Math 11200/20 homework 3
Due date: Friday, October 14, 2016
Note: You shouldn't need to use a calculator for these problems.
Please present your solutions clearly and in an organized way. Think of it this way: if you show it to another student in this class, he/she should be able to understand it without needing to ask you questions.

Problem 3.1. Suppose S is a set with a binary operation + satisfying axioms A1-A4. Using the axioms, show the following:

$$
\text { For all } a, b \in S,-(a+b)=(-a)+(-b)
$$

Note that this equation $-(a+b)=(-a)+(-b)$ means: "the additive inverse of $a+b$ is equal to the sum of the additive inverse of a and the additive inverse of b."
(Hint: Take a look at the proofs of theorem 2.3 and 2.4 in the textbook.)
Problem 3.2. Exercise 3.7 in the textbook. It looks like a lot of problems, but they're all very short. For example, solve (a) by yourself and then see the footnote for a sample write-up. ${ }^{1}$

Problem 3.3. Exercise 3.8 in the textbook.
Problem 3.4. Prove that in \mathbb{Z}, if $a \mid b$ and $b>0$, then $a \leq b$. Turn the scratch-work from class into an actual proof. (Near or at the beginning, the proof should say something like "We break into two cases: (1) if $a \leq 0$, and (2) if $a>0$.")
Problem 3.5.
(a) In \mathbb{Z}_{10}, what are the elements with multiplicative inverses? What about in \mathbb{Z}_{12} ? In $\mathbb{Z}_{16} ? \mathbb{Z}_{2}$? \mathbb{Z}_{3} ? \mathbb{Z}_{4} ? \mathbb{Z}_{5} ? (You don't need to show your calculations; you can just list out the elements.)
(b) In these examples, if a has a multiplicative inverse in \mathbb{Z}_{n}, what do you notice about the GCD of a and n ? What if a does not have a multiplicative inverse? (You can just state your observations; you don't need to prove anything.)

Problem 3.6. Exercise 3.9 in the textbook. (Note: the notation (a, b) does not mean an ordered pair, but instead the GCD of a and b.)

Problem 3.7. Exercise 3.10 in the textbook.

[^0]
[^0]: ${ }^{1}$ The following would be enough:

