Math 11200/20 homework 4
Due date: Friday, October 21, 2016
Note: You shouldn't need to use a calculator for these problems.
Please present your solutions clearly and in an organized way. Think of it this way: if you show it to another student in this class, he/she should be able to understand it without needing to ask you questions.

Problem 4.1. In Friday $10 / 14$'s class, we proved that for any $a, b \in \mathbb{Z}$, we have $(a, b)=(a+b, b)$. Take the proof we gave and modify it slightly to show the following: "for any $a, b, c \in \mathbb{Z}$, we have $(a, b)=(a+c b, b) .{ }^{1}$

Problem 4.2. If we divide 1001 by 105 , the quotient is 9 and the remainder is 56 . So $1001=$ $9 \cdot 105+56$. Now use Problem 4.1 to determine $(1001,105)$. (What should a, b, c be?)

Problem 4.3. Exercise 3.12 in the textbook. (Hint: use the theorem we proved in class on Friday 10/14.)
Problem 4.4. Exercise 4.22 (a),(c) in the textbook. You don't need anything from Chapter 4 to do this problem. This problem is intended to be fun(???) and to show an example where the prime factorization is not unique.

Problem 4.5. Let H be as in Exercise 4.22. Show that every element of H is divisible by some Hilbert prime. (Hint: if you understand the proof on Monday, you should be able to do this problem.)

Problem 4.6.

(a) Recall Problem 4.2. Since $1001=9 \cdot 105+56$, we know by Problem 4.1 that $(1001,105)=$ $(105,56)$. We can repeat this procedure with 105 and $56: 105=1 \cdot 56+49$, so $(105,56)=$ $(56,49)$. If we keep repeating this, what do we get in the end?
(b) Can you try the same thing for $(55,34)$?

Problem 4.7. As we'll see later, this problem is related to finding multiplicative inverses in \mathbb{Z}_{n}. However, it might be a good idea to do some computations now to get a feel for what is going on.
(a) What is the smallest possible positive number of the form $50 x+70 y$ that you can make, where x, y are integers? For example, if we let $x=-1, y=1$, then $50 x+20 y=50(-1)+$ $70(1)=20$. Is 20 the smallest? No, because if we let $x=-4, y=3$, then we get 10 , which is smaller than 20 . Is 10 the smallest? If not, please find the smallest number. Show that the smallest number is indeed the smallest.
(b) Do the same with $4 x+36 y$. (No need to show your computations, but please show that the smallest number you find is indeed the smallest.)
(c) Do the same with $4 x+36 y$.
(d) Do the same with $8 x+36 y$.
(e) Do the same with $3 x+10 y$.
(f) Do the same with $7 x+16 y$.
(g) Do you notice a pattern? What do you think the answer is for $a x+b y$, where a, b are any two positive integers? (No need to prove anything.)

[^0]
[^0]: ${ }^{1}$ This is Theorem 3.7, part 2 in the textbook. I guess you could copy the proof there, but the point of this exercise is to try to work it out yourself.

