead. It works!
(5) Is there a general procedure/formula for coming up with a proof? Unfortunately

not... you have to be creative, try many things until something works.

10/7/16. Reference: Textbook, Chapter 3, pages 67–70

(1) Definition: a | b means there exists a k such that a · k = b.
(a) equivalent phrases to a | b are “a divides b,” “a is a factor of b,” “a is a divisor

of b,” “b is divisible by a”
(b) note: the definition of “divides” doesn’t actually use any division!
(c) also note: the definition works for 0 and negative numbers. (maybe this is new?)

(2) warmup problem: some divisibility questions
(a) interesting: 1 | 0, 0 - 1, 0 | 0.

(3) When looking for division of n, how far up do you need to check? Answer: up to
√
n,

because any divisor larger than
√
n will be paired with a divisor smaller than

√
n.

(4) Proof of “a | b =⇒ a | bc.” (Theorem 3.4 in text.)
(a) Very very important: When writing the proof of these kinds of statements, you

MUST use the definition of “divides” as given above. (However, when thinking
about how to prove it, you can use whatever you find helpful.)

(b) in some sense, “there’s only one (reasonable) thing you can do at each step of
the proof”

(5) The converse, “a | bc =⇒ a | b” is false! To prove this, give a counterexample.
(6) Proof of (a | b and a | c) =⇒ a | (b+ c). (Theorem 3.2 in the text.)

(a) Caution: a · k = b, a · ` = c. k and ` do not have to be the same! So do not use
k for both (even though the definition of “divides” uses k).

week 3

10/10/16. Reference: ??

(1) warmup problem: Recall Z16 = {0, 1, . . . , 15}. Can you find a, b ∈ Z16 such that
a2 | b2 (in Z16) and a - b?
(a) Hint: recall that every number divides 0

(2) Solving b2 = 0 in Z16: b = 0, 4, 8, 12.
(3) Theorem: In Z16, if a has a multiplicative inverse, then a divides everything.

(a) Proof outline. Want to solve ak = b. We know a−1 exists. We can multiply both
sides of ak = b by a−1 to get k = a−1b.

(b) The proof works for all sets S which multiplication (·) which satisfies M2 (asso-
ciativity) and M3 (existence of a multiplicative identity). This is nice! It means
we don’t have to repeat the proof for Z or Z10.

(c) (In Z10, this theorem just says that 1 and −1 divide everything...)
(4) We should try a which is not a multiplicative inverse. So a ∈ {0, 2, 4, 6, 8, 10, 12, 14}.
(5) a = 8, b = 4 works!

(a) In Z16, the only multiplies of 8 are 0, 8.
(6) This counterexample shows that “if a2 | b2, then a | b” is FALSE in Z16.
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(7) It turns out (we’ll see later) that “if a2 | b2, then a | b” is TRUE in Z.
(8) Some logical deductions about what we cannot prove:

(a) Let S be a set with operations + and · which satisfy A1–A4, M1–M3, D (every-
thing except multiplicative inverses). We CANNOT prove the following state-
ment about S: “if a2 | b2, then a | b”

(b) Why? Because Z16 satisfies A1–A4, M1–M3, D, and the statement is false for
Z16.

(c) So, to prove it for Z, we need to use something more than just A1–A4, M1–M3,
D.

10/12/16. Reference: Textbook, Chapter 3, pages 67–71

(1) Order axioms: (see section 2.2)
(a) (O3): if a < b then a+ c < b+ c.
(b) (O4): if a < b and c > 0, then a · c < b · c.

(2) warmup problem: Let’s try ordering the elements of Z10 by 0 < 1 < 2 < · · · < 9. Do
(O3) and (O4) hold?
(a) no! there are many counterexamples

(3) Fact: You cannot order Z10 in a way that the order axioms hold.
(a) For the proof, see section 2.2, page 58. (You don’t need to read through and

understand the proof though.)
(b) This is why we never talk about ordering in Z10.

(4) Theorem: In Z, if a | b, then a2 | b2.
(a) The idea is to take a = kb and square both sides to get a2 = k2b2.

(b) You can think of it as: if b
a
∈ Z, then b2

a2
∈ Z. This is because ( b

a
)2 = b2

a2
.

(5) Theorem: In Z, if a | b and b > 0, then a ≤ b.
(a) Is this statement true in Z10? Well, it doesn’t even make sense in that setting,

since there is no ordering!
(b) Caution! We need the assumption b > 0. Otherwise we have things like 3 |

(−12).
(c) We did some scratch-work
(d) Let’s consider the cases a > 0 and a ≤ 0 separately.
(e) Important observation: if x > 0 and x ∈ Z, then x ≥ 1. (Theorem 2.12 says

“there are no integers between 0 and 1.” This can be proved from the axioms!)
(f) Try turning the scratch-work into a proof in tutorial

(6) greatest common divisor (GCD)
(a) d is a common divisor of a and b means d | a and d | b.
(b) The greatest common divisor of a and b is... the greatest common divisor of a

and b...

10/14/16. Reference: Textbook, Chapter 3, pages 71–72

(1) warmup problem: Find GCDs: (5, 255), (4, 7524), (63, 64), (1234, 1235), (1000, 1002),
(999, 1001), (2400, 2405), (2395, 2405), (2400, 2410). (Hint: you should be able to do
these in your head!)
(a) How to test for divisibility by 2, 4, 8, 16, etc. For example, 4 | 7524 since 7524 =

24 + 7500 = 24 + 75 · 100. We know 4 | 24 and 4 | 100.
(2) Some observations from warm-up problem:

(a) If a | b, then (a, b) = a. (when a, b are positive)



5

(b) If d = (a, b) then d must divide b− a.
(i) So for example, the GCD of 2395 and 2405 must be a divisor of 10. Suppose

(for contradiction) that the GCD is 7. Then 7 | 2395. The next multiples
of 7 would then be 2395 + 7 and 2395 + 14, but 2405 is not on this list.

(3) Let’s make these observations precise with the two following theorems
(4) Theorem (Practice Problem 3.5 in the textbook): If a, b are positive integers and

a | b, then (a, b) = a.
(a) To prove this, we need to show two things: (1) a is a common divisor of a and

b. (2) If d is a common divisor of a and b, then d ≤ a.
(b) Make sure you understand why it’s enough to show (1) and (2)!
(c) To show (1): a | b is given. a | a is true since a · 1 = a.
(d) To show (2): Suppose d is a common divisor of a and b. Then d | a and d | b.

Since d | a and a ≥ 0, we know (by Theorem 3.6) that d ≤ a.
(5) Theorem: If a, b ∈ Z, then (a, b) = (a+ b, b).

(a) Note: this is a special case of Theorem 3.7(2), with c = 1.
(b) Question: why is this useful? It helps us simplify GCD calculations. For exam-

ple, let a = 10, b = 2395. Then we know (10, 2395) = (2405, 2395). And it’s easy
to see (10, 2395) = 5.

(c) This will be especially useful when we talk about the Euclidean algorithm later,
which lets us find GCDs very quickly.

(6) Proof of theorem
(a) To show (a, b) = (a+ b, b), it is enough to show the following: the set of common

divisors of a, b is the same as the set of common divisors of a+ b, b.
(b) Why is that enough? Because if the two sets are the same, then the greatest

element of the two sets are the same. (Make sure you understand this!)
(c) Now, how to show the two sets are the same? We need to show two things. (1)

If d is a common divisor of a, b, then d is a common divisor of a + b, b. (2) If d
is a common divisor of a + b, b, then d is a common divisor of a, b. (Make sure
you understand this!)

(d) To show (1): Suppose d | a and d | b. Then d | (a + b) by Theorem 3.2. So d is
a common divisor of a+ b, b.

(e) To show (2): Suppose d | (a + b) and d | b. Then d | (a + b − b), by theorem
Theorem 3.3. So d | a. So d is a common divisor of a, b.

week 4

10/17/16. Reference: Textbook, Chapter 3, pages 72–73

(1) warmup problem: do the Sieve of Erastosthenes. What does it give? Primes!
(2) Definitions:

(a) A number p ≥ 2 is prime if its only divisors are 1 and p.
(b) A number n ≥ 2 is composite if it is not prime.
(c) (The number 1 is neither prime nor composite. This is by definition, but we’ll

see why this makes sense later.)
(3) What do you remember about primes?
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(a) Prime factorization. Example for 360:

360

36

6

2 3

6

2 3

10

2 5

360

12

4

2 2

3

30

6

2 3

5

In both trees, we see that 360 = 23 · 32 · 5. This is called the prime factorization
of 360.

(b) Prime factorization helps with finding divisors and GCDs.
(c) There are infinitely many primes. (Euclid proved this. We’ll see his proof next

time.)
(d) (just for fun: Primes are weird. They don’t have a nice pattern. But the Prime

Number Theorem says that the nth prime is approximately n lnn!)
(4) Let’s prove something very basic about primes. Theorem 3.9: Every composite

number is divisible by some prime.
(5) Some thoughts on this:

(a) It seems intuitively true. What could go wrong?
(b) Maybe if we draw a factorization tree, all we ever see are positive numbers. The

tree would go on forever!

n

(?)

(?)

...
...

(?)

...
...

(?)

(?)

...
...

(?)

...
...

Why can’t this happen? As you go down the tree, the numbers get smaller.
Eventually they’ll have to stop.

(c) That’s actually the whole idea behind the proof! Now let’s turn it into a rigorous
mathematical proof.

(6) We need an axiom called the “well-ordering principle”: If S is a nonempty set of
positive integers, then S has a smallest element. (See page 58 of textbook.)
(a) We need this idea to say that a decreasing sequence of positive integers has to

stop.
(7) We will use “proof by contradiction” within the proof.

(a) Format: We want to show X is true. So we suppose that it is false. Then we
deduce something that we know is false. Thus, our original assumption that X
is false is wrong, so X must be true!

(b) Silly example: Not everyone in the world is happy. Proof: Suppose for contra-
diction that everyone in the world is happy. Then the world would be peaceful.
But that’s not true (unfortunately...). So we have a contradiction. Thus, not
everyone in the world is happy.

(8) Here’s the proof of Theorem 3.9: (Remember, it’s just the idea of the infinite tree
given above.)
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(a) Let n be a composite number.
(b) Let S be the set of all positive divisors of n except for 1 and n.
(c) Since n is composite, we know S is nonempty.
(d) By well-ordering principle, S has a smallest element k. Note that k ≥ 2.
(e) We claim that k is prime.

(i) To prove this claim, suppose for contradiction that k is not prime. Then
it is composite.

(ii) Then k has some divisor ` with 1 < ` < k.
(iii) We have ` | k and k | n, so ` | n. Also 1 < ` < n. So ` ∈ S.
(iv) So ` ∈ S and ` < k. But k is the smallest element of S. Contradiction!
(v) Thus, k is prime.

(f) Since k ∈ S, we know k | n. So n has a prime divisor, namely k. This completes
the proof.

10/19/16. Reference: Textbook, Chapter 4, first two paragraphs of page 97

(1) warmup problem: Is there a well-ordering principle for Z10? For Q?
(a) For Z10, no, since Z10 cannot be ordered. (If we try to order the elements, we

don’t have properties we expect like a < b =⇒ a+ c < b+ c.)
(b) For Q, no. Take S = {1, 1

2
, 1
3
, . . .} = { 1

n
| n ∈ N}. Any element 1

n
is not the

smallest, because 1
n+1

is smaller.
(2) Here’s another proof using both proof by contradiction and well-ordering for Z. (If

Monday’s proof didn’t make much sense, hopefully this will help.)
(3) Theorem (first half of Theorem 4.7): Every positive integer a ≥ 2 can be written as

a product of primes.
(a) Note: by product of primes, I mean a = p1 ·p2 · · · · ·pn. You could have a product

of just 1 number.
(4) Proof

(a) Let S be the set of all a ≥ 2 that cannot be written as a product of primes. (We
want to show that S is the empty set.)

(b) Suppose for contradiction that S is not empty.
(c) Then by the well-ordering principle, S has a smallest element. Let’s call it n.

(Note: n ≥ 2.)
(d) n is not prime, since every prime can be written as a product of primes (namely,

as just the prime itself).
(e) Thus, n is composite, so n = a · b for some a < n, b < n.
(f) n is the smallest in S, so a 6∈ S, b 6∈ S.
(g) So a = p1 · · · pn, b = q1 · · · qm.
(h) So n = ab = p1 · · · pnq1 · · · qm.
(i) This means n is a product of primes, so n 6∈ S. Contradiction!
(j) Thus, S is empty, which completes the proof.

10/21/16. Reference: Textbook, Chapter 3, pages 74-75, Chapter 4, pages 87-89

(1) warmup problem: Can you find a number n such that if you divide n by 2, 3, 4 the
remainder is always 1? What about with 2, 3, 4, 5? Or 2, 3, . . . , 99, 100?
(a) Answer for general a1, . . . , ak: a number that works is a1 · a2 · · · ak + 1. The

smallest number that works is lcm(a1, a2, . . . , ak) + 1.
(2) Theorem 3.10: There are infinitely many primes.
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(a) Proof: Suppose for contradiction that there are only finitely many primes. Call
them p1 < p2 < · · · < pk.

(b) Let N = p1 · · · pk + 1.
(c) N cannot be prime because N > pk and pk is the largest prime.
(d) N cannot be composite either: why? Suppose N is composite. Then it is

divisible by some primes. The only primes are {p1, . . . , pk}. But N is not
divisible by any of them. So N cannot be composite.

(e) So N is neither prime nor composite! Contradiction! So there are infinitely
many primes

(3) Warning: when you do proof by contradiction, none of the statements inside the
proof are necessarily true (since you are deducing them from something false).
(a) For example, it is not true that if you take a product of primes and add 1, the

result is prime.
(b) e.g., 2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509. (Note however that 59 and 509

are primes bigger than 13.)
(4) Next topic: division.
(5) 199÷ 7: we get quotient 28 and remainder 3. So we can write 199 = 7 · 28 + 3.
(6) In general, a ÷ b (where a, b are positive): we can write a = bq + r. Important,

0 ≤ r < b.
(7) Theorem 4.1 (Division Algorithm) Let a, b be positive integers. Then: (1) there exist

q, r ∈ Z such that a = bq + r and 0 ≤ r < b. (2) The integers q, r are unique.
(8) Idea of proof of (1):

(a) Fix a, b. Suppose we ignore the requirement that 0 ≤ r < b. Then for any q ∈ Z,
we can find a r such that a = bq + r. Just take r = a− bq.

(b) So we want the smallest nonnegative number of the form a− bq. (This suggests
that we should use well-ordering.)

(c) Let S = {a− bk | k ∈ Z, a− bk ≥ 0}.
(d) This set is nonempty since a ∈ S. And it is a subset of nonnegative integers. So

by well-ordering principle, it has a smallest element. Let’s call it r.
(e) Since r ∈ S, there is a q such that r = a− bq.
(f) We want to show r < b. So suppose for contradiction that r ≥ b.
(g) Then r − b ≥ 0 and r − b = a− bq − b = a− b(q + 1). So r − b ∈ S.
(h) But r is the smallest element in S, so contradiction. Thus, r < b.
(i) (Don’t worry if you didn’t understand the proof from class. I did a bad job of

explaining it. If you want to read the proof, it’s essentially the same as Case 3
on page 89 of the textbook.)

week 5

10/24/16. Reference: Textbook, Chapter 4, pages 92–94, Exercise 4.9 (pages 101–102)

(1) warm-up
(a) Find (13, 10) using the Euclidean algorithm.
(b) Find x, y ∈ Z so that 13x+ 10y = (13, 10).
(c) Find (78, 30) using the Euclidean algorithm.
(d) Find x, y ∈ Z so that 78x+ 30y = (78, 30).

(2) For Euclidean algorithm, see the Example on page 94.
(3) The extended Euclidean algorithm lets you solve (b) and (d).
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(a) Some references: Read exercise 4.9. Or see http://www.mast.queensu.ca/

~math418/m418oh/m418oh04.pdf

(b) Be very careful with the arithmetic! Note that you’re not really “simplifying”
but instead making things more complicated!

(4) Theorem (“Bezout’s lemma,” also Exercise 4.8 in the text): Let a, b be positive
integers. Then
(a) If 0 < c < (a, b), there are no integer solutions to ax+ by = c.
(b) There is an integer solution to ax+ by = (a, b).

(5) This might look familiar from last week’s homework.
(6) Proof of (a):

(a) Suppose ax + by = c and c > 0. Since (a, b) | a and (a, b) | b, we know
(a, b) | (ax+ by), so (a, b) | c. Thus c ≥ (a, b).

(b) This shows that if there is a solution to ax+ by = c and c > 0, then c ≥ (a, b).
(7) Proof of (b):

(a) Use the well-ordering principle... this is what Exercise 4.8 asks you to show...
(don’t worry about the proof though)

(b) In any case, you can use the extended Euclidean algorithm to actually compute
solutions.

(8) Application of Bezout’s lemma: you can use it to determine when numbers have
multiplicative inverses in Zm. (More on this next time.)

10/26/16. Reference: Textbook, Chapter 4, pages 92–94, Exercise 4.9 (pages 101–102)

(1) warm-up: Recall from grade school that you can sometimes reduce fractions into
other fractions. For example, 10

15
= 2

3
. When can a fraction a

b
be reduced? (Use a

concept we’ve been discussing.)
(a) answer: The GCD tells you how much reduce the top and bottom by. So if

(a, b) = 1, then the fraction cannot be reduced.
(2) Recall if (a, b) = 1, we say “a and b are relatively prime”
(3) Recall Bezout’s lemma from last time. (See notes from 10/24, above.)
(4) Bezout’s lemma tells us when we can find multiplicative inverses.
(5) a ∈ Zm. Then a has an inverse in Zm if and only if we can find x, y ∈ Z such that

a · x = m · y + 1.
(6) Theorem 6.6: Let a ∈ Zm. Then a has an inverse in Zm if and only if (a,m) = 1.
(7) To prove this, we need to show two things:

(a) If a has an inverse in Zm, then (a,m) = 1.
(b) If (a,m) = 1, then a has an inverse in Zm.

(8) To show (a):
(a) Suppose a has an inverse in Zm.
(b) Then we can find x, y ∈ Z such that a · x = m · y + 1.
(c) Rewrite this as a · x+m · (−y) = 1.
(d) By Bezout’s lemma, (a,m) = 1. (this is because if (a,m) ≥ 2, then Bezout’s

lemma tells us there are no solutions to a · x+m · (−y) = 1.)
(9) To show (b):

(a) Suppose (a,m) = 1.
(b) By Bezout’s lemma, there are x, y such that ax+my = 1.
(c) Divide x by m and take the remainder; this number is the multiplicative inverse

of a in Zm.

http://www.mast.queensu.ca/~math418/m418oh/m418oh04.pdf
http://www.mast.queensu.ca/~math418/m418oh/m418oh04.pdf
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(10) The “divide x by m and take the remainder” is a bit confusing, so let’s try some
examples.

(11) Also, an attempt to convince everyone that the extended Euclidean algorithm is not
so bad... 111x+ 177y = (111, 177).
(a) First, Euclidean algorithm gives (111, 177) = 3.
(b) Next, extended Euclidean algorithm gives 111 · 8 + 177 · (−5) = 3.

(12) Divide both sides of 111 · 8 + 177 · (−5) = 3 by 3: 37 · 8 + 59 · (−5) = 1.
(13) So this tells us 8 is the inverse of 37 in Z59.
(14) It also tells us that “−5” is the inverse of “59” in Z37.

(a) To make sense of this, add/subtract 37 until you end up with a number between
0 and 36. For example, −5 + 37 = 32 and 59− 37 = 22.

(b) So really, we mean that 32 is the inverse of 22 in Z37.

10/28/16. Reference: Textbook, Chapter 4, pages 95–98,

(1) warm-up: “If bc
a
∈ Z and [???], then c

a
∈ Z.” What can go in the [???] to make this

true?
(a) note: we need to put something there, since 8·4

12
∈ Z but 4

12
6∈ Z. The problem is

that 8 and 12 share common divisors.
(b) answer: (a, b) = 1.

(2) Theorem 4.3: If a | bc and (a, b) = 1, then a | c.
(a) Since (a, b) = 1, there exist x, y ∈ Z such that ax+ by = 1.
(b) Multiply both sides by c to get axc+ (bc)y = c.
(c) Since a | a and a | bc, we know a | (axc+ bcy). So a | c.

(3) The proof is short, but tricky! All we do is apply Bezout’s lemma and multiply both
sides by c.

(4) Theorem 4.4 (Euclid’s lemma): If p is prime and p | ab, then p | a and p | b.
(a) Since p is prime, either (p, a) = p or (p, a) = 1.
(b) Case 1: If (p, a) = p, then p | a, so we’re done.
(c) Case 2: If (p, a) = 1, then by Theorem 4.3, p | b, so we’re done.

(5) Theorem 4.5: If p is prime and p | (a1a2 · · · ak), then p | ai for some i. (1 ≤ i ≤ k).
(6) Theorem 4.7 (Fundamental Theorem of Arithmetic): Let n ≥ 2 be an integer. Then

there is a unique way to write n = p1p2 · · · pk, where each pi is prime and p1 ≤ p2 ≤
· · · ≤ pk.

(7) Note: We need the “increasing” condition because otherwise we could have 360 =
2 · 2 · 2 · 3 · 3 · 5 = 3 · 2 · 3 · 2 · 2 · 5.

(8) Note: Why don’t we define 1 to be prime? One reason: if we did, then this theorem
is no longer true. For example, 10 = 2 · 5 = 1 · 2 · 5 = 1 · 1 · 2 · 5, etc.
(a) Is it cheating to do this? Hmm, I don’t see anything wrong with choosing

definitions that make things nice, as long as there is still something interesting
going on.

(b) Same with adding conditions to make statements true. e.g., for the warm-up
problem, if we didn’t have [???], the statement is clearly false. We could make
it true by putting “a | c” inside [???], but that’s not interesting. If we put
“(a, b) = 1,” then the statement is both true and interesting!

(9) Proof of Fundamental Theorem of Arithmetic: next time
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week 6

10/31/16. Reference: Textbook, Chapter 4, pages 96–98

(1) warm-up: If p is a prime and q1, . . . qk are primes, and p | (q1 · q2 · · · · · qk), then what
can we conclude?
(a) Answer: using Theorem 4.5 from last time (Euclid’s lemma for products of more

than 2 numbers), we can conclude that there exists some i such that p = qi.
(2) Proof of Theorem 4.7 (Fundamental Theorem of Arithmetic): We need to show two

things: (1) there is some (i.e., at least 1) prime factorization of n. (2) there is a
unique (i.e., exactly 1) prime factorization of n.

(3) We already showed (1) a while ago, using proof by contradiction and well-ordering
principle.

(4) Proof of (2):
(a) (Note: the book uses proof by contradiction. I will not. The ideas are the same.)
(b) Suppose n = p1 · p2 · · · pk and n = q1 · q2 · · · q`, where each pi and each qi are

prime.
(c) Our goal is to pair the pi’s and qi’s together.
(d) Since p1 ·p2 · · · pk = q1 ·q2 · · · q`, we know p1 | (q1 · · · q`). By the warmup problem,

we know p1 = qi for some i.
(e) So we can cancel them out from both sides of the equality. This gives p2 · · · pk =

q1 · · · qi−1 · qi+1 · · · q`.
(f) Repeat the argument with p2: there is some j such that j 6= i and p2 = qj.
(g) Repeat, repeat, repeat. Eventually we get to 1 = 1, and each prime on the

left has been paired with a distinct(!!!) prime on the right. So the two prime
factorizations are teh same.

(5) Good question: ”Why are we proving something obvious?”
(6) My attempt at a response: It seems obvious because in our experiences, we never

found a counterexample. But that’s not the same as a proof. (Be careful not to give
a circular argument!)

(7) Furthermore, it’s interesting to see the chain of reasoning that went into the proof:
Well ordering principle =⇒ division algorithm =⇒ Bezout’s lemma (ax+ by = 1)
=⇒ Euclid’s lemma (if p | (ab), then p | a or p | b) =⇒ UPF (unique prime
factorization).

(8) Examples where unique prime factorization fails:
(a) Hilbert numbers and Hilbert primes (see HW): 693 = 21 · 33 = 9 · 77. (not an

interesting example to mathematicians)
(b) In the number system Z[

√
−5] = {a + b

√
−5 | a, b ∈ Z}, we have 6 = 2 · 3 =

(1−
√
−5) · (1 +

√
−5). (Very interesting example to mathematicians!)

(c) Remark: Z[
√

2], Z[
√
−1], Z[

√
−2], Z[

√
−3] all have UPF, and the same chain of

reasoning from above works! Something goes wrong Z[
√
−5]. Also, Z[

√
−163]

has UPF but we need a different proof.

11/2/16. Midterm...

11/4/16. Reference: Textbook, Chapter 4, pages 98–99, Chapter 5, page 109 (example at
bottom of page), pages 116–118.

(1) The theme of today is “how unique prime factorization” helps us
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(2) warm-up: Observe that 360 = 2 · 2 · 2 · 3 · 3 · 5 = 23 · 32 · 5. Given a number n ≥ 2, we
can write its prime factorization as n = pa11 · pa22 · · · p

ak
k , where p1, . . . , pk are distinct

primes. How can we tell from the prime factorization whether a number is a perfect
square? Perfect cube?
(a) Try listing some examples, look for a pattern:
(b) Answer: n is a perfect square ⇐⇒ all the exponents a1, . . . , ak are even.
(c) To show =⇒ : If n is a perfect square, then n = k2 for some k ∈ Z. The

prime factorization of k2 is the prime factorization of k but with every factor of
k appearing twice.

(d) To show ⇐= : If n = pa11 · · · p
ak
k and a1, . . . , ak are even. Then let k =

p
a1/2
1 · · · pak/2k and we see that k2 = n.

(e) Similarly for perfect cubes.
(3) So prime factorizations help us look for perfect squares, perfect cubes, etc.
(4) Another application: finding divisors of a number.

(a) Example: What are the divisors of 72? 72 = 23 · 32.
(b) Answer: Let d > 0. Then d | 72 ⇐⇒ d = 2a3b for some 0 ≤ a ≤ 3, 0 ≤ b ≤ 2.
(c) To show ⇐= : Suppose d = 2a3b for some 0 ≤ a ≤ 3, 0 ≤ b ≤ 2. Then 72

d
=

2332

2a3b
= 23−a32−b. Since a ≤ 3, b ≤ 2, the exponents are positive so 23−a32−b ∈ Z.

(d) To show =⇒ : Suppose d | 72. Then there is a k ∈ Z such that dk = 72. When
you combine the prime factorizations of d and k, you must get 23 · 32. (NOTE!
This step does NOT work if prime factorizations were not unique!!) So d = 2a3b

for some 0 ≤ a ≤ 3, 0 ≤ b ≤ 2.
(5) Another application: counting divisors of a number.

(a) Example: The (positive) divisors of 72 can be organized nicely into a box:

20 21 22 23

30 1 2 4 8
31 3 6 12 24
32 9 18 36 72

(6) Another application: Finding GCDs
(a) Example: What is the GCD of 360 and 1500?
(b) 360 = 23 · 32 · 51 and 1500 = 22 · 31 · 53.
(c) We know how to find divisors from the prime factorizations.
(d) We want to take the most “copies” of each prime that we can. So we get

GCD = 22 · 31 · 51. (e.g., we cannot take 3 copies of 2, since 1500 only has 2
copies of 2.)

(7) Another application: Finding LCMs (least common multiple)
(a) Example: What is the LCM of 360 and 1500?
(b) 360 = 23 · 32 · 51 and 1500 = 22 · 31 · 53.
(c) We want to take the feset “copies” of each prime that we can. So we get LCM =

23 · 32 · 53. (e.g., we cannot take only 2 copies of 2, since the number would not
be a multiple of 360.)

(8) Observe: GCD(360, 1500) · LCM(360, 1500) = 360 · 1500. Why is that true?
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week 7

11/7/16. Reference: Textbook, Chapter 5, pages 108–113; Chapter 6, pages 129–130; Chap-
ter 8, page 180

(1) warm-up: Here are the positive divisors of 72 = 23 · 32.

20 21 22 23

30 1 2 4 8
31 3 6 12 24
32 9 18 36 72

Can you find a quick way to sum up all 12 numbers? (Hint: use the distributive
property.)
(a) Answer: (1 + 2 + 4 + 8)(1 + 3 + 9)
(b) Remark: Let x = 1 + 2 + 4 + 8. Then 1 +x = 1 + 1 + 2 + 4 + 8 = 2 + 2 + 4 + 8 =

4 + 4 + 8 = 8 + 8 = 16, so x = 15. In general, 1 + 2 + 4 + · · ·+ 2n = 2n+1 − 1.
(2) Recall last time: Let a = pa11 · · · p

ak
k and b = pb11 · · · p

bk
k . (Note: it’s okay for the

exponents to be zero, since p0j = 1.) Then a | b if and only if a1 ≤ b1, . . . , ak ≤ bk.
(To prove this, we needed unique prime factorization!)

(3) Theorem 8.1:
√

2 is not rational.
(a) The Greeks knew this.
(b) How do we show a number is not rational? We need to show it cannot be written

as a ratio a/b of two integers. So let’s assume that it can and find a contradiction.
(4) Proof: (This is a different proof from the textbook.)

(a) Suppose for contradiction that there are integers a, b ∈ Z such that
√

2 = a
b
.

(b) Square both sides: 2 = a2

b2
. So 2b2 = a2.

(c) Since a2 and b2 are perfect squares, they both have an even number of 2s in their
prime factorizations. (Recall warm-up from last time.) (Also note: 0 is even.)

(d) But since a2 = 2b2, a2 has 1 more 2 than b2.
(e) These two statements can’t both be true, so we have a contradiction. Thus,√

2 6∈ Q.
(5) Next topic (Chapter 6): modular arithmetic
(6) Idea: we would like to use properties of Zm arithmetic to study the integers.
(7) Idea: 21 is not an element of Z10, but it should correspond to 1 ∈ Z10 somehow.
(8) Definition: Let m ≥ 2. Let a, b ∈ Z. We say “a is congruent to b modulo m” if

m | (a− b). We write this as “a ≡ b (mod m).”
(9) How to think about this: “a ≡ b (mod m)” means that we can add/subtract multiples

of m to get from a to b and vice versa.
(10) Examples:

(a) 11 ≡ 21 (mod 10).
(b) 3 6≡ 27 (mod 10).
(c) −1 ≡ 9 (mod 10).
(d) −1 6≡ 11 (mod 10).

(11) We want ≡ to behave like equality. So we need the following properties:
(12) Theorem 6.1: Let m ≥ 2. Let a, b, c ∈ Z. Then

(a) a ≡ a (mod m) (“reflexivity”)
(b) If a ≡ b (mod m), then b ≡ a (mod m) (“symmetry”)
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(c) If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m). (“transitivity”)
(13) Proof:

(a) See the textbook.
(b) Idea for transitivity: You can add some multiple of m to get from a to b. You

can add some multiple of m to get from b to c. So combine these together to get
from a to c. (The proof in the textbook is essentially this idea, even if it doesn’t
look like it.)

11/9/16. Reference: Textbook, Chapter 6, pages 129–132

(1) warm-up: For each of the following, find the smallest x ≥ 0 which makes the congru-
ence true.
(a) 53 ≡ x (mod 10)
(b) 25 ≡ x (mod 7)
(c) −127 ≡ x (mod 20).

(2) Answer:
(a) We can list out all the values of x which make each congruence true. (a)

x ∈ {. . . ,−17,−7, 3, 13, 23, . . .}. (b) x ∈ {. . . ,−10,−3, 4, 11, 18, . . .}. (c) x ∈
{. . . ,−27,−7, 13, 33, . . .}.

(b) So the answers are 3, 4, 13 respectively.
(c) Quick way to find these? Divide and take the remainder: 53 = 5 · 10 + 3,

25 = 3 · 7 + 4, −127 = (−7) ∗ 20 + 13.
(3) An equivalent definition of “a ≡ b (mod m)” is that a and b have the same reminder

when you divide by m. (To prove this, use transitivity of congruences we proved last
time.)

(4) Last time, we showed congruences behave a lot like equality. (symmetry, reflexivity,
transitivity)

(5) Today, let’s see more ways that these are similar.
(6) Question: Let m ≥ 2, let a, b, c ∈ Z. Suppose a ≡ b (mod m). Which of the following

are true?
(a) a+ c ≡ b+ c (mod m)
(b) a− c ≡ b− c (mod m)
(c) a · c ≡ b · c (mod m)
(d) If c ≥ 0, then ac ≡ bc (mod m)
(e) If a, b ≥ 0, then ca ≡ cb (mod m)
(f) (Note: these operations are all in Z, not Zm.)

(7) ca ≡ cb (mod m) is false! Counterexample: m = 10, a = 2, b = 12, c = 2. (Choose
some numbers randomly, and chances are they will be a counterexample also.)

(8) The other 4 are true.
(9) Theorem 6.2: (a), (b), (c) are true.

(10) Proof:
(a) Proof of (a): Suppose a ≡ b (mod m). Then m | (a − b) (by definition). Note

(a+ c)− (b+ c) = a− b, so m | [(a+ c)− (b+ c)]. So a+ c ≡ b+ c (mod m).
(b) Proof of (b): similar to (a)
(c) Proof of (c): Suppose a ≡ b (mod m). Then m | (a−b). Note ac−bc = (a−b)c,

so m | (ac− bc). So ac ≡ bc (mod m).
(11) How to show (d)? First let’s try to just show that if a ≡ b (mod m), then a2 ≡ b2

mod m.
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(12) (a) Proof 1: Note that a2 − b2 = (a− b)(a+ b) and do similar proof as (c).
(b) Proof 2: By (c), we know a ·a ≡ b ·a (mod m). By (c) again, we know b ·a ≡ b ·b

(mod m). So by transitivity, a · a ≡ b · b (mod m).
(13) Theorem 6.3: Suppose a ≡ b (mod m) and c ≡ d (mod m). Then a + c ≡ b + d

(mod m) and ac ≡ bd (mod m).
(a) Proof of ac ≡ bd (mod m): By (c), we know ac ≡ bc (mod m). By (c) again,

we know bc ≡ bd (mod m). So by transitivity ac ≡ bd (mod m). (This is the
same proof as “Proof 2” above.)

(b) Proof of a+ c ≡ b+ d (mod m): similar (try it!)
(14) Theorem 6.3 is useful for simplifying complicated things mod m. For example: 2345 ·

6789 ≡ 5 · 9 ≡ 45 ≡ 5 (mod 10).
(15) Next time, we’ll put Theorem 6.3 to good use to prove some divisibility rules you

might be familiar with.

11/11/16. Reference: Textbook, Chapter 7, pages 155–158

(1) warm-up:
(a) Find all x ∈ Z such that 3x ≡ 5 (mod 10).
(b) Find all x ∈ Z such that 2x ≡ 4 (mod 10)

(2) Answer:
(a) For (a): Let’s start by listing out a few: . . . ,−15,−5, 5, 15, 25, . . .. It seems like

the answer is x ≡ 5 (mod 10).
(b) How to prove this? Take 3x ≡ 5 (mod 10) and multiply both sides by 7. We

can do this because of Theorem 6.2. So we get:

3x ≡ 5 (mod 10)

21x ≡ 35 (mod 10)

x ≡ 5 (mod 10)

(c) For (b): Let’s list a few: . . . ,−13,−8,−3, 2, 7, 12, . . .. It seems like the answer
is x ≡ 2 (mod 5).

(d) To show this:

2x ≡ 4 (mod 10)

⇐⇒ there is a k ∈ Z such that 2x = 4 + 10k

⇐⇒ there is a k ∈ Z such that x = 2 + 5k

⇐⇒ x ≡ 2 (mod 5)

(3) Next topic: divisibility tests
(4) Writing a number in expanded form: n = xm10m + xm−110m−1 + · · ·+ x1101 + x0.
(5) Divisibility by powers of 2:

(a) Note that 10k = (2 · 5)k = 2k · 5k. So 10k is divisible by 2k. This means that to
check divisibility by 2k, you only need to look at the last k digits. Same with
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5k. For example:

1372 ≡ 1 · 103 + 3 · 102 + 7 · 10 + 2 (mod 4)

≡ 1 · 0 + 3 · 0 + 7 · 10 + 2 (mod 4)

≡ 72 (mod 4)

≡ 0 (mod 4)

(6) Divisibility by 3, 9:
(a) You probably know the rule already: add up the digits and see if the sum is

divisible by 3 or 9. Let’s see why this works.
(b) Note that 10 − 1 = 9, 102 − 1 = 99, 103 − 1 = 999, etc. So 10k − 1 is always

divisible by 9 (and therefore also divisible by 3). So

1372 ≡ 1 · 103 + 3 · 102 + 7 · 10 + 2 (mod 3)

≡ [1 · (103 − 1) + 1] + [3 · (102 − 1) + 3] + [7 · (10− 1) + 7] + 2 (mod 3)

≡ [1 · 0 + 1] + [3 · 0 + 3] + [7 · 0 + 7] + 2 (mod 3)

≡ 1 + 3 + 7 + 2 (mod 3)

(c) Same argument works mod 9.

week 8

11/14/16. Reference: Textbook, Chapter 7, pages 155–158

(1) warm-up: Let x = 234647. What is the remainder when x is divided by 2? 3? 4? 5?
6? 8? 9?

(2) We’ve already discussed how to do all of these, except for 6.
(a) For 6: first note that x ≡ 1 (mod 2) and x ≡ 2 (mod 3). This is a “system of

congruences.” Here’s how we can “solve” a system of congruences.
(b) First, from x ≡ 1 (mod 2), we get x = 1 + 2k for some k ∈ Z.
(c) Now plug that into x ≡ 2 (mod 3) to get 1 + 2k ≡ 2 (mod 3).
(d) Solve for k to get k ≡ 2 (mod 3).
(e) Thus k = 2 + 3` for some ` ∈ Z.
(f) Thus x = 1 + 2k = 1 + 2(2 + 3`) = 5 + 6`. So x ≡ 5 (mod 6).
(g) For more on solving systems of congruences, see the example on page 2 of

http://www.cs.xu.edu/math/math302/08f/06_CRT.pdf. Or look up “systems
of congruences” on Google.

(h) Remark: There is something called the “Chinese remainder theorem,” which
tells you when you can solve systems of congruences.

(3) Divisibility by 9:
(4) Argument from last time:

1373 = 1 · 1000 + 3 · 100 + 7 · 10 + 3

= (1 · 999 + 3 · 99 + 7 · 9) + 1 + 3 + 7 + 3

The stuff in parentheses is divisible by 9. The rest is the sum of the digits.

http://www.cs.xu.edu/math/math302/08f/06_CRT.pdf
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(5) Argument using modular arithmetic: Note that 10 ≡ 1 (mod 9), so

1373 ≡ 1 · 103 + 3 · 102 + 7 · 10 + 3 (mod 9)

≡ 1 · 13 + 3 · 12 + 7 · 1 + 3 (mod 9)

≡ 1 + 3 + 7 + 3 (mod 9)

(6) Divisibility by 11 is very similar to what we just did with 9. Note that 10 ≡ −1
(mod 11) so

1373 ≡ 1 · 103 + 3 · 102 + 7 · 10 + 3 (mod 11)

≡ 1 · (−1)3 + 3 · (−1)2 + 7 · (−1) + 3 (mod 11)

≡ −1 + 3− 7 + 3 (mod 11)

So you just need to look at the alternating sum of the digits.

11/16/16. Reference: Intro to Cryptography, Chapter 1, pages 1–6; Chapter 2, pages 12–16.

(1) DHYTBW: JHU FVB MPNBYL VBA OVD AV KLJYFWA AOPZ TLZZHNL?
(a) First three words are probably “warmup: can you.”

(i) (Remark: compare this with the use of “Heil Hitler” in the movie The
Imitation Game. Something like this really did happen in WWII!)

(b) From this we can try to use a “substitution rule.”
(c) It seems like every letter is shifted over by 7, i.e.

plain a b c d e f g h i j k l m
CIPHER H I J K L M N O P Q R S T

plain n o p q r s t u v w x y z
CIPHER U V W X Y Z A B C D E F G

(d) If we try this out, we get “Warmup: can you figure out how to decrypt this
message?” Success!

(e) (Note: a technique we didn’t use but is often useful: letter frequency analysis.)
(2) What is cryptography? Very broadly, the goal is to send messages securely, e.g.:

(a) Top secret war/country/company information.
(b) Wireless communication

(i) For example, when you access your emails via wifi, the wifi router is broad-
casting to everyone around you. Why can’t they access your emails?

(ii) There is so much to say about internet security. It could be the topic of
an entire course!

(3) Usual setup in cryptography: Alice wants to securely send a message to Bob. Eve
wants to eavesdrop. (These are the standard names used by cryptographers.) See
Figure 1.1 in Intro to Cryptography.

(4) Two classes of encryption/decryption methods
(a) Symmetric key: Alice and Bob both know the encryption/decryption keys. No

one else knows them.
(b) Public key: Everyone knows the encryption key. Only Bob knows the decryption

key. (You use this whenever you connect to the Internet!)
(5) Simplest technique: Caesar cipher, a.k.a. “shift cipher”
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(a) First, assigne each letter of the alphabet to a number in this way: a → 0, b →
1, . . . , y → 24, z → 25.

(b) Our warmup example: The encryption key is f(x) = x + 7 mod 26. The de-
cryption key is g(x) = x− 7 mod 26.

(c) In general you can do f(x) = x+ k for any k. (well, k = 0 is not a good idea...)
(d) Problem: this is too easy to break.

(6) Another cipher: Atbash:

plain a b c d · · · · · · w x y z
CIPHER Z Y X W · · · · · · D C B A

(a) Mathematically, encryption is f(x) = 25− x
(b) What is decryption? Same! g(x) = 25− x.

(7) Next example: Affine ciphers:
(a) An affine cipher is when the encryption key is of the form f(x) = αx + β for

some α, β.
(b) Note: Shift cipher is when α = 1. Atbash is when α = −1 and β = 25.
(c) For example consider f(x) = 9x+ 2. What is the inverse?
(d) If the “encrypted number” is y, we want to find which x produced y. That is,

we want to solve y ≡ 9x + 2 (mod 26). We know how to do this! The solution
is x = 3y − 6 (mod 26).

(e) So the decryption key is g(y) = 3y − 6.
(8) Warning: none of these ciphers are very secure nowadays...

11/18/16. Reference: Intro to Cryptography, Chapter 6, pages 164–165

(1) Warmup: Observe the following:

09 ≡ 0, 19 ≡ 1, 29 ≡ 2, . . . , 139 ≡ 13, 149 ≡ 14 (mod 15)

Suppose you want to send a secret code, which is a number in {0, 1, . . . , 14}. Consider
the encryption function f(x) = x3 (mod 15). What is the decryption function?
(Hint: use the observation above.)
(a) The observation tells us that x9 ≡ x (mod 15) for all x. And since x9 = (x3)3,

we know that f(f(x)) ≡ x (mod 15). So f is also the decryption function!
(b) By the way, how to compute 79 mod 15 quickly? Use “repeated squaring”:

72 ≡ 49 ≡ 4. 74 ≡ 42 ≡ 16 ≡ 1. 78 ≡ 12 ≡ 1. 79 ≡ 78 · 7 ≡ 1 · 7 ≡ 7.
(2) Recall public key cryptography: Everyone knows the encryption key (a.k.a. “public

key”). Only Bob knows the decryption key (a.k.a. “private key”).
(3) BIG QUESTION: How is this even possible??
(4) One way to do this is the RSA algorithm (Rivest, Shamir, Adleman, 1977).

(a) Step 1: Bob chooses 2 distinct primes p and q. He computes n = pq.
(b) Step 2: Bob chooses e with gcd(e, (p− 1)(q − 1)) = 1.
(c) Step 3: Bob finds d with de ≡ 1 (mod (p − 1)(q − 1)). (e.g., can use extended

Euclidean algorithm)
(d) Step 4: Bob makes the two following numbers public: n and e. (He keeps p, q, d

secret.)
(e) Step 5: The encryption function is f(x) = xe (mod n).
(f) Step 6: The decryption function is g(x) = xd (mod n)
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(5) Note: our warmup question is an example of the RSA algorithm, with p = 3, q =
5, e = 3, d = 3.

(6) Two questions: (1) Why does g(x) = xd (mod n) work as the decryption function?
(2) Why is this secure?

(7) Let’s answer question (2) first.
(8) You’re probably wondering: “if n is public and everyone knows that n is the product

of two primes, can’t they just factor n to get p and q, which are supposed to be
private?”

(9) Answer: theoretically, of course it is possible to get p and q from n. But practically,
how do we factor n?

(10) But, all the known algorithms for factoring numbers are very slow! See, e.g., https:
//en.wikipedia.org/wiki/RSA_Factoring_Challenge for more on this.

(11) For example, no supercomputer today (2016) can factor a 500-digit number, as far
as we know.

week 9

11/21/16. Reference: Intro to Cryptography, Section 3.6, pages 79–80

(1) Remark on brute force algorithm for breaking RSA:
(a) On the homework due today, you had to use Wolfram Alpha to factor a number

with approximately 40 digits. Let’s say to factor it, you try dividing this number
by everything between 2 and 1020. How long would this take?

(b) Suppose you have a computer that can check a million (106) divisors each second.
(c) Then we have 1020 numbers to check, and we can check them at a rate of 106

numbers per second. So that’s 1014 seconds.
(d) Crude approximation:

1014 seconds ≥ 1012 minutes ≥ 1010 hours ≥ 108 days ≥ 105 years

That is a long time!!
(2) Warmup: Suppose we do RSA with n = 55 and e = 27.

(a) What is the encryption function?
(b) What is the decryption function?
(c) What do we need to check to make sure the decryption function actually works?

(3) Answers:
(a) Answer is f(x) = x27 (mod 55).
(b) We calculate p = 5, q = 11, (p− 1)(q − 1) = 40. Since 27 · 3 = 81 ≡ 1 (mod 40),

we let d = 3. So the decryption function is g(x) = x3 (mod 55).
(c) We need to check that g(f(x)) ≡ x (mod 55). That is, x81 ≡ x (mod 5)5. (This

needs to hold for all x.)
(4) In general, to show that RSA works, we need to show that xde ≡ x (mod pq), where

p, q, d, e are from the RSA algorithm.
(5) Recall that de ≡ 1 (mod (p− 1)(q− 1)) means there is a k such that de = 1 + k(p−

1)(q − 1). So here’s what we need to show.
(6) Theorem (RSA works!): Let p and q be distinct primes. Let k ≥ 0. Then for any x,

we have

x1+k(p−1)(q−1) ≡ x mod pq.

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
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(7) The first step: recall from the midterm/homework that 14 ≡ 24 ≡ 34 ≡ 44 ≡ 1
(mod 5).

(8) Theorem (Fermat’s little theorem): Let p be a prime. Suppose p - x. Then xp−1 ≡ 1
(mod p).
(a) Fermat lived in the 1600s. He is probably more famous for “Fermat’s Last

Theorem” which was actually not proved until 1995!
(b) Why do we need p to be prime? Because, for example, 25 6≡ 1 (mod 6).

(9) Before proving this, let’s look at an example. Take p = 5 and x = 3. Our goal is to
show 34 ≡ 1 (mod 5). We could just calculate 34 = 81, but let’s do it another way.
(a) Consider the functions f(y) = 3y (mod 5) and g(y) = 2y (mod 5). Since 2·3 ≡ 1

(mod 5), we have g(f(y)) ≡ y (mod 5). In a diagram:

0 ←→ 0
1 ←→ 3
2 ←→ 1
3 ←→ 4
4 ←→ 2

To go from left to right, apply f (i.e., multiply by 3). To go from right to left,
apply g (i.e., multiply by 2).

(b) Key observation: The right column consists of the numbers {0, 1, 2, 3, 4} (but
rearranged). In particular, every number appears exactly once. (This works
because f has an inverse, namely g.)

(c) So:

(3 · 1) · (3 · 2) · (3 · 3) · (3 · 4) ≡ 3 · 1 · 4 · 2 (mod 5)

(1 · 2 · 3 · 4) · 34 ≡ 1 · 2 · 3 · 4 (mod 5)

34 ≡ 1 (mod 5)

(d) Note: In the last step, we multiplied by the inverses of 1, 2, 3, 4, one at a time.
(Since 5 is prime, the numbers 1, 2, 3, 4 all have inverses mod 5.)

(10) The proof of Fermat’s little theorem proceeds in the same way as the example above.
(Just replace 5 with p and replace 3 with x.)

11/22/16 (during tutorial). References:

• For the proof of RSA, I am following https://en.wikipedia.org/wiki/RSA_(cryptosystem)
#Proof_using_Fermat.27s_little_theorem.
• For Euler’s theorem, see Intro to Cryptography, 81–82
• For the Rubik’s cube stuff, see https://en.wikipedia.org/wiki/Rubik’s_Cube_

group and https://en.wikipedia.org/wiki/Lagrange’s_theorem_(group_theory)

#Applications

(1) Warmup: Which of the following four implications are true?
(a) x ≡ 1 (mod 6) ⇐⇒ x ≡ 1 (mod 2) and x ≡ 1 (mod 3)
(b) x ≡ 1 (mod 12) ⇐⇒ x ≡ 1 (mod 2) and x ≡ 1 (mod 6)

(2) Answers:
(a) (a) =⇒ and (b) =⇒ are true.
(b) In general: If x ≡ a (mod m) and n | m, then x ≡ a (mod n). Proof: If x ≡ a

(mod m), then x = a+ km. Since n | m, then km is a multiple of n.

https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Proof_using_Fermat.27s_little_theorem
https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Proof_using_Fermat.27s_little_theorem
https://en.wikipedia.org/wiki/Rubik's_Cube_group
https://en.wikipedia.org/wiki/Rubik's_Cube_group
https://en.wikipedia.org/wiki/Lagrange's_theorem_(group_theory)#Applications
https://en.wikipedia.org/wiki/Lagrange's_theorem_(group_theory)#Applications
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(c) (a)⇐= is true. Do what you did on the homework.
(d) (b)⇐= is false. If you try the same thing as (a), at one step you need to invert

2 in mod 6, which is not possible.
(3) Recall: our goal is to show that RSA works. We already proved Fermat’s little

theorem. (See previous lecture notes.)
(4) Let’s study x1+k(p−1)(q−1) mod p.

(a) Case 1, if p - x: Then we can apply Fermat’s little theorem to get x1+k(p−1)(q−1) =
x · xk(p−1)(q−1) = x · (xp−1)k(q−1) ≡ x · (1)k(q−1) ≡ x (mod p)

(b) Case 2, if p | x: Then x ≡ 0 (mod p), so x1+k(p−1)(q−1) ≡ 0 ≡ x (mod p).
(5) So we have shown that for all x, x1+k(p−1)(q−1) ≡ x (mod p). By the same reasoning,

x1+k(p−1)(q−1) ≡ x (mod q).
(6) Using the same method as the warmup, we can deduce that x1+k(p−1)(q−1) ≡ x

(mod pq).
(7) This concludes the proof of RSA! Note that this used everything we learned this

quarter! And it’s actually a theorem that has big implications in the real world!
(8) How did we make the deduction in the last step? We used the Chinese remainder

theorem.
(9) Theorem (Chinese remainder theorem): Let m,n ≥ 1 be relatively prime. Then the

system x ≡ a (mod m) and x ≡ b (mod n) has a unique solution mod mn. That is,
for any a, b, there is a unique c ∈ Zmn such that

x ≡ c (mod mn) ⇐⇒ x ≡ a (mod m) and x ≡ b (mod n)

(10) To prove this, just do what you did on your homework.
(11) This is all you need to know from this lecture; what follows are some fun

remarks:
(12) Fermat’s little theorem is a special case of Euler’s theorem: Let m ≥ 1. Let φ(m)

be the number of elements in Zm that are relatively prime to m. Then if (a,m) = 1,
then xφ(m) (mod m).

(13) The way to prove this is essentially the same as Fermat’s little theorem, but now we
only keep numbers which have inverses mod m. For example, for x = 3 and m = 10:
(a) Consider the functions f(y) = 3y (mod 10) and g(y) = 7y (mod 10). Since

3 · 7 ≡ 1 (mod 10), we have g(f(y)) ≡ y (mod 10). In a diagram:

1 ←→ 3
3 ←→ 9
7 ←→ 1
9 ←→ 7

To go from left to right, apply f (i.e., multiply by 3). To go from right to left,
apply g (i.e., multiply by 7).

(b) So:

(3 · 1) · (3 · 3) · (3 · 7) · (3 · 9) ≡ 3 · 9 · 1 · 7 (mod 10)

(1 · 3 · 7 · 9) · 34 ≡ 1 · 3 · 7 · 9 (mod 10)

34 ≡ 1 (mod 10)

(14) Observe that if m = p and p is prime, then φ(p) = p − 1 since all the numbers in
{1, 2, . . . , p− 1} are relatively prime to p. We get back Fermat’s little theorem!
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(15) Fact: if p, q are distinct primes, then φ(pq) = (p− 1)(q− 1). (Do you see why?) This
can be turned into a different proof that RSA works.

(16) Remark: Euler’s theorem is a special case of Lagrange’s theorem. When applied to
the ”Rubik’s cube group,” Lagrange’s theorem tells you the following.

(17) Theorem: Let X be a sequence of moves on a Rubik’s cube. Then if you repeat X
43,252,003,274,489,856,000 times, you get back to where you started.

(18) Let N = 43,252,003,274,489,856,000 = 227 · 314 · 53 · 72 · 11. Then N is the number of
positions of a Rubik’s cube.

(19) Another way to write this theorem: for all X, XN = Identity.
(20) Observe: This is the same as what Euler’s theorem. Euler’s theorem says if you

multiply a number by x φ(m) times, you get back to where you started. φ(m) is the
number of numbers in Zm which are relatively prime to m.

(21) Same Rubik’s cube theorem (version 2): Let X be a sequence of moves on a Rubik’s
cube. Then there is an integer m ≥ 1 such that Xm = identity. Furthermore, the
smallest m that works is a divisor of N .

11/23/16. References:

• http://learn2cube.com/intuitive/intro

(1) This lecture will not be covered in the final.
(2) Let’s say our goal is to flip two edges in the top layer of the Rubik’s cube.
(3) Let X be any sequence of moves that flips an edge in the top layer while leaving the

rest of top layer unchanged. It’ll mess up the first two layers but that’s okay.
(4) Main idea: The sequence X U X−1 U−1 will flip two edges of the top layer and leave

the first two layers unchanged.
(5) Even though X messes up the first two layers, the X−1 that comes later puts those

layers back.
(6) Moves on the Rubik’s cube are not commutative! In normal arithmetic, xyx−1y−1 =

1. But for the Rubik’s cube, X Y X−1 Y −1 is not the identity! Such a sequence is
called a “commutator.”

week 9

11/28/16. References:

• https://en.wikipedia.org/wiki/Block-stacking_problem

• https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)

• http://pages.pacificcoast.net/~cazelais/222/block_problem.pdf

(1) This lecture will not be covered in the final.
(2) Today’s theme: summing infinitely many numbers
(3) Warmup: Is it possible to add infinitely many positive numbers together to get a

finite sum?
(4) Remark: To talk about adding infinitely many numbers precisely, we need calculus.

But let’s not worry about that and just get the general from some examples.
(5) The sum 1 + 1 + 1 + · · · is infinite. This is because the partial sums are 1, 2, 3, 4, . . ..

These grow without bound.
(6) On the other hand, consider 1

2
+ 1

4
+ 1

8
+ 1

16
+ · · · . The partial sums are 1

2
, 3
4
, 7
8
, 15
16
, . . ..

They “approach” 1. (Again, we need calculus to make this precise.)

http://learn2cube.com/intuitive/intro
https://en.wikipedia.org/wiki/Block-stacking_problem
https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
http://pages.pacificcoast.net/~cazelais/222/block_problem.pdf
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(7) To see that 1
2

+ 1
4

+ 1
8

+ 1
16

+ · · · = 1, we can draw a picture: take a 1 × 1 square.
Divide it in half. Take one of the two halves and divide that in half. Keep repeating.

(8) (So the answer to the warmup problem is yes! Take the reciprocals of the powers of
2.)

(9) An example where infinite series comes up: the book stacking problem (or block
stacking problem).

(10) Problem: Place N identical rectangular books on a table edge to maximize the over-
hang.

(11) (There are many diagrams in my handwritten lecture notes. Please look at them
once I have scanned and put them up.)

(12) How to determine if a stack is stable? The relevant concept in physics is the “center
of mass.”

(13) (Think Jenga!)
(14) For n books of length 1, the maximum overhang is 1

2
+1

4
+1

6
+· · ·+ 1

2n
= 1

2

(
1
1

+ 1
2

+ 1
3

+ · · ·+ 1
n

)
.

(15) Let Hn = 1
1

+ 1
2

+ 1
3

+ · · ·+ 1
n
. This is called the n-th harmonic number.

(16) Question: does Hn increase without bound?
(17) If the answer is no, then there is a bound. Then, no matter how many books we

stack, we cannot reach past farther than this bound.
(18) If the answer is yes, then: we can stack the books to reach as far as we want! (As

long as we have enough books!)
(19) So which do you believe?
(20) Let’s do some numerical calculations: http://www.wolframalpha.com/input/?i=

sum+1%2Fi+from+i%3D1+to+n,+where+n+%3D+1,2,3,4,5,10,100,1000,10000,100000

(21) Theorem (Oresme, 14th century): The harmonic numbers increase without bound.
That is 1

1
+ 1

2
+ 1

3
+ · · · =∞.

(22) So this means if we have enough books, we can reach as far as we’d like!!
(23) Proof of theorem: Group into powers of 2. See Wikipedia. (or my handwritten

lecture notes.)
(24) Using calculus, you can showHn ≈ lnn+0.5772.... Here, lnn is the natural logarithm,

and 0.5772... is called the Euler-Mascheroni constant.
(25) OK, now that we know this sum is infinite, how about this sum: 1

1
+ 1

4
+ 1

9
+ 1

16
+ · · · ?

(26) Take a guess.
(27) The answer is here https://en.wikipedia.org/wiki/Basel_problem.

11/30/16. References:

• Textbook, Chapter 8, pages 175–183
• https://en.wikipedia.org/wiki/Hilbert’s_paradox_of_the_Grand_Hotel

• http://opinionator.blogs.nytimes.com/2010/05/09/the-hilbert-hotel/

(1) This lecture could be covered in the final!
(2) Today’s theme: how to count
(3) Warmup:

(a) You run a hotel. It has rooms labeled 1, 2, 3, 4, 5, 6. They are occupied. One
more person shows up. What do you do?

(b) Now, what if your hotel has rooms labeled 1, 2, 3, . . . (one for each natural num-
ber)?

http://www.wolframalpha.com/input/?i=sum+1%2Fi+from+i%3D1+to+n,+where+n+%3D+1,2,3,4,5,10,100,1000,10000,100000
http://www.wolframalpha.com/input/?i=sum+1%2Fi+from+i%3D1+to+n,+where+n+%3D+1,2,3,4,5,10,100,1000,10000,100000
https://en.wikipedia.org/wiki/Basel_problem
https://en.wikipedia.org/wiki/Hilbert's_paradox_of_the_Grand_Hotel
http://opinionator.blogs.nytimes.com/2010/05/09/the-hilbert-hotel/
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(4) In the second case (called “Hilbert’s hotel”), you can do this: for each n, tell person
in room n to move to room n+ 1. Then room 1 is now empty, so you can move the
new person there!

(5) The key that makes this work: there is no largest natural number! So you do not
run out of space when you move people around.

(6) What if 3 people show up? Tell person in room n to move to n+ 3.
(7) What if infinitely many people show up? (Suppose the people are called P1, P2, P3, . . ..)

Then tell the person currently in room n to move to room 2n. This frees up enough
rooms!

(8) Definition: A set is countably infinite if we can fit its elements into Hilbert’s hotel.
(9) What are examples of countable sets?

(10) N (the set of natural numbers) is countable:

element 1 2 3 · · ·
room 1 2 3 · · ·

(11) Z≥0 (the set of nonnegative integers) is countable:

element 0 1 2 3 · · ·
room 1 2 3 4 · · ·

(This is just like if one extra person shows up to Hilbert’s hotel when it’s already
full.)

(12) Z (the set of integers) is countable:

element · · · −2 −1 0 1 2 · · ·
room · · · 5 3 1 2 4 · · ·

(Bounce back and forth and the room assignment. This is just like if countably many
people show up when the hotel is already full.)

(13) What about Q (rational numbers)? This is much trickier.
(14) Let’s first consider the positive rationals Q>0.
(15) You can write all the elements in a 2-dimensional grid.

1
1

2
1

3
1
· · ·

1
2

2
2

3
2
· · ·

1
3

2
3

3
3
· · ·

...

There are some repeats (e.g., 2
2

= 1
1
) but that’s okay. (This is like if infinitely many

buses, each carrying infinitely many people, all arrive at Hilbert’s hotel.)
(16) The question now is, can we walk across all the squares in a 2-dimensional grid and

visit every square? Yes! Just go one diagonal at a time:

1 2 4 · · ·

3 5 · · ·

6 · · ·
...
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(17) So now just do this on the grid of positive rational numbers, and assign each number
to a room when you visit that square.

(18) So Q>0 is countable! In fact, so is Q (do you see why?).
(19) Recall the real numbers R. To talk about R, we need to look at infinite decimal

expansions. The number 0.x1x2x3 . . . is by definition

x1
10

+
x2
100

+
x3

1000
+ · · ·

This is an infinite sum! Like on Monday’s lecture, we need calculus to make sense of
infinite sums... let’s not worry about that for now.

(20) Remark

0.999 . . . =
9

10
+

9

100
+

9

1000
+ · · · = 1

The first equality is by definition. The second equality is using calculus.
(21) Theorem (Cantor): R is not countable.
(22) Proof:

(a) Let S be the set of all real numbers between 0 and 1 whose decimal expansions
only have 1s and 2s. We’ll show S is not countable.

(b) Suppose for contradiction that S is countable.
(c) Then we can assign each element of S to a room in Hilbert’s hotel. For example:

room element of S

1 0.1212212...
2 0.1111122...
3 0.1121221...
4 0.2211222...
...

...

(d) Cantor’s diagonalization argument: consider the n-th digit of the element in the
n-th room:

room element of S

1 0. 1 212212...

2 0.1 1 11122...

3 0.11 2 1221...

4 0.221 1 222...
...

...

(e) Now create a number x ∈ S which by making the n-th digit different from the
one in the n-th box: x = 0.2212...

(f) This number x is different from every number in our list. So it was not assigned
a room. But x ∈ S, and we assigned every element of S a room. Contradiction!

(23) If R-many people show up to Hilbert’s hotel, then we’re in trouble...
(24) Application: Since Q is countable and R is uncountable, we know there is some

element of R which is not in Q. That is, there exists an irrational number. (But this
proof doesn’t give us an example of one.)
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(25) Another application. A number is called “transcendental” if it is not the root of any
polynomial with integer coefficients. A similar argument shows that a transcendental
number exist.

That’s it for the class! Have fun!
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