Math 11200/20 homework 6 hints

Problem 6.5. Let $a, b \in \mathbb{Z}$. Show that if $a^{2} \mid b^{2}$, then $a \mid b$.
Hint: use the prime factorizations! Let $a=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ and $b=p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}$. (Note that it's okay for exponents to be zero.) If $a^{2} \mid b^{2}$, then what can we say about the exponents?

Hint for Problem 6.5.

- Let $a=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ and $b=p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}$. (Here, p_{1}, \ldots, p_{k} are distinct primes.)
- Note that $a^{2}=\left(p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}\right)^{2}=p_{1}^{2 a_{1}} \cdots p_{k}^{2 a_{k}}$ and similarly, $b^{2}=p_{1}^{2 b_{1}} \cdots p_{k}^{2 b_{k}}$.
- Suppose that $a^{2} \mid b^{2}$. Then "each prime factor of a^{2} must appear in b^{2}." That is,

$$
\begin{equation*}
2 a_{1} \leq 2 b_{1}, \quad 2 a_{2} \leq 2 b_{2}, \quad \ldots, \quad 2 a_{k} \leq 2 b_{k} . \tag{*}
\end{equation*}
$$

- To complete the proof, we need to deduce from $(*)$ that $a \mid b$. That is, "each prime factor of a must appear in b." Why is this true?

Problem 6.6. Let $F_{1}=1, F_{2}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$. (These are the Fibonacci numbers.) Show that

$$
F_{2}+F_{4}+F_{6}+\cdots+F_{2 n}=F_{2 n+1}-1
$$

(Hint: Recall in class that $1+2+4+\cdots+2^{n}=2^{n+1}-1$.)
Hint for Problem 6.6. Suppose we want to find $1+2+4+8+16$. Let x be the answer. Then

$$
\begin{aligned}
1+x & =1+1+2+4+8+16 \\
& =2+2+4+8+16 \\
& =4+4+8+16 \\
& =8+8+16 \\
& =16+16 \\
& =32
\end{aligned}
$$

so $x=32-1$. Try something similar for the Fibonacci sum above. Don't start with the general case. Try a specific case first. For example, for $n=3$, we want to show $F_{2}+F_{4}+F_{6}=F_{7}-1$. Can you show this?

