Math 11200/20 homework 6
Due date: Friday, November 11, 2016
Note: You shouldn't need to use a calculator for these problems.
Please present your solutions clearly and in an organized way. Think of it this way: if you show it to another student in this class, he/she should be able to understand it without needing to ask you questions.

Problem 6.1. Exercise 4.4 from the textbook. (You can leave your answer as a prime factorization if you'd like.)

Problem 6.2. For each part of Exercise 4.4 of the textbook, find the LCMs. (You can leave your answer as a prime factorization if you'd like.)

Problem 6.3. Find the number of divisors of the following numbers:
(a) 51
(b) 234
(c) 272
(d) 180
(e) 9261

Hint: You don't actually have to write out all the divisors. Use the prime factorization to help you!

Problem 6.4. What can you deduce about the prime factorization of n if:
(a) n has exactly 2 divisors? (Here, we're only referring to positive divisors.)
(b) n has exactly 3 divisors?
(c) n has exactly 4 divisors?
(d) n has exactly 5 divisors?

Problem 6.5. Let $a, b \in \mathbb{Z}$. Show that if $a^{2} \mid b^{2}$, then $a \mid b$.
Hint: use the prime factorizations! Let $a=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ and $b=p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}$. (Note that it's okay for exponents to be zero.) If $a^{2} \mid b^{2}$, then what can we say about the exponents?

Problem 6.6. Let $F_{1}=1, F_{2}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$. (These are the Fibonacci numbers.) Show that

$$
F_{2}+F_{4}+F_{6}+\cdots+F_{2 n}=F_{2 n+1}-1
$$

(Hint: Recall in class that $1+2+4+\cdots+2^{n}=2^{n+1}-1$.)
Problem 6.7. Can you find three integers $a, x, y \in \mathbb{Z}$ such that $x \equiv y(\bmod 10)$ but $a^{x} \not \equiv a^{y}$ $(\bmod 10)$? (You can use a calculator.)

Problem 6.8. What are all the solutions to $3 x \equiv 4(\bmod 10)$? If do some trial and error, we see that the answer is $x \in\{\ldots,-12,-2,8,18,28, \ldots\}$. In other words, the answer is $x \equiv 8(\bmod 10)$.
Do some trial and error to find all solutions to the following. You do not need to justify.
(a) What are all $x \in \mathbb{Z}$ which satisfy $4 x \equiv 6(\bmod 10)$?
(b) What are all $x \in \mathbb{Z}$ which satisfy BOTH $x \equiv 0(\bmod 4)$ and $x \equiv 3(\bmod 5)$?

