• Class Schedule: : TuTh 2:30-3:50, Library E4315

  • Syllabus

  • Exams
  •   Topic Worksheet Date Practice Problems Problems to hand in Homework due date
    Lecture 1 1.1. Introduction to linear systems Linear Systems Jan 26

    Section 1.1: 1, 3, 7, 9, 11, 31, 33

    Section 1.2: 1, 3, 5, 11

    Section 1.1: 2, 4, 8, 12

    Section 1.2: 4, 6, 8, 32

    Feb 9

    Lecture 2 1.2. Gauss-Jordan elimination and reduced row-echelon form  Gauss-Jordan and RREF Jan 28

    Lecture 3

    1.3. On the solutions of Linear Systems solutions of linear systems Feb 2 Section 1.3: 1, 5, 9, 17, 23, 37, 45, 47, 58 Section 1.3: 2, 4, 14, 20, 22, 28

    Feb 16

     

    Lecture 4

    2.1. Linear transformations linear transformations Feb 4

    Lecture 5

    1.3. Matrix Algebra matrix algebra Feb 9
    Section 1.3: 11, 13, 27, 49, 55; 
    Section 2.1: 3, 5, 33; Section 2.2: 5
    Section 1.3: 12, 18, 34, 50, 56; 
    Section 2.1: 6, 32, 44; Section 2.2: 2, 32
    Feb 23

    Lecture 6

    2.2. Linear Transformations in Geometry geometry of linear transformations Feb 11

    Lecture 7

    2.2. Linear Transformations in Geometry geometry of linear transformations Feb 16

    Section 2.1: 1, 19, 21, 42
    Section 2.2: 13, 17, 27( ignore shear), 53

    Section 2.3: 1, 7, 51

    Section 2.4: 3, 11

    Section 2.2: 10, 12, 26 (ignore part d), 30, 38 (a, b, c), 40

    Section 2.3: 2,50

    Section 2.4: 10, 38

    March 1 

    Lecture 8

    2.3 Matrix Multiplication matrix multiplication Feb 18

    Lecture 9

    2.3-2.4: Matrix Multiplication, Inverse of a Linear Transformation inverse of linear transformations Feb 23

    Section 2.3: 5, 13, 17, 57, 65

    Section 2.4: 7, 19, 21, 31, 37

    Section 2.3: 8, 18, 56, 66

    Section 2.4: 2, 4, 20, 30, 42

    March 8 

     

     

    Lecture 10

    2.4-3.1: Inverse of a Linear Transformation, Image and Kernel of a Linear Transformation Feb 25

    Lecture

    11

    3.2: Subspaces of R^n; Bases and Linear Independence  March 1

    Section 3.1: 7, 11, 21

    Section 3.2: 3,29,  33

    Section 3.1: 8, 10, 22

    Section 3.2: 2, 4, 30, 32, 34

    and the problem in this link

    March 22

     

    Exam

    Midterm I

    (For the exam and its solutions go to the exam page)

     

    March 3

    Lecture 12

    3.2-3.3: Bases, Linear Independence and the Dimension of a Subspace of R^n  Subspaces of R^n and Their Dimensions II March 8

    Section 3.2: 23, 25, 31, 37

    Section 3.3: 7, 19, 25, 27

    Section 3.2: 23, 26, 30, 36

    Section 3.3: 6, 18, 24, 28

    March 31

    Lecture 13

    3.3: 

    The Dimension of a Subspace of R^n 

    The Dimension of a Subspace of R^n March 10

    Lecture 14

    3.3-3.4: The Dimension of a Subspace of R^n, Coordina  March 22

    Section 3.3: 29, 67, 87

    Section 3.4: 1, 17, 21, 29

    Section 3.3: 30, 36, 68, 86

     

    Section 3.4: 2,  18, 20, 28

    April 5

    Lecture 15

    3.4. Coordinates

     

     

    March 24

    Lecture 16

    4.1 Introduction to Linear Spaces  March 29

    Section 4.1: 9, 17

    Section 4.2: 5, 7, 27

    Section 4.3: 61 (parts a and b)

    Section 4.1: 8, 16

    Section 4.2: 4, 6, 26

    Section 4.3: 60 (parts a and b)

    and the problems in this link

    April 14

    Lecture 17

    4.2 

    Linear Transformations and Isomorphisms

    March 31

    Lecture 18

    4.3 The Matrix of a Linear Transformation Matrix of Linear Transformations April 5

    Section 4.1: 5

    Section 4.2: 67

    Section 4.3: 65

    Section 4.1: 2

    Section 4.2: 68

    Section 4.3: 64

    April 21

    Lecture 19

    5.1  Orthogonal Projections and Orthonormal Bases  April 7

    Lecture 20

    5.1-5.2: Orthogonal Projections and Orthonormal Bases, Gram-Schmidt Process 

    April 12

    Section 5.1: 5, 11, 27

    Section 5.2: 5, 7, 13, 33

    Section 5.3: 3, 61

    Section 5.1: 6, 10, 26

    Section 5.2: 2, 6, 14, 32

    Section 5.3: 4, 60

    April 28

    Lecture 21

    5.3  Orthogonal Transformations and Orthogonal Matrices  April 14

    Exam

    Midterm II

    (For the exam and its solutions go to the exam page)

      April 19

    Lecture 22

    5.5 Inner Product Spaces April 21

    Lecture 23

    6.1  Introduction to Determinants 
    April 26

    Section 6.1: 9, 17, 19, 39

    Section 6.2: 5

    Section 7.2: 3, 9, 11

    Section 7.3: 7, 9, 15

    Section 6.1: 8, 18, 20, 40

    Section 6.2: 6

    Section 7.2: 4, 8, 10

    Section 7.3: 8, 14, 16

    May 5

    Lecture 24

    6.2-7.1  Properties of the Determinant, Diagonalization 
    April 28

    Lecture 25

    7.2-7.3 Finding the Eigenvalues and the Eigenvectors of a Matrix 

     

    May 3
    Lecture 26  

     

    May 5