Math 11200/20 homework 3 Due date: Friday, October 14, 2016

Note: You shouldn't need to use a calculator for these problems.

Please present your solutions clearly and in an organized way. Think of it this way: if you show it to another student in this class, he/she should be able to understand it without needing to ask you questions.

Problem 3.1. Suppose S is a set with a binary operation + satisfying axioms A1–A4. Using the axioms, show the following:

For all
$$a, b \in S$$
, $-(a + b) = (-a) + (-b)$.

Note that this equation -(a+b) = (-a) + (-b) means: "the additive inverse of a+b is equal to the sum of the additive inverse of a and the additive inverse of b."

(Hint: Take a look at the proofs of theorem 2.3 and 2.4 in the textbook.)

Problem 3.2. Exercise 3.7 in the textbook. It looks like a lot of problems, but they're all very short. For example, solve (a) by yourself and then see the footnote for a sample write-up.¹

Problem 3.3. Exercise 3.8 in the textbook.

Problem 3.4. Prove that in \mathbb{Z} , if $a \mid b$ and b > 0, then $a \leq b$. Turn the scratch-work from class into an actual proof. (Near or at the beginning, the proof should say something like "We break into two cases: (1) if $a \leq 0$, and (2) if a > 0.")

Problem 3.5.

- (a) In \mathbb{Z}_{10} , what are the elements with multiplicative inverses? What about in \mathbb{Z}_{12} ? In \mathbb{Z}_{16} ? \mathbb{Z}_{2} ? \mathbb{Z}_{3} ? \mathbb{Z}_{4} ? \mathbb{Z}_{5} ? (You don't need to show your calculations; you can just list out the elements.)
- (b) In these examples, if a has a multiplicative inverse in \mathbb{Z}_n , what do you notice about the GCD of a and n? What if a does not have a multiplicative inverse? (You can just state your observations; you don't need to prove anything.)

Problem 3.6. Exercise 3.9 in the textbook. (Note: the notation (a, b) does not mean an ordered pair, but instead the GCD of a and b.)

Problem 3.7. Exercise 3.10 in the textbook.

¹The following would be enough: 1^{1}

[&]quot;True. Suppose $a \mid b$. Then there's a $k \in \mathbb{Z}$ such that ak = b. Then 4ak = 4b, so (2a)(2k) = 4b, so $2a \mid 4b$."