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Abstract

We show that the knot group of any knot in any integer homology sphere admits
a non-abelian representation into SUp3q such that meridians are mapped to matrices
whose eigenvalues are the three distinct third roots of unity. This answers the N “ 3
case of a question posed by Xie and the first author. We also characterize when a PUp3q-
bundle admits a flat connection. The key ingredient in the proofs is a study of the ring
structure of Up3q instanton Floer homology of S1 ˆΣg . In an earlier paper, Xie and the
first author stated the so-called eigenvalue conjecture about this ring, and in this paper
we partially resolve this conjecture. This allows us to establish a surface decomposition
theorem for Up3q instanton Floer homology of sutured manifolds, and then obtain the
mentioned topological applications. Along the way, we prove a structure theorem for
Up3q Donaldson invariants, which is the counterpart of Kronheimer and Mrowka’s
structure theorem for Up2q Donaldson invariants. We also prove a non-vanishing
theorem for the Up3q Donaldson invariants of symplectic manifolds.
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1 Introduction

This paper studies invariants in low-dimensional topology derived from UpNq instanton
gauge theory, with an emphasis on the caseN “ 3. Before describing the particular invariants
and the general strategy, we begin with the central topological applications, which regard the
existence of certain non-abelian representations of fundamental groups of 3-manifolds.

Up3q representations of 3-manifold groups

Let N ě 2 be an integer. The following was posed by the first author and Xie [DX20]:

Question 1.1. If K is a non-trivial knot in an integer homology 3-sphere Y , does there exist
a homomorphism ϕ : π1pY zKq Ñ SUpNq with non-abelian image, such that

ϕpµq “ c

»

—

—

—

–

1 0 ¨ ¨ ¨ 0
0 ζ ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ ζN´1

fi

ffi

ffi

ffi

fl

where ζ “ e2πi{N and c “ eπi{N or c “ 1 depending on whether N is even or odd?

The notation µ refers to the class of a fixed meridian in the knot group. Note that if
Question 1.1 has an affirmative answer for N , then it does so too for all lN , where l P Zą0.
Kronheimer and Mrowka proved that Question 1.1 has an affirmative answer in the case
N “ 2 [KM10b]. In this paper we answer it affirmatively in the case N “ 3:

Theorem 1.2. If K is a non-trivial knot in an integer homology 3-sphere Y , then there exists
a homomorphism ϕ : π1pY zKq Ñ SUp3q with non-abelian image, such that

ϕpµq “

»

–

1 0 0
0 ζ 0
0 0 ζ2

fi

fl , ζ “ e2πi{3.

We also address the existence of 3-dimensional representations for fundamental groups
of closed 3-manifolds. The following is an N “ 3 analogue of a result of Kronheimer and
Mrowka [KM10b, Thm. 7.21] (see also [KM18, Thm. 1.6]).

Theorem 1.3. Let Y be a closed, oriented 3-manifold, and ω P H2pY ;Z{3q. Suppose
ωrSs ” 0 pmod 3q for every embedded 2-sphere S Ă Y . Then there exists a homomorphism
π1pY q Ñ PUp3q with the associated characteristic class in H2pY ;Z{3q equal to ω.

The Covering Conjecture states that the N -fold branched cover ΣN pKq of a non-
trivial knot K in a homotopy sphere Y is not a homotopy sphere [Kir78, Problem 3.38].
Theorem 1.2 provides a homomorphism ϕ which descends to a non-trivial homomorphism of
π1pΣ3pKqq, and thus proves the Covering Conjecture for N “ 3. This also proves the Smith
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Conjecture, for N “ 3: a non-trivial knot is not the fixed point set of an order N orientation
preserving diffeomorphism of S3. Both the Covering Conjecture and Smith Conjecture for
general N are theorems, proved by ideas and techniques from diverse areas of mathematics
including hyperbolic geometry, minimal surface theory, SLp2,Cq character varieties and
classical 3-manifold topology [Mor84]. The proof indicated for N “ 3 (modelled on the
proof of Kronheimer and Mrowka for N “ 2) is based on instanton Floer theory.

The Floer homology we utilize is in the setting ofUp3q instanton gauge theory. Donaldson-
type invariants for closed 4-manifolds can be defined for any of the groups UpNq, see
[Kro05, Cul14]. (More precisely, the relevant gauge symmetry group is PUpNq.) Such
invariants were first studied in the physics literature by Mariño and Moore [MM98]. There,
a generalization of Witten’s conjecture is provided, which predicts that no new topological
information can be derived for 4-manifolds of simple type when N ě 3. In contrast, Theo-
rems 1.2 and 1.3 are derived from higher rank instanton Floer theory and do not follow from
the Up2q theory. To the best of the authors’ knowledge, these theorems are the first genuine
topological applications of higher rank instanton gauge theory.

Up3q sutured instanton homology

Kronheimer and Mrowka proved analogues of the above results in the case N “ 2 using
Up2q sutured instanton Floer homology [KM10b]. The strategy to address Question 1.1
in general is to develop sutured instanton Floer theory for UpNq so that the proofs for the
N “ 2 case may be adapted. This was initiated in [DX20], where Up3q sutured instanton
homology was constructed and some basic properties were established. To a balanced
sutured manifold pM,αq, the construction outputs a Z{2-graded complex vector space

SHI3˚pM,αq. (1.4)

This is done by first gluing r´1, 1s ˆ F to M , where F is a connected surface of genus g
with boundary; the gluing is such that r´1, 1s ˆ BF is identified with annuli neighborhoods
of the sutures α Ă BM . As pM,αq is balanced, the resulting 3-manifold has two boundary
components which are diffeomorphic, and gluing these up by a diffeomorphism forms a
closed 3-manifold. Then (1.4) is defined by taking a certain subspace of the Up3q instanton
homology of the closed 3-manifold with some choice of admissible bundle.

In [DX20], it is shown that SHI3˚pM,αq is independent of the gluing maps involved in
the construction. Here we establish that the construction is also independent of the choice of
F (in particular, the genus g). We obtain the following.

Theorem 1.5. The Up3q sutured instanton homology SHI3˚pM,αq is independent of all
auxiliary choices and is an invariant of the balanced sutured manifold pM,αq.

We also establish a surface decomposition result, which describes the behavior of
Up3q sutured instanton homology under surface decompositions. This is the counterpart of
analogous results in sutured Heegaard Floer homology [Juh06] and Up2q sutured instanton
homology [KM10b]. The surface decomposition result, given in Proposition 5.16, leads to
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the following non-vanishing result, which (together with a modest generalization given in
Corollary 5.19) is used to prove Theorems 1.2 and 1.3.

Theorem 1.6. For any balanced taut sutured manifold pM,αq, the Up3q sutured instanton
homology group SHI3˚pM,αq is non-trivial.

There are two important special cases of Up3q sutured instanton homology. Both can be
defined more generally in the setting of UpNq instanton homology. The first is the UpNq

framed instanton homology for closed 3-manifold Y , denoted I#,N pY q. Versions of these
groups were first studied by Kronheimer and Mrowka in [KM11b]. Here we study some
further basic properties. We compute in Theorem 8.4 that the Euler characteristic is

χ
´

I#,N pY q

¯

“ |H1pY ;Zq|N´1 (1.7)

when b1pY q “ 0, and is otherwise zero. This generalizes the N “ 2 computation from
[Sca15]. Moreover, in the N “ 3 case, we give a decomposition result for cobordism maps
in framed instanton homology analogous to the N “ 2 result in [BS23, Theorem 1.16], and
which relies on an adaptation of the Up3q Structure Theorem given below.

The other Floer homology group of interest is the UpNq knot instanton homology for a
knot in an integer homology 3-sphere. In the case N “ 2, the graded Euler characteristic of
this homology is a multiple of the Alexander polynomial [KM10, Lim10]. For N “ 3, we
provide in Section 9 a conjectural relationship between the bi-graded Euler characteristic of
the Up3q knot homology and the Alexander polynomial, relying in part on the generalized
version of Witten’s conjecture from [MM98].

Up3q Donaldson-type invariants for 4-manifolds

We also study the structure of Up3q polynomial invariants for closed 4-manifolds. For any
closed connected oriented smooth 4-manifold X define

A3pXq :“ pSym˚pH0pXq bH2pXqq b Λ˚H1pXqq
b2 (1.8)

where complex coefficients are assumed. For α P HipXq where i P t0, 1, 2u, and r P t2, 3u,
we write αprq when regarding α as an element of the pr ´ 1qst tensor power of (1.8). The
degree of αprq in this case is defined to be 2r ´ i. If b`pXq ą 1, then for w P H2pX;Zq

there is an associated Up3q Donaldson-type invariant

D3
X,w : A3pXq Ñ C.

Let x P X , viewed as a generator of H0pXq. We say that X is Up3q simple type if

D3
X,wpx3p2qzq “ 27D3

X,wpzq, D3
X,wpxp3qzq “ 0, D3

X,wpδzq “ 0 (1.9)

for all z P A3pXq and δ P Λ˚H1pXq b Λ˚H1pXq. When b1pXq “ 0, this terminology
is introduced in [DX20], and it is an analogue of Kronheimer and Mrowka’s simple type
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condition in the Up2q case; without the constraint on b1pXq, it is an analogue of Muñoz’s
strong simple type condition [Muñ00]. Define for all z P A3pXq:

pD3
X,wpzq :“ D3

X,wpp1 `
1

3
xp2q `

1

9
x2p2qqzq.

It is also convenient to introduce the following formal power series in CrrH2pXq ‘H2pXqss:

D3
X,wpzq “ pD3

X,wpezq.

Our main result regarding the structure of these invariants is the following analogue of
Kronheimer and Mrowka’s structure theorem in the Up2q case [KM95]. Let ζ “ e2πi{3.

Theorem 1.10. Suppose b`pXq ą 1, and X is Up3q simple type. Then there is a finite set
tKiu Ă H2pX;Zq and ci,j P Qr

?
3s such that for any w P H2pX;Zq, and Γ,Λ P H2pXq:

D3
X,wpΓp2q ` Λp3qq “ e

QpΓq

2
´QpΛq

ÿ

i,j

ci,jζ
w¨

´

Ki´Kj
2

¯

e
?
3
2

pKi`Kjq¨Γ`
?

´3
2

pKi´Kjq¨Λ (1.11)

Each class Ki is an integral lift of w2pXq, and satisfies the following: if Σ Ă X is a
smoothly embedded surface of genus g with Σ ¨ Σ ě 0 and rΣs non-torsion, then

2g ´ 2 ě |xKi,Σy| ` rΣs2. (1.12)

This result partially resolves Conjecture 7.2 from [DX20]. We note that the expression (1.11)
differs slightly from what appears in that reference, due to a minor difference in convention;
see Remark 2.3. As explained in [DX20], it is predicted by Mariño and Moore [MM98] that
the classes Ki appearing in Theorem 1.10 are equal to the Kronheimer and Mrowka basic
classes in Up2q Donaldson theory, as well as the Seiberg–Witten basic classes; furthermore,
the constants ci,j are expressible in terms of the data from these other theories.

Remark 1.13. In Theorem 6.26, if rΣs is torsion and g ě 1, then (1.12) trivially holds. Note
that if Σ is as in Theorem 1.10 and has genus zero, then (1.12) never holds, and hence there
are no such classes Ki, in which case the invariants DX,w all vanish.

We also prove a non-vanishing result for symplectic 4-manifolds.

Theorem 1.14. Let X be a closed symplectic 4-manifold with b`pXq ą 1. Then the
invariant D3

X,w is non-trivial for all w P H2pX;Zq.

Our strategy to prove this non-vanishing result is similar to Ozsváth and Szabó’s proof
in [OS04] for the corresponding result in the context of Heegaard Floer homology and
closely follows a strategy suggested by Kronheimer and Mrowka in the Up2q case. (The
non-triviality of Up2q Donaldson invariants for symplectic 4-manifolds was also proved by
Sivek in a different way [Siv15].) Theorem 1.14 can be used to prove that the Up3q instanton
homology of an irreducible 3-manifold with 3-admissible bundle is non-zero, and leads to
an alternative proof of Theorem 1.3.
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Eigenvalues and the Up3q instanton homology of S1 ˆ Σg

The main technical ingredient that paves the way for most of the above results is Theorem
2.14 below, which concerns the Up3q instanton homology of a circle times a surface Σg
of genus g with an admissible bundle. We restrict our attention to the simple type ideal, a
subspace of this Floer homology, and compute the eigenvalues of certain operators acting
on it. The simple type ideal is generated by relative invariants coming from 4-manifolds
of simple type. Our eigenvalue result is a partial analogue to one used by Kronheimer and
Mrowka in the Up2q case, due to Muñoz [Muñ99].

The UpNq instanton Floer homology of S1ˆΣg with an admissible bundle is isomorphic
to H˚pNgq, the cohomology of the moduli space of rank N stable holomorphic bundles over
Σg with some fixed determinant. In fact, this instanton Floer group admits a multiplication
which is a deformation of the cup product on H˚pNgq, and is expected to be isomorphic
to its quantum multiplication. Muñoz’s computation of eigenvalues in the N “ 2 case
relies on the fact that H˚pNgq has a simple ring presentation which is recursive in the genus
[Bar94, KN98, ST95, Zag95]. Such a concise description is not currently available in the
N “ 3 case, but a complete set of relations for the ring is known, due to Earl [Ear97]. Our
restriction to the simple type ideal (which suffices for the purposes of the above results)
simplifies the algebra considerably, and allows us to use Earl’s description of the ring
H˚pNgq to prove, together with results from [DX20], the desired eigenvalue result.

The authors expect that the method of proof for Theorem 2.14 may also be employed
for N ą 3. There are two essential ingredients that are required. One is a generalization to
N ě 4 of [DX20, Prop. 5.7], which gives the existence of certain eigenvalues in the UpNq

instanton Floer homology of a circle times a surface. The other is a computation, for N ě 4,
of the vector space dimension of the ring H˚pNgq modulo the “undeformed simple type
relations,” analogous to what is done below for N “ 3. Relevant to this second ingredient is
the work of Earl and Kirwan [EK04]. Given an appropriate generalization of Theorem 2.14
for N ą 3, the authors expect that analogues for all of the results stated in this introduction,
for general N , can also be proved, following similar methods. The authors hope to return to
these matters in future work.

Outline In Section 2, we state and outline the proof of the main technical result, The-
orem 2.14. In Sections 3 and 4, the cohomology ring H˚pNgq is studied, and the proof
of Theorem 2.14 is completed. In Section 5, we study Up3q sutured instanton homology
and prove Theorems 1.5, 1.6, followed by the proofs of Theorems 1.2 and 1.3. In Section
6, we prove Theorem 1.10, and in Section 7 we prove Theorem 1.14. In Section 8, UpNq

framed instanton homology is studied. Finally, in Section 9 we discuss Up3q instanton knot
homology and the Alexander polynomial.

Acknowledgments We thank Hisaaki Endo, Peter Kronheimer, Jake Rasmussen, Arash
Rastegar, Danny Ruberman and Steven Sivek for helpful discussions. AD was supported by
NSF Grant DMS-2208181 and NSF FRG Grant DMS-1952762. NI was supported by JSPS
KAKENHI Grant Number 22J00407. CS was supported by NSF FRG Grant DMS-1952762.
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2 Background and general strategy

As mentioned in the introduction, the strategy to prove Theorems 1.2 and 1.3 is to develop
sutured instanton Floer homology for the gauge group UpNq, and adapt arguments from the
N “ 2 case due to Kronheimer and Mrowka [KM10b]. This strategy was initiated in the
N “ 3 case by the first author and Xie [DX20]. The raw material for the construction of
sutured instanton homology for general N is the UpNq instanton Floer homology

IN˚ pY, γq (2.1)

which is defined for a closed, oriented, connected 3-manifold Y and an oriented 1-cycle γ
satisfying the N -admissibility condition: there exists some oriented surface Σ Ă Y such that
γ ¨ Σ is coprime to N . The group IN˚ pY, γq is constructed by applying Morse homological
methods to a Chern–Simons functional on B, the configuration space of connections on
the PUpNq-bundle on Y determined by γ. These Floer homology groups were constructed
by Kronheimer and Mrowka [KM11b], generalizing the work of Floer in the N “ 2 case
[Flo95]. In this paper, we work with Floer homology over the coefficient field C, in which
case (2.1) is a Z{4N -graded complex vector space.

Given a homology class a P HipY ;Cq there are associated linear operators

µrpaq : IN˚ pY, γq Ñ IN˚ pY, γq, 2 ď r ď N. (2.2)

The degree of µrpaq is 2r ´ i pmod 4Nq. There is a universal PUpNq-bundle P over
B ˆ Y , and µrpaq is roughly the cap product on moduli spaces with crpPq{a.

Remark 2.3. Our convention for µrpaq differs from that of [DX20] by the sign p´1qr.
Furthermore, the grading we use on instanton homology is the negative of the convention in
that paper (and is in fact a cohomological grading convention).

The construction of sutured instanton Floer homology relies on taking certain simul-
taneous generalized eigenspaces of the operators in (2.2) acting on the Floer groups (2.1).
The crucial case to understand is when Y “ S1 ˆ Σg where Σg is a surface of genus g, and
γ “ γd “ S1 ˆ tx1, . . . , xdu, with d coprime to N . We write

V N
g,d :“ IN˚ pS1 ˆ Σg, γdq.

The relevant operators acting on V N
g,d are denoted as follows:

αr :“ µrpΣgq, βr :“ µrpxq, ψir :“ µrpηiq p2 ď r ď Nq (2.4)

where x P S1 ˆ Σ and the ηi p1 ď i ď 2gq range over a symplectic basis of closed oriented
curves on Σg. These operators are graded-commutative. In particular, since the ψir are of
odd degree, they square to zero, and each one has zero as its only eigenvalue. Consider the
simultaneous eigenvalues with respect to the classes αr, βr:

ΞNg,d :“
␣

λ “ pλ1, . . . , λ2N´2q P C2N´2 | Dv P V N
g,d : αrv “ λr´1v, βrv “ λr`N´2v

(
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where r ranges over 2, . . . , N . For λ P ΞNg,d we denote by

V N
g,dpλq “

N
č

r“2

8
ď

k“1

ker
´

pαr ´ λr´1qk
¯

X ker
´

pβr ´ λr`N´2qk
¯

Ă V N
g,d

the associated generalized eigenspace. Then we have

V N
g,d “

à

λPΞN
g,d

V N
g,dpλq.

Lemma 2.5. Let ζ be a 2N th root of unity. If λ “ pλ1, . . . , λ2N´2q P ΞNg,d, then also

λ1 :“ pζλ1, ζ
2λ2, . . . , ζ

N´1λN´1, ζ
2λN , ζ

3λN`1, . . . , ζ
N´1λ2N´3, ζ

Nλ2N´2q P ΞNg,d.

Furthermore, dimV N
g,dpλq “ dimV N

g,dpλ1q.

Proof. Fix ζ as in the statement, and define f : V N
g,d Ñ V N

g,d as follows. Let v P V N
g,d and

write vi for the component of v in grading i pmod 4Nq. Then

fpvq :“
2N´1
ÿ

i“0

ζ´iv2i `

2N´1
ÿ

i“0

ζ´iv2i`1.

Let v P V N
g,dpλq. In particular, for each 2 ď r ď N we have pαr ´ λr´1qNv “ 0 for some

positive integer N . This is equivalent to the collection of identities

N
ÿ

i“0

ˆ

N

i

˙

αN´i
r p´λr´1qivl´pN´iqp2r´2q “ 0

where 2 ď r ď N and 0 ď l ď 4N ´ 1. It is straightforward to check that this iden-
tity is preserved upon replacing λr´1 with ζr´1λr´1 and replacing vl´pN´iqp2r´2q with
fpvql´pN´iqp2r´2q. The conditions involving the βr operators is similar. Thus f induces a
vector space isomorphism from V N

g,dpλq to V N
g,dpλ1q.

There is also an operator of degree ´4d pmod 4Nq denoted

ε : V N
g,d Ñ V N

g,d (2.6)

defined as the map associated to the cylinder cobordism r0, 1s ˆ S1 ˆ Σg equipped with
UpNq-bundle determined by the oriented 2-cycle r0, 1sˆγdYtp1{2, xquˆΣg where x P S1.
The operator ε commutes with all the operators (2.4).

The Floer homology V N
g,d is in fact a ring. The multiplication is induced by the cobordism

which is the product of a pair of pants cobordism S1\S1 Ñ S1 with Σg. An identity element
1 is given by the relative invariant D2 ˆ Σg with bundle determined by D2 ˆ tx1, . . . , xdu.
Sending each operator (2.4) and ε to its evaluation on 1 induces an isomorphism of rings

V N
g,d “ AN

g rεs{JNg,d (2.7)

8



where the Z-graded C-algebra AN
g is defined as follows:

AN
g :“

N
â

r“2

Crαr, βrs b Λ˚pψirq1ďiď2g

The degrees of αr, βr, ψir are respectively 2r ´ 2, 2r, 2r ´ 1. In the identification (2.7), the
Z-grading on AN

g reduced to the Z{4-grading on V N
g,d; on the right side of (2.7), the element

ε should be regarded as having degree 0. The ideal JNg,d Ă AN
g rεs contains εN ´ 1 and is

homogeneous with respect to the Z{4-grading. There is a non-degenerate bilinear pairing

x¨, ¨y : V N
g,d b V N

g,d Ñ C (2.8)

which is induced by r0, 1s ˆ S1 ˆ Σg viewed as a cobordism from two copies of S1 ˆ Σg
(identifying one copy by an orientation-reversing diffeomorphism) to the empty set.

Key to the development of Kronheimer and Mrowka’s sutured instanton homology in
the case N “ 2 are results on the eigenvalues of the operators (2.4). There are two essential
ingredients that are used, both following from the work of Muñoz [Muñ99] (see in particular
[KM10b, Props. 7.1, 7.4]). The first is the computation of the spectrum:

Ξ2
g,1 “ tp2air, p´1qr2q | a P Z, |a| ď g ´ 1, r P t0, 1uu (2.9)

where i “
?

´1. The second ingredient regards “extremal” generalized eigenspaces:

dimV 2
g,1p˘irp2g ´ 2q, p´1qr2q “ 1. (2.10)

An important property is that the pairing (2.8) restricted to the 1-dimensional space appearing
in (2.10) is non-degenerate. In fact, the 1-dimensionality is equivalent to non-degeneracy,
see for example [DX20, Lemma 5.11].

In [DX20], analogous properties for the case of N “ 3 are studied. To state the relevant
results, first define, for any integer d coprime to 3:

E3
g,d :“

!

p
?
3ζka,

?
´3ζ2kb, 3ζ2k, 0q | pa, bq P Cg, k P t0, 1, 2u

)

Ă C4.

Here ζ “ e2πi{3, and Cg is the subset of the lattice Z2 given by

Cg “ tpa, bq P Z2 | |a| ` |b| ď 2g ´ 2, a ” b pmod 2qu.

Then, the following is a partial analogue of (2.9).

Proposition 2.11. E3
g,d Ă Ξ3

g,d.

Proof. It is proved in [DX20, Prop. 5.7] that the set
!

p
?
3ζdba,´

?
´3ζ2dbb, 3ζ2db, 0q | pa, bq P Cg

)

(2.12)

is contained in Ξ3
d,g. (Note that this set of eigenvalues differs slightly from that in [DX20,

Prop. 5.7] because of Remark 2.3.) In fact, these eigenvalues simultaneously occur with the
eigenvalue `1 of ε. The remaining eigenvalues are obtained using Lemma 2.5.
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The inclusion of Proposition 2.11 is conjectured to be equality, see [DX20, Conj. 7.3].
An analogue of (2.10) is essentially proved in [DX20] (see Proposition 2.23):

dimV 3
g,dp˘

?
3ζkp2g ´ 2q, 0, 3ζ2k, 0q “ 1 (2.13)

where k P t0, 1, 2u. Just as in the N “ 2 case, the pairing (2.8) restricted to this 1-
dimensional space is non-degenerate; Proposition 2.11 and property (2.13), with its non-
degeneracy, are sufficient to define sutured instanton homology and prove an excision result
in the case N “ 3, parallel to the case N “ 2, and this is explained in [DX20, §5.2].

In the case N “ 2, Kronheimer and Mrowka prove a sutured decomposition result
[KM10b, Prop. 7.11] using (2.9). This result implies that sutured instanton homology for
taut sutured manifolds is nonzero, and leads to existence results for Up2q representations.
For N “ 3, if equality in Proposition 2.11 holds, then similar arguments carry through.
However, the inclusion of Proposition 2.11 by itself is not sufficient.

On the other hand, inspection of the arguments in [KM10b] shows that in the N “ 2
case, equality of (2.9) is not necessary. The following weaker version of (2.9) suffices:

Ξ2
g,1 X pC ˆ t˘2uq “ tp2air, p´1qr2q | a P Z, |a| ď g ´ 1, r P t0, 1uu .

The same is true in the case N “ 3: equality in Proposition 2.11 is not necessary, and the
following, our main technical result, is a weaker version which suffices:

Theorem 2.14. Let d P Z be coprime to 3, g P Zě0, and ζ “ e2πi{3. If λ P Ξ3
g,d and

λ “ pλ1, λ2, 3ζ
j , 0q for some j P Z, then λ P E3

g,d. Equivalently (by Proposition 2.11):

Ξ3
g,d X

`

C2 ˆ C3 ˆ t0u
˘

“ E3
g,d

where C3 “ t3, 3ζ, 3ζ2u is the set of 3rd roots of 27.

In the remainder of this section we explain the strategy to prove Theorem 2.14. Let
Ng “ NN

g,d be the moduli space of projectively flat UpNq-connections A on Σg with
detpAq “ A0, where A0 is a fixed connection on a complex line bundle L Ñ Σg of degree
d. There is a natural isomorphism of rings (see Section 3):

H˚pNg;Cq “ AN
g {Ig (2.15)

where Ig is a homogeneous ideal in AN
g . Consider the extended ideal

I 1
g :“ pεN ´ 1qIg `

N´1
ÿ

i“0

εiIg Ă AN
g rεs.

Then, the relation ideal JNg,d for V N
g,d from (2.7) is a deformation of the ideal I 1

g. Concretely,

I 1
g “

`

Lpfq | f P JNg,d
˘

Ă AN
g rεs

10



where Lpfq is the top degree homogeneous part of f . Here the degree of ε is set equal to 0.
Furthermore, there is a complex vector space isomorphism

V N
g,d – H˚pNg;Cqrεs{pεN ´ 1q. (2.16)

That is to say, the complex dimensions of the quotients of AN
g rεs by JNg,d and I 1

g are equal.
These observations were first given by Muñoz in the case N “ 2 [Muñ99]; the case for
general N is similar, and discussed in [DX20].

Define the simple type ideal of V 3
g,d as follows:

S3
g,d “ kerpβ32 ´ 27q X kerpβ3q X

č

1ďiď2g
r“2,3

kerpψirq Ă V 3
g,d. (2.17)

The inclusion of Proposition 2.11 implies the following inequality:

dimC S
3
g,d ě |E3

g,d| “ 3p2g ´ 1q2. (2.18)

Furthermore, if equality in (2.18) holds, then in it is straightforward to see that in fact there
can be no other eigenvalues in Ξ3

g,d of the form pλ1, λ2, 3ζ
j , 0q, and Theorem 2.14 follows.

Thus our goal is to prove the inequality

dimC S
3
g,d ď 3p2g ´ 1q2. (2.19)

Define rJ3
g,d to be the ideal of A3

grεs generated by J3
g,d and β32 ´ 27, β3, ψir, ε

3 ´ 1. The
pairing (2.8) satisfies xax, yy “ xx, ayy for all a P V N

g,d. Thus there is an induced pairing

S3
g,d b A3

grεs{ rJ3
g,d Ñ C

Nondegeneracy of (2.8) implies the inequality

dimC S
3
g,d ď dimCA3

grεs{ rJ3
g,d. (2.20)

On the other hand, consider the ideal

rIg :“ Ig ` pβ32 , β3, ψ
i
2, ψ

i
3q1ďiď2g Ă A3

g

and its extension rI 1
g :“ pε3´1qrIg` rIg`εrIg`ε2rIg inside A3

grεs. Since rJ3
g,d is a deformation

of the ideal rI 1
g, it follows that there is an inequality

dimCA3
grεs{ rJ3

g,d ď dimCA3
grεs{rI 1

g “ 3 dimCA3
g{rIg. (2.21)

Therefore, the following result, together with inequalities (2.20) and (2.21), proves the
desired inequality (2.19), and hence proves Theorem 2.14.

Theorem 2.22. For g ě 1, dimCA3
g{rIg ď p2g ´ 1q2.

11



This theorem is proved in the next two sections, where the ring H˚pNgq is studied. For
reasons explained above (see also the end of this section), we call A3

g{rIg the undeformed
simple type quotient.

We now show how (2.13) follows from [DX20] and Theorem 2.22.

Proposition 2.23. dimV 3
g,dp˘

?
3ζkp2g ´ 2q, 0, 3ζ2k, 0q “ 1 for each k P t0, 1, 2u. In

particular, the generalized eigenspace for p˘
?
3ζkp2g ´ 2q, 0, 3ζ2k, 0q agrees with the

corresponding eigenspace.

Proof. From our above discussion, Theorem 2.22 implies

dimCA3
grεs{ rJ3

g,d “ 3p2g ´ 1q2. (2.24)

For λ0 P C and λ P Ξ3
g,d write V pλ0, λq “ V 3

g,dpλq X kerpε´ λ0q. Then

V 3
g,d “

à

pλ0,λqPCˆΞ3
g,d

V pλ0, λq.

Write Π for the projection from V 3
g,d to A3

grεs{ rJ3
g,d. Since |E3

g,d| “ 3p2g ´ 1q2, for each
λ P E3

g,d there is a unique λ0 P C such that ΠpV pλ0, λqq is nonzero. For if this were not the
case, the equality (2.24) would be violated. Let λ “ p˘

?
3p2g´2q, 0, 3, 0q. In [DX20, §5.1]

it is shown that V p1, λq is 1-dimensional. Consequently,

dim
`

V 3
g,dpλq X kerpε´ 1q

˘

“ 1.

On the other hand, by the above remarks, it must be that V 3
g,dpλq Ă kerpε´ 1q. This proves

the desired result in the case k “ 0. The cases where k P t1, 2u then follow from the case
k “ 0 and Lemma 2.5.

We conclude this section with some commentary on our terminology used for the
subspace S3

g,d Ă V 3
g,d. First, for any oriented smooth 4-manifold X recall the definition

A3pXq “ pSym˚pH0pXq bH2pXqq b Λ˚H1pXqq
b2

where complex coefficients are assumed. IfX is closed and b`pXq ą 1, and w P H2pX;Zq,
then there is an associated Up3q Donaldson-type invariant

D3
X,w : A3pXq Ñ C,

and we now review the outline of its construction. Let z “ pzi1 ¨ ¨ ¨ zikq b pz1
j1

¨ ¨ ¨ z1
jl

q P

A3pXq where each zis and z1
js

in HipXq for some i P t0, 1, 2u. Consider the moduli space
of PUp3q instantons with energy κ on X , with bundle determined by w, and cut down
by divisors representing µ2pzi1q, . . . µ2pzikq, µ3pz1

j1
q, . . . , µ3pz1

jl
q. The energy κ is chosen

so that the cut-down space has expected dimension 0 (if this is not possible, the invariant
is zero). For a generic metric and perturbation, the cut-down moduli space is a compact
0-manifold, and D3

X,wpzq is the associated signed count. (In general, the blow-up trick of
Morgan–Mrowka is also employed.) The following condition on pairs pX,wq refines the
definition of Up3q simple type given in the introduction.

12



Definition 2.25. LetX be a closed oriented 4-manifold with b`pXq ą 1 andw P H2pX;Zq.
The pair pX,wq is called Up3q simple type if

D3
X,wppx3p2q ´ 27qzq “ 0, D3

X,wpxp3qzq “ 0, D3
X,wpδzq “ 0 (2.26)

for any z P A3pXq and any δ P Λ˚H1pXq b Λ˚H1pXq Ă A3pXq. We say X is Up3q

simple type if pX,wq is Up3q simple type for all w P H2pX;Zq.

Let pX,wq be a pair of a closed, smooth, oriented 4-manifold and a 2-cycle w, with
b1pXq “ 0 and b`pXq ą 1, which is also Up3q simple type. Suppose further that Σ Ă X
is an embedded surface of genus g in X such that Σ ¨ Σ “ 0 and d :“ Σ ¨ w is coprime
to 3. Removing a regular neighborhood of Σ from pX,wq produces a pair pX˝, w˝q with
boundary pS1 ˆ Σg, γdq. In particular, for any z P A3pX˝q there are relative invariants

D3
X˝,w˝pzq P V 3

g,d. (2.27)

The proof of (2.11) from [DX20] produces eigenvectors with eigenvalues in E3
g,d using such

relative invariants (see also proof of Theorem 6.15). A gluing formula expresses invariants
of pX,wq in terms of relative invariants, using the pairing (2.8):

D3
X,wpzz1q “ xD3

X˝,w˝pzq, z11y, (2.28)

where z1 P A3
g,d, which also induces an element of A3pXq. The gluing formula (2.28), the

simple type condition (2.26), and the non-degeneracy of the pairing (2.8) imply that

D3
X˝,w˝pzq P S3

g,d. (2.29)

A consequence of Theorem 2.22 is

dimC S
3
g,d “ 3p2g ´ 1q2,

which implies that the simple type ideal S3
g,d is in fact spanned by relative invariants coming

from simple type 4-manifolds.

3 Mumford relations and their duals

As in the previous section, denote by Ng “ NN
g,d the moduli space of projectively flat

UpNq-connections A on a Riemann surface Σg of genus g with detpAq “ A0, where A0

is a fixed connection on a line bundle L Ñ Σg of degree d P Z. Assume as before that d
is coprime to N . Then Ng is a smooth manifold of dimension pN2 ´ 1qp2g ´ 2q. By the
Narasimhan–Seshadri correspondence, Ng may be identified with the moduli space of rank
N stable holomorphic bundles over Σg with fixed determinant of degree d.

There is a universal UpNq-bundle U Ñ NgˆΣg. This bundle is not unique, as tensoring
it by any line bundle pulled back from Ng gives another such choice. However,

P :“ U b detpUq´1{N
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defines an element in the rational K-theory of Ng ˆ Σg, which is independent of the choice
of the universal bundle U . We define cohomology classes

αr P H2r´2pNgq, ψir P H2r´1pNgq, βr P H2rpNgq (3.1)

using the Künneth decomposition of the Chern class crpPq P H˚pNgq bH˚pΣgq:

crpPq “ αr b σ `

2g
ÿ

i“1

ψir b ξi ` βr b 1 p2 ď r ď Nq. (3.2)

Note c1pPq “ 0. All cohomology groups are defined over C, unless otherwise mentioned.
(However, everything in this section can be done over Q.) Recall that a symplectic integral
basis of tηiu

2g
i“1 for H1pΣgq was fixed earlier. In (3.2), tξiu

2g
i“1 is the integral basis of

H1pΣgq satisfying ξipηjq “ δij , and σ is the integral generator of H2pΣgq given by the
orientation. In particular, for 1 ď i ď g, we have ξiξg`i “ σ and ξiξj “ 0 when j ‰ g ` i.
The following is a reformulation of a result due to Atiyah and Bott [AB83, Thm. 9.11] (see
also [DX20, Prop. 3.14]).

Proposition 3.3. The cohomology ring H˚pNgq is generated by the elements αr, βr, ψir
where 2 ď r ď N , 1 ď i ď 2g.

This result induces the isomorphism (2.15) mentioned earlier.
We next turn to relations for these generators. Let Jg be the Jacobian torus of Σg, viewed

as the moduli space of flat Up1q-connections on Σg, or equivalently, the moduli space of
holomorphic line bundles of degree zero. Let

V Ñ Ng ˆ Jg ˆ Σg.

be defined as the tensor product of the pullback of U with the pullback of the Poincaré
bundle over Jg ˆ Σg. We have

c1pV q “ d ¨ 1 b 1 b σ `

2g
ÿ

i“1

1 b di b ξi ` xb 1 (3.4)

where x P H2pNgˆJgq, and di P H1pJgq generateH˚pJgq as an exterior algebra. Consider
the projection f : Ng ˆ Jg ˆ Σg Ñ Ng ˆ Jg. The Grothendieck–Riemann–Roch formula
expresses cipf!V q in terms of the generators (3.1) and elements of H˚pJgq. Now assume

d “ 2Npg ´ 1q ` d1, 1 ď d1 ă N. (3.5)

Throughout this subsection, d1 is fixed, and g is a positive integer. As a consequence of
stability and Serre duality, H1pΣg; E b Lq “ 0 for any stable rank N bundle E and degree
zero holomorphic line bundle L over Σg. Therefore f!V is an honest vector bundle over
Ng ˆ Jg, whose rank can be computed using Riemann-Roch. Consequently, we have

cipf!V q “ 0 if i ą rkpf!V q “ Npg ´ 1q ` d1. (3.6)
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Taking slant products of the Chern classes (3.6) with elements inH˚pJgq thus yields relations
for the generators (3.1). We call these Mumford relations, following the discussion in [AB83].
In the case N “ 2, the Mumford relations were shown to be a complete set of relations for
the ring H˚pNgq by Kirwan [Kir92].

When N ą 2, the Mumford relations do not give a complete set of relations for H˚pNgq.
Following [Ear97], we consider a line bundle L Ñ Σg of degree 4pg ´ 1q ` 1. Let
ϕ : Ng ˆ Jg ˆ Σg Ñ Σg be projection. Define the “dual” universal bundle

V :“ V ˚ b ϕ˚L.

Then under assumption (3.5), a similar argument using stability and Serre duality implies
that f!V is an honest vector bundle. We then obtain

cipf!V q “ 0 if i ą rkpf!V q “ Ng ´ d1. (3.7)

Again, taking slant products of the classes (3.6) with elements in H˚pJgq yields relations
for the generators (3.1). We call these dual Mumford relations, following Earl. In the case
N “ 3, the work of Earl [Ear97] implies that the Mumford relations and the dual Mumford
relations form a complete set of relations for H˚pNgq.

In the following, we use Grothendieck–Riemann–Roch to compute the Chern classes of
f!V , f!V and then use (3.6) and (3.7) to obtain relations in the cohomology ringH˚pNgq. For
this purpose, we may assume x in (3.4) is zero, by tensoring V by a formal line bundle over
Ng ˆJg whose first Chern class is ´x{N . Following an observation of Zagier [Zag95, p.22],
this assumption does not affect (3.6) and (3.7).

When N ą 3, the Mumford relations and dual Mumford relations are not complete, and
more relations are necessary. A complete set of relations for general N was given by Earl
and Kirwan [EK04]. As our focus is the case N “ 3, we will only consider the Mumford
and dual Mumford relations. The particular elements we consider are

ζg,km :“ p´Nqkcm`kpf!V q{Dk, ζ
g,k
m :“ p´Nqkcm`kpf!V q{Dk (3.8)

where Dk P H2kpJgq has pairing 1 with d1dg`1d2dg`2 ¨ ¨ ¨ dkdg`k P H2kpJgq and trivial
pairing with other exterior products of di. More precisely, we consider these classes in terms
of the generators (3.1) as derived from Grothendieck–Riemann–Roch. Thus

ζg,km , ζ
g,k
m P AN

g “ Crα2, . . . , αN , β2, . . . , βN s b Λ˚pψirq

By our discussion thus far, the cohomology ring for Ng may be written as in (2.15),

H˚pNgq “ AN
g {Ig,

and using (3.6), (3.7), the ideal of relations Ig contains the following elements:

ζg,km P Ig if m ą Npg ´ 1q ´ k ` d1, (3.9)

ζ
g,k
m P Ig if m ą Ng ´ k ´ d1. (3.10)
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We now study these relations after modding out by the classes ψir. In the computations below,
there will frequently appear two constants:

cN,d1 :“ 1 ´
d1

N
, cN,d1 :“ 1 ´ cN,d1 “

d1

N
. (3.11)

We first obtain an expression for the generating functions of the polynomials ζg,km (with
respect to the index m). Below, the notation “”ψ” means congruence modulo the ideal
pψirq2ďrďN,1ďiď2g. By convention, we also set β1 “ α1 “ α0 “ 0 and β0 “ 1.

Proposition 3.12. The generating series Fg,kptq :“
ř8
m“0 ζ

g,k
m tm mod pψirq is given by:

Fg,kptq ”ψ

˜

N
ÿ

i“0

βit
i

¸g´k´cN,d1
˜

N
ÿ

i“0

p1 ´
i

N
qβit

i

¸k

Gptq

where the power series Gptq P Qrα2, . . . , αN , β2, . . . , βN srrtss is defined by

Gptq “ exp

˜

N
ÿ

i“1

αi
B

Bβi

˜

8
ÿ

n“1

´
p´tqnpn`1

npn` 1q

¸¸

. (3.13)

The notation pn refers to the nth power symmetric function, viewed as a function of the
elementary symmetric functions. More explicitly, recall that given variables x1, x2, . . . there
are the elementary symmetric functions en and the power symmetic functions pn:

en “
ÿ

i1ăi2ă¨¨¨ăin

xi1xi2 ¨ ¨ ¨xin pn “
ÿ

i

xni

It is a basic result that pn can be written as a function in the elementary symmetric functions:
pn “ pnpe1, e2, . . .q. An explicit relationship is given by

´

8
ÿ

n“1

p´tqnpn
n

“ log

˜

8
ÿ

n“0

ent
n

¸

. (3.14)

In the formula of Proposition 3.12, Bpn{Bβi should be interpreted by identifying the βi with
ei for i “ 0 and 2 ď i ď N , and setting the other ei “ 0. Explicitly,

Bpn
Bβi

“
B

Bei
pnpe1, e2, . . .q

ˇ

ˇ

ˇ

ei“βi

Proof of Proposition 3.12. We adapt the computation of Zagier [Zag95, §6], which is for
the case N “ 2. Grothendieck–Riemann–Roch says

chpf!V q “ pchpV qtdpΣgqq {rΣgs (3.15)
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where tdpΣgq “ 1 ´ pg ´ 1qσ is the Todd class of Σg. We have

chpV q “ chpPqchpdetpV q1{N q

where chpPq is interpreted via the natural mapH˚pNgˆΣgq Ñ H˚pNgˆJgˆΣgq induced
by projection. Using (3.4) (and recalling x “ 0) we obtain

chpdetpV q1{N q “ 1 `
1

N
db 1 b σ `

1

N

2g
ÿ

i“1

1 b di b ξi ´
1

N2
1 bAb σ

where A “
řg
i“1 didg`i P H2pJgq. We next give an expression for ch(P). Let γi (resp.

δi), where 1 ď i ď N , be formal degree 2 classes such that the ith elementary symmetric
polynomial in the γi (resp. δi) is equal to cipPq (resp. βi). Then

chpPq “

N
ÿ

i“1

eγi “
ÿ

ar1,...,rN c1pPqr1 ¨ ¨ ¨ cN pPqrN

for some constants ar1,...,rN . A direct computation from (3.2) gives

c1pPqr1 ¨ ¨ ¨ cN pPqrN ”ψ βr11 ¨ ¨ ¨βrNN b 1 b 1 `

N
ÿ

i“0

αi
B

Bβi
pβr11 ¨ ¨ ¨βrNN q b 1 b σ.

Together with the identity
řN
i“1 e

δi “
ř

ar1,...,rNβ
r1
1 ¨ ¨ ¨βrNN , these relations yield

chpPq ”ψ

N
ÿ

i“1

eδi b 1 b 1 `

N
ÿ

i,j“1

αi
B

Bβi
peδj q b 1 b σ

With these observations in hand, we evaluate (3.15) to be

chpf!V q ”ψ p
d

N
´ pg ´ 1q ´

1

N2
Aq

ÿ

i“1

eδi b 1 `

N
ÿ

i,j“1

αi
B

Bβi
eδj b 1 (3.16)

To determine the Chern classes from this expression, we use the following [Zag95, Lemma
1]: for any vector bundle E over a space X , we have

log cpEq “ ´

8
ÿ

n“1

p´1qn

n
sn ðñ chpEq “ rkpEq `

8
ÿ

n“1

sn
n!

(3.17)

where sn “ snpEq P H2npXq. For E “ f!V , using (3.16) we compute

sn ”ψ p
d

N
´ pg ´ 1qqpn ´

n

N2
Apn´1 `

N
ÿ

i“1

1

n` 1
αi

B

Bβi
pn`1
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where pn is the nth power symmetric function in δ1, . . . , δN . From (3.17), we obtain

cpf!V qt ”ψ

˜

N
ÿ

i“0

βit
i

¸

d
N

´pg´1q

exp

˜

´
At

N2

8
ÿ

n“1

p´tqn´1pn´1

¸

Gptq (3.18)

Here we use the notation cpEqt “
ř8
i“0 cipEqti for the power series associated to the total

Chern class of E. Using Ar{Dk “ r!δrk, we obtain an expression for the slant product:

cpf!V qt{Dk ”ψ

˜

N
ÿ

i“0

βit
i

¸

d
N

´pg´1q ˜

´t

N2

8
ÿ

n“1

p´tqn´1pn´1

¸k

Gptq

Taking the derivative of relation (3.14) (with ek “ βk) gives
8
ÿ

n“1

p´tqn´1pn “

N
ÿ

i“0

iβit
i´1{

N
ÿ

i“0

βit
i.

Noting p0 “ N , we then have the relation
8
ÿ

n“1

p´tqn´1pn´1 “ N ´

N
ÿ

i“0

iβit
i{

N
ÿ

i“0

βit
i “

N
ÿ

i“0

pN ´ iqβit
i{

N
ÿ

i“0

βit
i.

Substituting this last expression into (3.18), and using tkFg,kptq “ p´Nqkcpf!V qt{Dk, as
determined by (3.8), gives the result.

Remark 3.19. Setting all ψir equal to zero simplifies this computation considerably. Explicit
formulas can of course be obtained without this simplification; see [Ear97, Kir92] for
computations along these lines (using different generators).

From Proposition 3.12 we derive a recursive relation for the ζg,km .

Proposition 3.20. The polynomials ζg,km mod pψirq in the ring Crα2, . . . , αN , β2, . . . , βN s

are determined recursively, for fixed g, k, as follows (with ζg,k0 “ 1 and ζg,km “ 0 for m ă 0):

Npm` 1qζg,km`1 ”ψ ´

N
ÿ

i,j“0

pN ´ jqαiβjζ
g,k
m´i´j`2 ` (3.21)

N
ÿ

i,j“0
pi,jq‰p0,0q

ppg ´ k ´ cN,d1qipN ´ jq ´ pN ´ iqpm´ i´ j ` 1q ` kjpN ´ jqqβiβjζ
g,k
m´i´j`1

Proof. First consider the series Gptq from (3.13). We compute

G1ptq

Gptq
“

N
ÿ

i“0

t´2αi
B

Bβi

˜

8
ÿ

n“1

p´1qn`1pn`1t
n`1

n` 1

¸

“ ´

N
ÿ

i“0

t´2αi
B

Bβi

˜

log
N
ÿ

j“0

βjt
j

¸

“ ´

N
ÿ

i“0

αit
i´2{

N
ÿ

j“0

βjt
j .
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In the second equality, we have again used (3.14) with ek “ βk. Next, we compute

F 1
g,kptq

Fg,kptq
“ pg ´ k ´ cN,d1q

˜

N
ÿ

i“0

iβit
i´1

¸˜

N
ÿ

i“0

βit
i

¸´1

`k

˜

N
ÿ

i“0

ip1 ´
i

N
qβit

i´1

¸˜

N
ÿ

i“0

p1 ´
i

N
qβit

i

¸´1

´

˜

N
ÿ

i“0

αit
i´2

¸˜

N
ÿ

i“0

βit
i

¸´1

.

Multiply both sides by p
řN
i“0 βit

iqp
řN
i“0pN ´ iqβit

iqFg,kptq. Then, using

Fg,kptq “

8
ÿ

m“0

ζg,km tm, F 1
g,kptq “

8
ÿ

m“0

mζg,km tm´1,

the desired recursion follows by extracting the coefficient of tm from each side.

Many other recursions may be extracted from Proposition 3.12. For example:

Proposition 3.22. The polynomials ζg,km mod pψirq in Crα2, . . . , αN , β2, . . . , βN s satisfy:

ζg`1,k
m ”ψ

N
ÿ

i“0

βiζ
g,k
m´i (3.23)

N
ÿ

i“0

βiζ
g,k`1
m´i ”ψ

N
ÿ

i“0

p1 ´ i{Nqβiζ
g,k
m´i (3.24)

Proof. The first relation follows using Fg`1,kptq “ p
řN
i“0 βit

iqFg,kptq, and the second
relation follows from p

řN
i“0 βit

iqFg,k`1ptq “ p
řN
i“0p1 ´ i{Nqβit

iqFg,kptq.

The case of the dual Mumford elements ζ
g,k
m is similar. In fact, if one makes the following

changes to the expression for Fg,kptq in Proposition 3.12:

αi ÞÑ αi :“ p´1qiαi, βi ÞÑ βi :“ p´1qiβi, cN,d1 ÞÑ cN,d1 , (3.25)

then one obtains the generating function for ζ
g,k
m . For example, recursion (3.21) becomes

Npm` 1qζ
g,k
m`1 ”ψ ´

N
ÿ

i,j“0

pN ´ jqαiβjζ
g,k
m´i´j`2 `

N
ÿ

i,j“0
pi,jq‰p0,0q

ppg ´ k ´ cN,d1qipN ´ jq ´ pN ´ iqpm´ i´ j ` 1q ` kjpN ´ jqqβiβjζ
g,k
m´i´j`1

with the same initial conditions: ζ
g,k
0 “ 1 and ζ

g,k
m “ 0 for m ă 0.

In the remainder of this subsection, we prove two lemmas that will be used later to
understand the ideal of relations in the case of N “ 3.
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Lemma 3.26. Suppose N ě 3. For any integers g, k,m with k ‰ N{2 ´ 1 we have:

β22ζ
g,k
m´1 P pζg,km`1, ζ

g,k
m`2, ζ

g,k
m`3, αa, β

3
2 , βb, ψ

i
rq, (3.27)

β22ζ
g,k
m´1 P pζ

g,k
m`1, ζ

g,k
m`2, ζ

g,k
m`3, αa, β

3
2 , βb, ψ

i
rq, (3.28)

where the indices range over 4 ď a ď N , 3 ď b ď N , 2 ď r ď N , 1 ď i ď 2g.

Proof. In this proof we write “”” to mean congruent modulo pβ32 , βb, ψ
i
rq with 3 ď b ď N ,

2 ď r ď N , 1 ď i ď 2g. We prove (3.27), the case of (3.28) being similar. First note that
we can write (3.21) as follows:

pm` 1qζg,km`1 ” ´

N
ÿ

i“2

αiζ
g,k
m´i`2 ´ q

N
ÿ

i“2

αiβ2ζ
g,k
m´i ` rg,km β2ζ

g,k
m´1 ` sgmβ

2
2ζ
g,k
m´3. (3.29)

The constants here are given by q “ pN ´ 2q{N and

rg,km “ 2g ´
4

N
k ´ 2cN,d1 ` 2pm´ 1q

ˆ

1

N
´ 1

˙

,

sgm “

ˆ

N ´ 2

N

˙

p2g ´m´ 2cN,d1 ` 3q.

Now multiply (3.29) by β2 to obtain the following:

pm` 1qβ2ζ
g,k
m`1 ” ´

N
ÿ

i“2

αiβ2ζ
g,k
m´i`2 ´ q

N
ÿ

i“2

αiβ
2
2ζ
g,k
m´i ` rg,km β22ζ

g,k
m´1. (3.30)

Multiplying once more by β2 gives

pm` 1qβ22ζ
g,k
m`1 ” ´

N
ÿ

i“2

αiβ
2
2ζ
g,k
m´i`2. (3.31)

We can use (3.31) to rewrite the middle term on the right side of (3.30), yielding:

pm` 1qβ2ζ
g,k
m`1 ” ´

N
ÿ

i“2

αiβ2ζ
g,k
m´i`2 ` qpm` 1qβ22ζ

g,k
m´1 ` rg,km β22ζ

g,k
m´1. (3.32)

The first term on the right side of (3.32) can be rewritten using (3.29):

´

N
ÿ

i“2

αiβ2ζ
g,k
m´i`2 ”q´1pm` 3qζg,km`3 ` q´1

N
ÿ

i“2

αiζ
g,k
m´i`4

´ q´1rg,km`2β2ζ
g,k
m`1 ´ q´1sgm`2β

2
2ζ
g,k
m´1.
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Note q ‰ 0 since N ě 3. Substituting this into (3.32) we obtain

pm` 1qβ2ζ
g,k
m`1 ” q´1pm` 3qζg,km`3 ` q´1

N
ÿ

i“2

αiζ
g,k
m´i`4 ´ q´1rg,km`2β2ζ

g,k
m`1

´ q´1sgm`2β
2
2ζ
g,k
m´1 ` qpm` 1qβ22ζ

g,k
m´1 ` rg,km β22ζ

g,k
m´1.

Rearranging, we obtain the following expression:
´

q´1sgm`2 ´ qpm` 1q ´ rg,km

¯

β22ζ
g,k
m´1 ”

q´1pm` 3qζg,km`3 ` q´1
N
ÿ

i“2

αiζ
g,k
m´i`4 ´ q´1rg,km`2β2ζ

g,k
m`1 ´ pm` 1qβ2ζ

g,k
m`1.

The constant on the left side is equal to p4k ` 4 ´ 2Nq{N , which is non-zero under the
assumption of the proposition statement. Inspection of the right side of this last expression
proves that β22ζ

g,k
m´1 is in the ideal claimed.

Lemma 3.33. Suppose N ě 3. For any integers g, k,m we have the following:

β2ζ
g,k`1
m´2 P pζg,k`1

m , ζg,km , β22 , βb, ψ
i
rq, (3.34)

β2ζ
g,k`1
m´2 P pζ

g,k`1
m , ζ

g,k
m , β22 , βb, ψ

i
rq, (3.35)

where the indices range over 3 ď b ď N , 2 ď r ď N , 1 ď i ď 2g.

Proof. We prove (3.34), the case (3.35) being similar. Consider relation (3.24):

ζg,k`1
m ` β2ζ

g,k`1
m´2 ” ζg,km `

N ´ 2

N
β2ζ

g,k
m´2

where in this proof “”” means congruent modulo the ideal pβ22 , βb, ψ
i
rq where b ě 3.

Multiply this expression by β2 and shift subscripts to obtain

β2ζ
g,k`1
m´2 ” β2ζ

g,k
m´2.

These two expressions yield the following, which implies the result:

β2ζ
g,k`1
m´2 ”

N

2

´

ζg,km ´ ζg,k`1
m

¯

.

4 The N “ 3 undeformed simple type quotient

We now specialize to the case N “ 3 and focus on a quotient of the cohomology ring of
the moduli space Ng “ NN

g,d. To be more specific, fix the choice of d1 in (3.5) to be d1 “ 1.
There is no loss in generality in making this choice, as the moduli space for d1 “ 2 may be
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identified with that for d1 “ 1 by the map which sends a stable rank 3 bundle to its conjugate.
We take the quotient of H˚pNgq by the curve classes ψir and the cohomology classes β32 , β3
given by the point classes. This quotient is a cyclic module over the ring A3

g:

H˚pNgq{pβ32 , β3, ψ
i
2, ψ

i
3q1ďiď2g “ A3

g{rIg (4.1)

where rIg is the ideal Ig ` pβ32 , β3, ψ
i
2, ψ

i
3q1ďiď2g. This quotient was introduced in Section 2,

where it was called the undeformed simple type quotient. Our main goal of this subsection
is to prove Theorem 2.22, which we restate here:

dimCA3
g{rIg ď p2g ´ 1q2 pg ě 1q.

We continue to work with coefficients in C, following our convention as set in the previous
sections, although everything here works over Q.

We use the graded reverse lexicographic monomial ordering when dealing with polyno-
mials in α2, α3, β2, where the degrees of these elements are respectively 2, 4, 4. In particular,

αi2α
j
3β

k
2 ą αi

1

2α
j1

3 β
k1

2

if either 2i`4j`4k ą 2i1 `4j1 `4k1, or 2i`4j`4k “ 2i1 `4j1 `4k1 and the right-most
nonzero entry of pi´ i1, j ´ j1, k ´ k1q is negative. When taking leading terms below, it is
always with respect to this monomial ordering. The leading term of a polynomial p in the
variables α2, α3, β2 with this convention is denoted LTppq.

We start with a simpler variation of (4.1) where we take the quotient of H˚pNgq by
the curve classes ψir and the point classes βr with r “ 2, 3 and 1 ď i ď 2g. Modulo
the curve and the point classes, the power series Fg,kptq or Proposition 3.12 is equal to
Gptq, which is independent of g and k. In fact, modulo the point classes, Gptq is equal to
expp´α2t´ α3t

2{2q. Motivated by this, let ζn, ζn P Crα2, α3s be defined by

8
ÿ

n“0

ζnt
n “ exppα2t` α3

t2

2
q,

8
ÿ

n“0

ζnt
n “ exppα2t´ α3

t2

2
q.

More explicitly, we have the expressions

ζn “
ÿ

0ďjďn{2

1

pn´ 2jq!j!2j
αn´2j
2 αj3, ζn “

ÿ

0ďjďn{2

p´1qj

pn´ 2jq!j!2j
αn´2j
2 αj3.

These polynomials satisfy the recursive relations

mζm “ α2ζm´1 ` α3ζm´2, mζm “ α2ζm´1 ´ α3ζm´2, (4.2)

in a similar way that ζg,km satisfy the relations in Proposition 3.20.

Proposition 4.3. The leading term ideal of the ideal I0n :“ pζn, ζn`1, ζn`1, ζn`2q in the
ring Crα2, α3s includes the following monomials:

tαi2α
j
3 | 2i` 3j ě 2nu. (4.4)
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In fact, it will be a consequence of our proof of Theorem 2.22 that (4.4) is a generating set
for the leading term ideal of I0n.

Proof. Define σn and σn respectively as pζn ` ζnq{2 and pζn ´ ζnq{2. Then we have

σn :“
ÿ

0ďjďn{2

j
2
”0

1

pn´ 2jq!j!2j
αn´2j
2 αj3, σn “

ÿ

0ďjďn{2

j
2
”1

1

pn´ 2jq!j!2j
αn´2j
2 αj3.

First we claim that for any 1 ď i ď n{3, there are constants c0, c1, . . . , ci´1 P Q such that

LTp

i´1
ÿ

j“0

cjα
j
2σn`i´jq “ αn´3i`2

2 α2i´1
3 . (4.5)

Suppose p0pxq “ 1 and for n ě 1, define pnpxq as the degree n polynomial xpx` 1q ¨ px`

n´ 1q. A straightforward computation shows that (4.5) is equivalent to finding cj satisfying

ÿ

0ďjďi´1

cjpjpn` i´ 1 ´ 2kq “

#

0 1 ď k ď 2i´ 1 and k
2
” 1

c k “ 2i´ 1
(4.6)

for some non-zero constant c. Suppose M is the square matrix of size i such that for
0 ď m, j ď i´ 1, the pm, jq entry of M is equal to pjpn` i´ 4m` 1q. The linear system
in (4.6) has a solution if M is invertible. The determinant of M is equal to the determinant
of the matrix M 1 whose pm, jq entry is pn ` i ´ 4m ` 1qj . This can be seen by applying
a sequence of column operations. Now the matrix M 1 is a Vandermonde matrix, and it is
easily seen that it is invertible.

A similar argument shows that for 0 ď i ď n{3, there are d0, d1, ¨ ¨ ¨ , di P Q such that

LTp

i
ÿ

j“0

djα
j
2σn`i´jq “ αn´3i

2 α2i
3 . (4.7)

We remark that the polynomial
ř

djα
j
2σn`i´j in (4.7) is homogenous of degree 2n`2i with

respect to the grading defined on Crα2, α3s. Furthermore, all the monomials appearing in
this polynomial have an even power of α3. Similarly, the polynomial in (4.5) is homogenous
of degree 2n` 2i and it contains only monomials with odd powers of α3.

Recursive formulas in (4.2) and the identity in (4.5) show that αi2α
j
3 with 2i` 3j ě 2n

and j being odd belongs to the leading term ideal of I0n. We cannot use (4.7) to treat the case
that j is even because the polynomial in (4.7) contains the term σn which does not belong to
I0n. However, if we replace σn in this sum with ζn, which is an element of I0n, we obtain:

diα
i
2ζn `

i´1
ÿ

j“0

djα
j
2σn`i´j “b1α

n`i´2
2 α3 ` b3α

n`i´6
2 α3

3 ` ¨ ¨ ¨ ` b2i´1α
n´3i`2
2 α2i´1

3

` αn´3i
2 α2i

3 ` lower order terms (4.8)
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All the monomials appearing in the first line of the right hand side are of the form αi2α
j
3 with

2i` 3j ě 2n and j being odd. In particular, using what we just proved for the monomials
with odd powers of α3, we can find constants c1

0, . . . , c1
i´1 such that

LT

˜

i´1
ÿ

j“0

c1
jα

j
1σn`i´j ´

i
ÿ

k“1

b2k´1α
n`i´4k`2
2 α2k´1

3

¸

“ kαn´3i´2
2 α2i`1

3 (4.9)

for some constant k. Using (4.8) and (4.9), we have

LT

˜

diα
i
2ζn `

i´1
ÿ

j“0

djα
j
2σn`i´j ´

i´1
ÿ

j“0

c1
jα

j
1σn`i´j

¸

“ αn´3i
2 α2i

3 .

Define Ig as the image of the ideal rIg with respect to the homomorphism

A3
g Ñ Crα2, α3, β2s (4.10)

given by mapping β3 and the curve classes ψir to 0. Since rIg includes β3 and the curve
classes, we have A3

g{rIg – Crα2, α3, β2s{Ig. Using (3.9)–(3.10), we have

ζg,km P rIg if 0 ď k ď g, m ě 3g ´ k ´ 1, (4.11)

ζ
g,k
m P rIg if 0 ď k ď g, m ě 3g ´ k. (4.12)

In the following proof, we slightly abuse notation and regard ζg,km and ζ
g,k
m as elements of

Crα2, α3, β2s using the homomorphism (4.10).

Proposition 4.13. The leading term ideal of Ig includes the monomials

tαi2α
j
3β

k
2 | k ď 2, 2i` 3j ` 2k ě 4g ´ 2u Y tβ32u. (4.14)

Proof. It follows from the definition of ζm and ζm that

ζg,km p´α2,´α3, 0q “ ζm and ζ
g,k
m p´α2,´α3, 0q “ ζm. (4.15)

Thus (4.11) and (4.12) with k “ g imply that ζ2g´1, ζ2g, ζ2g and ζ2g`1 belong to Ig ` pβ2q.
It follows from Proposition 4.3 that αi2α

j
3 with 2i` 3j ě 4g ´ 2 is in the leading term ideal

of Ig. From Lemma 3.33 and (4.15), we see that

β2ζm´2 P pζg,gm , ζg,g´1
m , β22q Ă Ig ` pβ22q, if m ě 2g, (4.16)

β2ζm´2 P pζ
g,g
m , ζ

g,g´1
m , β22q Ă Ig ` pβ22q, if m ě 2g ` 1. (4.17)
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Therefore, another application of Proposition 4.3 implies that αi2α
j
3β2 with 2i` 3j ě 4g´ 4

is in the leading term ideal of Ig. Finally, using Lemma 3.26 and (4.15), we see that

β22ζm´1 P pζg,gm`1, ζ
g,g
m`2, ζ

g,g
m`3, β

3
2q Ă Ig, if m ě 2g ´ 2, (4.18)

β22ζm´1 P pζ
g,g
m`1, ζ

g,g
m`2, ζ

g,g
m`3, β

3
2q Ă Ig, if m ě 2g ´ 1, (4.19)

which shows that β22ζ2g´3, β22ζ2g´2, β22ζ2g´2 and β22ζ2g´1 belong to Ig. Appealing to
Proposition 4.3 again, we conclude that αi2α

j
3β

2
2 with 2i`3j ě 4g´6 is in the leading term

ideal of Ig. Finally β32 is in the leading term ideal of Ig because it is an element of Ig.

Now we are almost ready to prove Theorem 2.22. We only need the following lemma,
which can be proved in a straightforward way by induction.

Lemma 4.20. For any non-negative integer n, let fpnq denote the size of the following set:

Sn :“ tpi, jq P Zě0 ˆ Zě0 | 2i` 3j ă nu.

If n “ 6k ` r with 0 ď r ď 5, then

fpnq “
n2 ´ r2

12
` 2

Yn

6

]

` fprq.

Moreover, fp0q “ 0, fp1q “ 1, and fprq “ r ´ 1 if we have 2 ď r ď 5.

Proof of Theorem 2.22. By the isomorphism A3
g{rIg – Crα2, α3, β2s{Ig, it suffices to show

that the cardinality of the set of monomials not in the leading term ideal of Ig is bounded
above by p2g ´ 1q2. Lemma 4.13 implies this cardinality is bounded above by the size of:

tpi, j, kq P Zě0 ˆ Zě0 ˆ Zě0 | 2i` 3j ` 2k ă 4g ´ 2, k ď 2u. (4.21)

In the terminology of Lemma 4.20, the size of (4.21) is fp4g´ 2q ` fp4g´ 4q ` fp4g´ 6q.
Since the set of mod 6 remainders of 4g´ 6, 4g´ 4, 4g´ 2 is t0, 2, 4u, Lemma 4.20 implies

fp4g ´ 2q ` fp4g ´ 4q ` fp4g ´ 6q “
p4g ´ 2q2

12
`

p4g ´ 4q2

12
`

p4g ´ 6q2

12

` 2

ˆZ

2g ´ 3

3

^

`

Z

2g ´ 2

3

^

`

Z

2g ´ 1

3

^˙

`
7

3

“ p2g ´ 1q2.
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5 Sutured instanton homology

In this section, we study sutured instanton homology for the gauge group Up3q. The
construction is a slight variation of the one in [DX20]. Building on the work of that
reference, we prove Theorem 1.5, which says that sutured instanton homology is well-
defined, independent of the auxiliary choices in its construction. Following the strategy of
[KM10b], we prove Theorem 1.6, a non-vanishing result for taut sutured manifolds. This is
used to prove our topological applications, Theorems 1.2 and 1.3.

Suppose pY, γq is a 3-admissible pair and R is a connected surface of genus g such that
R ¨ γ ” 1 pmod 3q. For a point y in Y , we generalize the notation from (2.4) and set

βr “ µrpyq, r P t2, 3u,

viewed as an endomorphism of I3˚pY, γq. Analogous to (2.6), we can define an operator εpRq

of degree ´4 acting on I3˚pY, γq using the product cobordism r´1, 1s ˆY with Up3q-bundle
determined by the oriented 2-cycle r´1, 1s ˆ γ Y t0u ˆR. When the choice of R is clear
from context, we write ε for εpRq. We also have the operators µ2pRq and µ3pRq acting on
I3˚pY, γq, which can be defined without the assumption R ¨ γ ” 1 pmod 3q. All of these
operators commute, and hence we can consider their simultaneous (generalized) eigenspaces.

Proposition 5.1. Suppose pλ2, λ3, η2, η3q is a simultaneous eigenvalue of the operators
pµ2pRq, µ3pRq, β2, β3q acting on I3˚pY, γq with η32 “ 27 and η3 “ 0. Then pλ2, λ3, η2, η3q P

E3
g,1. Moreover, the generalized eigenspace for any eigenvalue of the form p˘

?
3ζkp2g ´

2q, 0, 3ζ2k, 0q agrees with the corresponding eigenspace.

Proof. This proposition is the Up3q analogue of [KM10b, Corollary 7.2] and can be verified
in a similar way. We use functoriality to see that any relation among αr and βr in V 3

g,1 holds
universally for any admissible pair pY, γq and an embedded surface R as above. To be more
precise, let p be a polynomial with 4 variables such that ppα2, α3, β2, β3q vanishes as an
operator acting on V 3

g,1. Then we show that ppµ2pRq, µ3pRq, β2, β3q vanishes as an operator
acting on I3˚pY, γq. This is sufficient to prove both claims in the statement of the proposition
because they can be expressed in terms of polynomial relations among the operators µ2pRq,
µ3pRq, β2 and β3, and then we can use the corresponding results in the special case of V 3

g,1

given in Theorem 2.14 and Proposition 2.23.
A regular neighborhood of t0u ˆR in the product cobordism r´1, 1s ˆ Y can be used

to decompose r´1, 1s ˆ Y as the composition of cobordisms D2 ˆ R and W with three
boundary components ´Y , Y and S1 ˆR. This also induces a decomposition of γ where
the intersection with D2 ˆR can be assumed to be D2 ˆ txu for x P R. Suppose also that
w is the induced 2-cycle on W . Then functoriality implies that for any polynomial p of 4
variables and any v P I3˚pY, γq we have

ppµ2pRq, µ3pRq, β2, β3qpvq “ I3˚pW,wqpv b ppα2, α3, β2, β3qp1qq.

In particular, if ppα2, α3, β2, β3q is a trivial operator acting on V 3
g,1, then the action of

ppµ2pRq, µ3pRq, β2, β3q on I3˚pY, γq is trivial.
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We define the instanton Floer homology group I3˚pY, γ|Rq as a simultaneous eigenspace
for the point classes and the operators associated to the surface R in the following way:

I3˚pY, γ|Rq “ kerpµ2pRq ´
?
3p2g ´ 2qq X kerpµ3pRqq X kerpβ2 ´ 3q X kerpβ3q. (5.2)

In particular, equation (2.13) implies that

I3˚pS1 ˆ Σg, S
1 ˆ txu|Σgq “ C. (5.3)

If R1 is disconnected, we modify (5.2) so that the intersection includes each of the operators
µ2pR1q ´

?
3p2gpR1q ´ 2q and µ3pR1q for each connected component R1 of R. In the case

that pY, γq is the disjoint union of admissible pairs pY0, γ1q, pY1, γ1q and R Ă Y is given by
R0 \R1 with Ri Ă Yi, Ri ¨ γi ” 1 mod 3, then we define

I3˚pY, γ|Rq “ I3˚pY0, γ1|R0q b I3˚pY1, γ1|R1q.

This can be extended to more than two connected components in the same way.

Remark 5.4. In [DX20], the instanton homology group I3˚pY, γ|Rq is defined by taking the
simultaneous generalized kernel of the operators in (5.2) and the operator ε´ 1. Proposition
5.1 shows that the generalized kernel for the operators in (5.2) agrees with the ordinary kernel.
Furthermore, we show in the proof of Proposition 2.23 that in the case of pS1ˆΣg, S

1ˆtxuq

any element in (5.2) already belongs to the kernel of ε´1. Therefore, the proof of Proposition
5.1 shows that the same claim holds for an arbitrary pair pY, γq. As a consequence of these
observations, our definition in (5.2) agrees with that of [DX20].

Proposition 5.5. Suppose S is an embedded surface in Y . Then the operators µ2pSq

and µ3pSq preserve the subspace I3˚pY, γ|Rq of I3˚pY, γq. Furthermore, if pλ2, λ3q is a
simultaneous eigenvalue of pµ2pSq, µ3pSqq, then there are a, b P Z with a ” b pmod 2q

such that pλ2, λ3q “ p
?
3a,

?
3ibq and

|a| ` |b| ď 2gpSq ´ 2. (5.6)

This proposition is the counterpart of [KM10b, Proposition 7.5]. However, the proof
there seems to require some modifications, even in the case N “ 2. The modification used
in the following proof was communicated to us by Peter Kronheimer.

Proof. In the case that S ¨ γ ” 1 pmod 3q, the claim follows from Proposition 5.1 and the
case S ¨γ ” ´1 pmod 3q can be verified in a similar way. Using a topological trick, the case
S ¨ γ ” 0 pmod 3q can be also reduced to the previous cases. Suppose v P I3˚pY, γ|Rq is a
simultaneous eigenvector of pµ2pSq, µ3pSqq with eigenvalues pλ2, λ3q. Suppose σn is the
homology class nrSs`rRs, which is represented by a connected surface Sn in Y . Since the µ
operators depend only on the homology classes of the involved surfaces, v is a simultaneous
eigenvector of pµ2pSnq, µ3pSnqq with eigenvalues pnλ2 `

?
3p2g ´ 2q, nλ3q. We have

Sn ¨ γ ” 1 pmod 3q, which in the case that n “ 1 implies that pλ2, λ3q “ p
?
3a,

?
3ibq for

some integers a and b with the same parity.
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Next, to show that pa, bq satisfies (5.6), we need some control on the genus of the
connected surface Sn. In fact, it suffices to find an embedded surface Sn in r´1, 1s ˆY with
the same homology class. Take a cyclic n-sheeted covering rS of S. It is straightforward to
see that rS can be embedded in D2 ˆS in such a way that the composition of this embedding
with the projection map D2 ˆ S Ñ S is the covering projection rS Ñ S. In particular, the
genus of rS is equal to npgpSq´1q`1. The embedding of rS inD2ˆS induces an embedding
of this surface in a neighborhood of t0u ˆ S Ă r´1, 1s ˆ Y realizing the homology class
nrSs. By tubing this surface and a disjoint copy of R, we obtain a connected surface Sn of
genus npgpSq ´ 1q ` g` 1 with the homology class nrSs ` rRs. Since Sn ¨ γ ” 1 pmod 3q

(and the self-intersection of Sn is trivial), we have

|na` 2g ´ 2| ` |nb| ď 2npgpSq ´ 1q ` 2g.

Diving by n and taking n Ñ 8 gives (5.6).

Remark 5.7. For a genus one surface T , the group I3˚pS1ˆT, S1ˆtxuq is 3-dimensional and
hence it splits as the sum of 1-dimensional eigenspaces for the three simultaneous eigenvalues
in E3

1,1. In particular, the actions of µ2pT q and µ3pT q are trivial on I3˚pS1 ˆ T, S1 ˆ txuq.
Using a similar argument as in the proof of Proposition 5.1, we can see more generally that
if pY, γq is an admissible pair and T is an embedded surface of genus 1 in Y with γ ¨ T ” 1
mod 3, then the actions of µ2pT q and µ3pT q are trivial. In particular, we have

I3˚pY, γ|T q “ kerpβ2 ´ 3q X kerpβ3q.

Similar to [KM10b, Corollary 7.6], we consider the action of pµ2pσq, µ3pσqq on I3˚pY, γ|Rq

for all homology classes σ P H2pY ;Zq to obtain a splitting of I3˚pY, γ|Rq as

I3˚pY, γ|Rq “
à

s

I3˚pY, γ|R; sq (5.8)

where the direct sum is over all homomorphisms

s : H2pY ;Zq Ñ Γ Ă Z ‘ Z

with Γ being the sublattice of Z ‘ Z given by pairs pa, bq with a ” b pmod 2q. For
s “ ps2, s3q as above, the summand I3˚pY, γ|R; sq is given as

č

σPH2pY ;Zq

ď

Ně0

´

ker
´

µ2pσq ´
?
3s2pσq

¯

N X ker
´

µ3pσq ´
?
3is3pσq

¯

N
¯

.

As a corollary of Proposition 5.5, for any σ P H2pY ;Zq with a surface representative S of
genus g, the summand I3˚pY, γ|R; sq can be non-trivial only if

||spσq||1 ď 2gpSq ´ 2.

Here || ¨ ||1 denotes the L1 norm of vectors in R2.
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The sutured instanton Floer homology group SHI3˚pM,αq is defined with the aid of
the instanton Floer homology groups in (5.2) for any balanced sutured manifold pM,αq.
Following [Gab83, Juh06], a balanced sutured manifold pM,αq consists of an oriented
3-manifold M without any closed component and a collection of oriented simple closed
curves α in the boundary of M . The boundary of M is decomposed into three parts

BM “ Apαq YR`pαq YR´pαq,

where Apαq is the closure of a tubular neighborhood of α. The connected components
of BMzApαq are oriented, and R`pαq (resp. R´pαq) is the union of such connected
components whose orientation is given by the outward-normal-first convention (resp. inward-
normal-first convention). The 2-dimensional manifolds R˘pαq do not have any closed
connected component and the induced orientation on any of their boundary components
(using outward-normal-first convention) agrees with the orientation of the corresponding
suture. (Note that this condition fixes the orientation of the connected components of
BMzApαq.) Finally we require that χpR`pαqq “ χpR´pαqq.

Example 5.9. (Product sutured manifolds) Let Fg,k denote the oriented surface of genus g
with k ě 1 boundary components. Then M “ r´1, 1s ˆ Fg,k and α “ t0u ˆ BFg,k give a
balanced sutured manifold with R˘pαq “ t˘1u ˆ Fg,k and Apαq “ r´1, 1s ˆ BFg,k.

Example 5.10. Any closed oriented 3-manifold Y with a basepoint can be used to produce
a sutured manifold pY p1q, αpY qq, where Y p1q is the complement of a ball neighborhood of
the basepoint in Y and αpY q is a simple closed curve in the boundary of Y p1q. Any knot K
in a 3-manifold Y can be used to produce a sutured manifold pY pKq, αpKqq where Y pKq

is the exterior of K and αpKq consists of two meridional simple closed curves.

The closure of a balanced sutured manifold pM,αq is a closed 3-manifold Zα, defined
in the following way. Suppose the number of sutures is equal to k, and consider the product
sutured manifold r´1, 1s ˆ Fg,k for an arbitrary g. Gluing the neighborhood Apαq of the
sutures in BM to r´1, 1sˆBFg,k determines a 3-manifoldZ0

α with two boundary components
R` and R´. The surface R˘ is the union of R˘ and t˘1u ˆFg,k. Since pM,αq is balanced,
R` and R´ are connected oriented surfaces of the same genus. We pick an orientation-
preserving diffeomorphism φ : R` Ñ R´ to identify these two boundary components,
obtaining the closure Zα.

The surfaces R˘ determine a closed surface R Ă Zα. We require that there is a simple
closed curve c in Fg,k, that gives rise to non-separating curves in R˘ and the gluing map
φ maps these curves to each other. (This can always be arranged, for example, by taking
g ě 1 and setting c to be a non-separating oriented simple close curve in Fg,k. ) The curve c
determines a non-separating closed curve in R, which is still denoted by c. In particular, we
may fix another oriented simple closed curve c1 in R intersecting c transversely at one point.
By fixing a basepoint x P Fg,k and demanding that φpxq “ x, we obtain a curve γ Ă Zα
from r´1, 1s ˆ txu Ă Z0

α. The Up3q sutured instanton homology of pM,αq is defined as

SHI3˚pM,αq :“ I3˚pZα, γ|Rq.
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We now prove Theorem 1.5, which says that this sutured homology group is an invariant of
pM,αq, i.e. it does not depend on the choice of g nor the gluing map φ.

Proof of Theorem 1.5. A version of excision for instanton Floer homology groups I3˚pY, γ|Rq

is proved in [DX20, Theorem 5.16], and is used to show that SHI3˚pM,αq is independent of
the gluing map φ. Using the excision theorem in [DX20] and Theorem 2.14, we show inde-
pendence from g following the argument in [KM10b]. This requires a further understanding
of the instanton homology of S1 ˆ Σg for different Up3q bundles over this manifold. In the
following, let c0 and c1

0 be non-separating oriented simple closed curves in Σg that have
exactly one transversal intersection point. The curve c0 determines the 2-dimensional torus
T “ S1 ˆ c0 in S1 ˆ Σg. By fixing a basepoint in S1, we may regard c1

0 as a 1-cycle in
S1 ˆ Σg. We also write γ1 for the 1-cycle S1 ˆ txu in Σg.

First consider the instanton Floer homology group B :“ I3˚pS1 ˆ Σg, γ1 ` c1
0|Σgq.

Applying the excision result of [DX20, Theorem 5.16] twice in the same way as in the proof
of [KM10b, Proposition 7.8], we obtain an isomorphism

B bB bB – I3˚pS1 ˆ Σg, γ1 ` 3c1
0|Σgq. (5.11)

As the Floer groups I3˚pY, γq depend only on the element of H2pY ;Z{3q induced by γ, the
right side of (5.11) is isomorphic to C by (5.3). Therefore, B is also 1-dimensional.

Next, we consider the instanton Floer homology group I3˚pS1 ˆ Σg, c
1
0|T q. The genus

one version of the excision theorem of [DX20, Theorem 5.16] implies that

I3˚pS1 ˆ Σg, c
1
0|T q b I3˚pS1 ˆ Σ1, γ1 ` c1

0|T q – I3˚pS1 ˆ Σg, γ1 ` c1
0|T q. (5.12)

The excision isomorphism intertwines the action of µipΣgq ` µipΣ1q on the left hand side
of (5.12) and the action of µipΣgq on the right hand side. This follows from the fact that the
excision isomorphism is given by a homomorphism associated to a cobordism

W : S1 ˆ Σg \ S1 ˆ Σ1 Ñ S1 ˆ Σg

and the homology class rΣgs ` rΣ1s induced from the incoming end and rΣgs from the
outgoing end are homologous on W . According to Remark 5.7, the action of µipΣ1q is
trivial and hence I3˚pS1 ˆΣg, c

1
0|T q and I3˚pS1 ˆΣg, γ1 ` c1

0|T q are isomorphic as modules
over Qrµ2pΣgq, µ3pΣgqs. In particular, this shows that the simultaneous eigenvalues of the
operators pµ2pΣgq, µ3pΣgqq acting on I3˚pS1 ˆ Σg, c

1
0|T q are of the form p

?
3a,

?
3ibq with

|a| ` |b| ď 2g ´ 2 and the p
?
3p2g ´ 2q, 0q-eigenspace is 1-dimensional.

Now, let Zα be a closure of pM,αq given by the surface Fg,k and a gluing map φ.
Replacing Fg,k with Fg`1,k and stabilizing φ in the obvious way determines a different
closure Z 1

α. We also write R and R1 for the distinguished surfaces in Zα and Z 1
α whose

genera are related by gpR
1
q “ gpRq ` 1. These closed curves c and c1 in R determine two

oriented simple closed curves in R1 which we still denote by c and c1.
To prove our claim, we need to show that

I3˚pZα, γ|Rq – I3˚pZ 1
α, γ|R

1
q. (5.13)
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By applying the excision result in [DX20, Theorem 5.16] for the copies of the surface R in
the two admissible pairs pZα, γq, pS1 ˆR, γ1 ` c1q and using the 1-dimensionality of the
latter vector space, we conclude that

I3˚pZα, γ|Rq – I3˚pZα, γ ` c1|Rq.

Thus, to show (5.13), it suffices to verify that

I3˚pZα, γ ` c1|Rq – I3˚pZ 1
α, γ ` c1|R

1
q. (5.14)

By our assumption on c and the gluing map φ, there are copies of T “ S1 ˆ c in Zα and Z 1
α.

Another application of [DX20, Theorem 5.16] similar to (5.12) implies that

I3˚pS1 ˆ Σ2, c
1
0|T q b I3˚pZα, γ ` c1|T q – I3˚pZ 1

α, γ ` c1|T q,

and this isomorphism intertwines the action of µipΣ2q ` µipRq on the left hand side and
the action of µipR

1
q on the right hand side. Combining this fact, Remark 5.7, Proposition

5.5 and our analysis of the instanton Floer homology group I3˚pS1 ˆ Σ2, c
1
0|T q verifies the

claimed isomorphism in (5.14).

From the proof of Theorem 1.5 one can see that the above construction can be generalized
in various directions. First, one can consider non-trivial Up3q bundles on sutured manifolds.
More precisely, let pM,αq be a sutured manifold and w be a properly embedded oriented
curve in M such that w is disjoint from Apαq and the intersection of w with R˘pαq is a
collection of points π˘ “ tp˘

1 , . . . , p
˘
k u such that the intersection of w with R˘pαq at the

points p˘
i have the same sign. In forming the closure Zα of pM,αq, we require that the

gluing map sends the point p`
i to p´

i . Thus we obtain a closed oriented curve w. We define
the sutured instanton homology SHI3˚pM,αqw of pM,α,wq as the Floer homology group
I3˚pZα, c

1 `w|Rq. In particular, the instanton Floer homology of a product sutured manifold
for any choice of w is still 1-dimensional.

Following the same proof as that of Theorem 1.5, we see that this Floer homology group
is independent of the specific choice of the closure and is also isomorphic to the instanton
homology groups I3˚pZα, d ¨ γ ` w|Rq and I3˚pZα, d ¨ γ ` c1 ` w|Rq where for the former
instanton homology group we need that d` w ¨R ı 0 mod 3. It is straightforward to see
that the isomorphism class of SHI3˚pM,αqw depends only on the homeomorphism type of
pM,αq and the isomorphism type of the Up3q-bundle on M determined by w. Furthermore,
for any Up3q-bundle on M one can arrange w satisfying the above requirements.

We can also see from the proof of Theorem 1.5 that to form the closure of a sutured
manifold pM,αq we do not necessarily need to use a connected sutured manifold r´1, 1s ˆ

Fg,k. We can use a product sutured manifold r´1, 1s ˆ F as long as R is connected and
each connected component of F has a simple closed curve that becomes a non-separating
curve in R. This flexibility in forming the closure will be useful below. Finally, as another
consequence of Theorem 1.5, we make the following observation.

Lemma 5.15. Gluing a product 1-handle to a sutured manifold pM,α,wq along its sutures
does not change the isomorphism type of SHI3˚pM,αqw.
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A product 1-handle is the product r´1, 1s ˆH where H is the 2-dimensional 1-handle
given as I ˆ I for an interval I . Fixing an embedding of I ˆ BI into α determines an
embedding of r´1, 1s ˆ I ˆ BI into Apαq. Now to glue the product 1-handle r´1, 1s ˆH to
pM,α,wq, we identify part of the boundary of the product 1-handle given by r´1, 1sˆIˆBI
with its image in Apαq via the embedding. We assume that this gluing is done in a way that
the resulting 3-manifold is orientable. With this assumption, the resulting 3-manifold admits
the structure of a sutured manifold in an obvious way.

Proof. Suppose pM 1, α1, wq is obtained by gluing a product 1-handle to pM,α,wq. A
closure of pM 1, α1, wq, obtained by gluing the product sutured manifold r´1, 1s ˆ Fg,d to
M 1, can be regarded as a closure of pM,αq, where we use the product sutured manifold
r´1, 1s ˆ pFg,d YHq in forming the closure. From this one can easily see that the sutured
instanton homologies of pM,α,wq and pM 1, α1, w1q are isomorphic to each other.

The operation of surface decomposition can be used to simplify sutured manifolds
[Gab83]. A decomposing surface S in a balanced sutured manifold pM,αq is a properly
oriented surface S inM such that any connected component of BSXApγq is either a properly
embedded non-separating arc in Apγq or a simple closed curve oriented in the same sense as
the suture in the corresponding connected component of Apγq. Removing a small tubular
neighborhood NpSq of S from M produces a new sutured manifold pM 1, α1q with

Apα1q “
`

Apαq X BM 1
˘

YNBM 1pS` XR´pαqq YNBM 1pS´ XR`pαqq,

R˘pα1q “
`

R˘pαq XM 1
˘

Y S˘zintpApα1qq

where, after identifying NpSq with r´1, 1s ˆ S as an oriented 3-manifold, S˘ is given by
t¯1u ˆ S Ă BNpSq XM 1. This operation of surface decomposition is usually denoted

pM,αq
S

ù pM 1, α1q.

We may extend this definition in an obvious way in the presence of non-trivial bundle data w.
If w is a properly oriented simple closed curve intersecting S and its boundary transversely,
then the intersection w1 of w with M 1 determines a properly embedded oriented curve in M 1

with the required properties. In this case, we write

pM,α,wq
S

ù pM 1, α1, w1q.

Theorem 2.14 allows us to prove an analogue of surface decomposition theorems in [Juh08,
KM10b] for our version of instanton Floer homology.

Proposition 5.16. Suppose S is a decomposing surface for a sutured manifold pM,α,wq.
Assume that S does not have any closed components, and for every connected component V
of R˘pαq, the set of closed components of BS X V consist of parallel oriented boundary-
coherent simple closed curves. Suppose pM 1, α1, w1q is the sutured manifold obtained from
decomposing along S. Then SHI3˚pM 1, α1qw1 is a summand of SHI3˚pM,αqw.
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An oriented simple closed curve c in an oriented surface V is boundary coherent if either
c is non-separating or removing c from V gives a disconnected surface with a connected
component V0 whose only boundary component is c. In the latter case, we require that the
orientation of c is given by the outward-normal-first convention applied to V0.

Proof. We follow a similar argument as in the proof of Theorem [KM10b, Proposition 6.9
and Proposition 7.11]. Without loss of generality, we can assume S is connected. We can
also assume that all connected components of BS have non-empty intersection with R˘pαq

using [Juh08, Lemma 4.5]. Next, we glue product 1-handles to pM,αq and S as in the
proof of [KM10b, Proposition 6.9] to obtain a decomposing surface in a sutured manifold
where BS consists of simple closed curves C˘

1 , . . . C˘
n˘

in R˘pαq. Lemma 5.15 implies
that proving the claim for this new sutured manifold and the decomposing surface implies
the claim for the original surface decomposition.

The closed curves C˘
i determine linearly independent homology classes in H1pR˘pαqq.

If n` ‰ n´, we may apply further finger moves as in [Juh08, Lemma 4.5] and then glue
product 1-handles as in [KM10b, Proposition 6.9] to increase the number of the boundary
components of BS in one of R˘pαq while preserving the number of such components in the
other one. Thus we may assume n` “ n´. In summary, the boundary of our decomposing
surface satisfies similar assumptions as in [KM10b, Lemma 6.10].

In order to form a closure of pM,α,wq, first we glue a product sutured manifold
r´1, 1s ˆ Fg,d to M along Apαq. The two boundary components R˘pαq of the resulting
3-manifold contains the curves C˘

i which are still linearly independent in H1pR˘pαqq. In
particular, we can pick a diffeomorphism φ : R`pαq Ñ R´pαq, which maps C`

i to C´
i

in an orientation-reversing way. By forming the closure Zα of pM,α,wq via φ we obtain
closed oriented connected surfaces R and S induced by R˘pαq and S. Moreover, these two
surfaces intersect in a collection of simple closed curves Ci that are induced by C˘

i . By
smoothing out these intersection curves we obtain another closed oriented connected surface
F in the same homology class as rRs ` rSs. We assume that w ¨R ” 0 mod 3. Then

SHI3˚pM,αqw “ I3˚pZα, γ ` w|Rq,

where γ is induced by a point in Fg,d in the same way as before and w is the closure of w.
The proof in the case w ¨ R ı 0 pmod 3q is similar, as we can replace the 1-cycle γ with
some other multiple of it to define the instanton Floer homology of pM,α,wq.

The key observation of [KM10b, Lemma 6.10] is that Zα can be also regarded as a
closure for pM 1, α1, w1q where the counterpart of the surface R is F . It can be easily seen
that the closure of w1 is still w. To be more precise, there is a disconnected surface T without
any closed component such that after gluing the product sutured manifold r´1, 1s ˆ T to
pM 1, α1, w1q and picking an appropriate gluing map φ1 we obtain a 3-manifold diffeomorphic
to Zα together with the surface F and the 1-cycle w. The disconnected surface T satisfies
the required property mentioned above such that it can be used to define SHI3˚pM 1, α1qw1 .
In particular, this sutured instanton Floer homology group is isomorphic to I3˚pZα, γ`w|F q.

Let v P I3˚pZα, γ|F q be a simultaneous eigenvector for the action of the operators
pµ2pRq, µ3pRqq with eigenvalues pλ2, λ3q. Since R ¨ γ “ 1, Proposition 5.5 implies that
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pλ2, λ3q “ p
?
3a,

?
3ibq with a and b of the same parity and

|a| ` |b| ď 2gpRq ´ 2. (5.17)

We also have rF s “ rRs`rSs, χpF q “ χpRq`χpSq, which implies that v is a simultaneous
eigenvector for the action of pµ2pSq, µ3pSqq with eigenvalues p

?
3p2gpF q ´ 2q ´ λ2,´λ3q.

We apply Proposition 5.5 again to get a bound on the norm of these eigenvalues:

|2gpF q ´ 2 ´ a| ` |b| ď 2gpSq ´ 2, (5.18)

The inequalities in (5.17) and (5.18) imply that pa, bq “ p2gpRq ´2, 0q. As a result, the only
simultaneous eigenvalue of pµ2pRq, µ3pRqq acting on v P I3˚pZα, γ|F q is p

?
3p2gpRq ´

2q, 0q. This in turn implies that I3˚pZα, γ|F q is the summand of I3˚pZα, γ|Rq given by the
simultaneous eigenspace of the operators pµ2pSq, µ3pSqq corresponding to the eigenvalue
p
?
3p2gpSq ´ 2q, 0q. In particular, SHI3˚pM 1, α1q is a summand of SHI3˚pM,αq.

Recall that a sutured manifold pM,αq is taut if M is irreducible and R`pαq, R´pαq

are norm minimizing in their homology classes in H2pM,Apγqq [Gab83, Definition 2.4].
(In general, if Y is a 3-manifold and Z is a codimension 0 submanifold of BY , then an
embedding pS, BSq into pY,Zq for a surface S is norm minimizing if S is incompressible
and S realizes the Thurston norm of the homology class rSs P H2pY,Zq.) If pM,αq is taut,
then we say pM,α,wq is taut for any choice of a 1-cycle w.

Corollary 5.19. For any balanced taut sutured manifold pM,α,wq, the sutured instanton
homology group SHI3˚pM,αqw is non-trivial.

Proof. Following the proof of [Juh08, Theorem 1.4], there is a sequence of decompositions

pM,αq
S1

ù pM1, α1q
S2

ù ¨ ¨ ¨
Sn

ù pMn, αnq (5.20)

such that each Si satisfies the assumptions in Proposition 5.16 and pMn, αnq is a product
sutured manifold. Now the claim follows from Proposition 5.16 and the fact that sutured
instanton homology of a product sutured manifold for anyUp3q-bundle is 1-dimensional.

Corollary 5.21. Suppose Y is an irreducible 3-manifold, γ is a 1-cycle in Y and R is a
norm minimizing embedded surface in Y . Then I3˚pY#T 3, γ ` γ1|R#T 2q is non-trivial,
where γ1 is the 1-cycle in T 3 given by S1 ˆ txu with x P T 2.

Proof. Cutting pY, γq along R produces a 3-manifold with two boundary components R`

andR´, which are copies ofR. Glue a 1-handle to this 3-manifold along the discsD˘ Ă R˘

which correspond to a fixed disc D Ă R. The resulting 3-manifold M is a balanced sutured
manifold with one suture α and the complement of an annular neighborhood of the suture
in the boundary is given by the surfaces R˘zD˘. The 1-cycle γ induces a 1-cycle w in the
sutured manifold pM,αq. We may also regard M is a submanifold of Y . In particular, the
properly embedded surfaces R˘zD˘ in pM,Apαqq are norm minimizing because R is norm
minimizing in Y . Furthermore, if M is reducible, then the irreducibility of Y implies that R
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can be embedded in a ball in Y which contradicts the assumption that R is norm minimizing.
Thus pM,α,wq is taut, and hence SHI3˚pM,α,wq is non-trivial.

We take a closure of pM,α,wq by gluing r´1, 1sˆF1,1 and then gluing the two boundary
components of the resulting 3-manifold in the obvious way. The resulting closure can be
identified with Y#T 3 with the distinguished embedded surface R#T 2 and the 1-cycle
w “ γ. In particular, SHI3˚pM,αqw is equal to I3˚pY#T 3, γ ` γ1|R#T 2q.

Remark 5.22. A similar proof can be used to show that I2˚pY#T 3, γ`γ1|R#T 2q ‰ 0. In the
case that pY, γq is 2-admissible, combining this with the connected sum theorems of instanton
Floer homology in the admissible case [Sca15], one can see that I2˚pY, γ|Rq is also non-trivial.
This is essentially the same non-vanishing result as in [KM10b, Theorem 7.21]. However,
it seems that one needs to modify the statement and the proof of [KM10b, Theorem 7.21].
It is reasonable to expect that there is a connected sum theorem for Up3q instanton Floer
homology which implies that I3˚pY#T 3, γ`γ1|R#T 2q is non-trivial only if I3˚pY, γ|Rq ‰ 0
whenever pY, γq is 3-admissible. In Section 7, we show that I3˚pY, γq is non-trivial using a
non-vanishing result for symplectic 4-manifolds.

Proof of Theorem 1.3. Suppose γ is a 1-cycle representing the Poincaré dual of ω. To give
a representation ρ : π1pY q Ñ PUp3q satisfying the required property, it suffices to find a
projectively flat connection on a Up3q-bundle over Y with c1 “ PDpγq. Furthermore, we
may assume that Y is prime. If Y is a rational homology sphere, then there is a flat Up1q-
connection on Y whose first Chern class is PDpγq. By taking the sum of this connection and
the trivial SUp2q connection, we obtain a Up3q flat connection with the required property.
If Y “ S1 ˆ S2, then the assumption implies that ω is trivial and we may take the trivial
flat connection. Otherwise Y is irreducible with positive b1 and Corollary 5.21 implies
that I˚pY#T 3, γ ` γ1|Rq is not zero, where R is a norm minimizing embedded surface
in Y (representing a non-trivial homology class). In particular, there exists a projectively
flat connection on the Up3q-bundle over Y with c1 “ PDpγq. This gives a representation
ρ : π1pY q Ñ PUp3q satisfying the claim.

For a knot K in a 3-manifold Y , the Up3q instanton knot homology of pY,Kq, denoted
byKHI3˚pY,Kq, is defined to be SHI3˚pY pKq, αpKqq, where pY pKq, αpKqq is the sutured
manifold of Example 5.10. As explained in [KM10b], a closure of pY pKq, αpKqq is given by
ZpKq, the 3-manifold obtained by gluing S1 ˆ F1,1 to the exterior of K such that S1 ˆ txu

is mapped to a meridian of K for any x P BF1,1. Let c and c1 be two simple closed curves in
F1,1 intersecting transversely in exactly one point and T “ S1 ˆ c. Then

KHI3˚pY,Kq “ I3˚pZpKq, c1|T q. (5.23)

This instanton knot homology group is isomorphic to I3˚pZpKq, γ ` c1|T q where γ is the
1-cycle S1 ˆ txu for some x P F1,1. Now if K is null-homologous, then we can pick the
gluing map in the definition of ZpKq so that tptu ˆ BF1,1 is glued to a longitude of K. In
this case, we can glue a Seifert surface S of genus g to F1,1 and obtain an embedded surface
S in ZpKq of genus g ` 1. In particular, pµ2pSq, µ3pSqq gives a pair of operators acting
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on KHI3˚pY,Kq. The simultaneous generalized eigenspace decomposition with respect to
the action of these operators determines a splitting of KHI3˚pY,Kq given as follows, that
depends only on the homology class of S:

KHI3˚pY,Kq “
à

pa,bqPCg`1

KHI3˚pY,K; a, bq, (5.24)

whereKHI3˚pY,K; a, bq is the generalized eigenspace of pµ2pSq, µ3pSqq for the eigenvalues
p
?
3a,

?
3ibq. To limit the possible eigenvalues appearing in this decomposition, we have

used Proposition 5.5. The decomposition (5.24) will be discussed further in Section 9.

Proof of Theorem 1.2. Suppose S is a Seifert surface of minimal genus for the knotK. Then
the decomposition of pY pKq, αpKqq along S determines a sutured manifold pY pSq, αpSqq.
It is shown in the proof of [DX20, Proposition 5.33] that

SHI3˚pY pSq, αpSqq – KHI3˚pY,K;˘2g, 0q.

(This can be regarded as an instance of Theorem 5.16 on surface decompositions.)
To prove the existence of the desired representation, we can assume that Y zK is irre-

ducible. In the case that Y zK is irreducible, pY pSq, αpSqq is a taut sutured manifold. Corol-
lary 5.19 implies that SHI3˚pY pSq, αpSqq is non-trivial and hence the rank of KHI3˚pY,Kq

is at least 2. Now the claim follows from [DX20, Corollary 5.32].

6 The Structure Theorem

In this section, we prove Theorem 1.10, the Up3q analogue of Kronheimer and Mrowka’s
celebrated structure theorem for Up2q Donaldson invariants [KM95]. In the first subsection,
we provide background on Fukaya–Floer instanton homology, focusing on the case of Up3q.
In the second subsection, using these preliminaries, we prove the structure theorem.

6.1 Fukaya–Floer homology of S1 ˆ Σg

Fukaya–Floer homology is a variation of instanton Floer homology that is helpful to un-
derstand the UpNq Donaldson invariants of a pair pX,wq for some z P AN pXq, where
pX,wq is naturally written as a connected sum of pW, cq and pW 1, c1q whose boundaries are
an N -admissible pair pY, γq (with different orientations) but z is not necessarily induced by
an element of AN pW q b AN pW 1q (see the gluing formula (6.5) below). The original idea
of Fukaya–Floer homology goes back to [Fuk92], which was further developed in [BD95]
in the case that N “ 2. Here we follow [DX20] to give a review of the general properties
of Fukaya–Floer homology in the case that N “ 3, and hence we often drop “3” from our
notations. Then we proceed to study Fukaya–Floer homology of S1 ˆ Σg. For more details
on the background material, the reader can see Subsections 3.3 and 6.3 of [DX20]. We
remark that even in the case N “ 2, the algebraic formulation of [DX20] is more involved
than what is proposed in [BD95] because of bubbling phenomena.
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Suppose pY, γq is an admissible pair and L “ pl2, l3q is a pair of elements of H1pY ;Zq.
The Fukaya–Floer homology group I˚pY, γ, Lq is a module over a ring R3, which is defined
in the following way. First for any non-negative integer j consider the ring

R3,j :“ Crs2,i, s3,i; 1 ď i ď js{ps22,i, s
2
3,iq. (6.1)

If j ě l, then there is a homomorphism R3,j Ñ R3,l that maps sk,i to sk,i if i ď l and to 0 if
i ą l. Now let R3 be the inverse limit of this inverse system of rings. In particular,

tk :“
8
ÿ

i“0

sk,i

is an element of R3 and this determines an algebra monomorphism from Crrt2, t3ss to R3.
The R3-module I˚pY, γ, Lq is also defined as the inverse limit of an inverse system. For

each j, there is a chain complex pC
πj
˚ pY, γq b R3,j , djq defined over the ring R3,j , where

C
πj
˚ pY, γq is a choice of instanton Floer chain complex for the admissible pair pY, γq and

does not depend on L. The differential dj has the form

dj “
ÿ

S2, S3Ărjs

˜

ź

iPS2

s2,i

¸˜

ź

iPS3

s3,i

¸

dS2,S3
j (6.2)

where rjs “ t1, 2, . . . , ju and dS2,S3
j : C

πj
˚ pY, γq Ñ C

πj
˚ pY, γq. In particular, dH,H

j is the
ordinary Floer differential. If j ě l, then there is a chain map

Fj,l : pC
πj
˚ pY, γq bR3,j , djq Ñ pCπl˚ pY, γq bR3,l, dlq (6.3)

of R3,j-modules such that Fl,k ˝ Fj,l is chain homotopy equivalent to Fj,k. Analogous to the
differential maps dj , the chain maps have the form

Fj,l “
ÿ

S2, S3Ărjs

˜

ź

iPS2

s2,i

¸˜

ź

iPS3

s3,i

¸

FS2,S3

j,l , (6.4)

where FH,H
j,l : C

πj
˚ pY, γq Ñ Cπl˚ pY, γq is the continuation map defining a chain homo-

topy equivalence between two chain complexes representing I˚pY, γq. The homology of
pC
πj
˚ pY, γq bR3,j , djq together with the homomorphisms induced by Fj,l defines an inverse

system and I˚pY, γ, Lq is the inverse limit of this system.
From (6.2) and (6.4), it is clear that the homomorphisms dj and Fj,l are compatible with

a filtration on the Fukaya–Floer complexes. First define a filtration on R3,j :

R3,j “ F0R3,j Ą F1R3,j Ą F2R3,j ¨ ¨ ¨ Ą F2j`1R3,j “ 0,

where FkR3,j contains linear combinations of monomials
˜

ź

iPS2

s2,i

¸˜

ź

iPS3

s3,i

¸

such that |S1| ` |S2| ě k.
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In particular, FkR3,j ¨ F lR3,j is a subset of Fk`lR3,j , and the associated graded part of
this filtration is a direct sum of 22j copies of C. This filtration induces a filtration on
C
πj
˚ pY, γq bR3,j , and dj is a filtration preserving homomorphism such that the induced map

at the level of the associated graded part is dH,H
j b 1. A similar comment applies to Fj,l.

From these filtrations one can obtain a spectral sequence for any j whose second page is
I˚pY, γq b C22j and it abuts to I3,j˚ pY, γ, Lq :“ HpC

πj
˚ pY, γq bR3,j , djq.

Fukaya–Floer homology is functorial with respect to cobordisms. Suppose pW, cq :
pY, γq Ñ pY 1, γ1q is a cobordism of 3-admissible pairs, z P A3pW q, and Γ, Λ are properly
embedded oriented surfaces such that Γ X Y , Λ X Y represent homology classes l2, l3 P

H1pY ;Zq and Γ X Y 1, Λ X Y 1 represent homology classes l12, l
1
3 P H1pY 1;Zq. Then there

is an R3-module homomorphism

IpW, c, zet2Γp2q`t3Λp3qq : I˚pY, γ, Lq Ñ I˚pY 1, γ1, L1q

with L “ pl2, l3q and L1 “ pl12, l
1
3q. There is a slight variation of the above construction when

one of the ends of the cobordism pW, cq is empty. If Y 1 is empty, then W is a 4-manifold
with boundary ´Y and we have an R3-module map

DW,cpze
t2Γp2q`t3Λp3qq : I˚pY, γ, Lq Ñ R3

and if Y is empty, then W is a 4-manifold with boundary Y 1 and we have an element

DW,cpze
t2Γp2q`t3Λp3qq P I˚pY 1, γ1, L1q.

These cobordism maps are defined by first constructing R3,j-module chain maps between
pC
πj
˚ pY, γq bR3,j , djq and pC

πj
˚ pY 1, γ1q bR3,j , djq that commute with the maps (6.3) up to

chain homotopy. Furthermore, these chain maps respect the filtrations induced by that of
R3,j , and the leading order terms with respect to such filtrations are given by the cobordism
maps of ordinary instanton Floer complexes.

The above homomorphisms are well-behaved with respect to composition of cobordisms.
For instance if pW, cq is a pair with boundary pY, γq and pW 1, c1q is a pair with boundary the
orientation-reversal of pY, γq, then we can glue them to obtain a closed pair pW#W 1, c#c1q.
If Γ, Λ are properly embedded surfaces in W and Γ1, Λ1 are properly embedded surfaces in
W 1 such that Γ and Γ1 (respectively, Λ and Λ1) agree over the boundary and we can glue
them to obtain a closed oriented embedded surface Γ#Γ1 (respectively, Λ#Λ1), then

xDW,cpze
t2Γp2q`t3Λp3qq, DW 1,c1pz1e

t2Γ1
p2q

`t3Λ1
p3qqy

“DW#W 1,c#c1pzz1e
t2Γ#Γ1

p2q
`t3Λ#Λ1

p3qq, (6.5)

where z P A3pW q and z1 P A3pW 1q, and the left hand side is the obvious pairing. The
invariant on the right hand side of (6.5) is given by Up3q invariants of pW#W 1, c#c1q when
b`pW#W 1q ą 1. In the special case that b`pW#W 1q “ 1, one can still define Up3q

polynomial invariants for pW#W 1, c#c1q. However, this invariant depends on the choice of
the metric and the right hand side of (6.5) is the invariant for a metric that we stretch along
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the embedded surface Y in W#W 1. We also remark that the right hand side of (6.5) is an
element of the subalgebra Crrt2, t3ss of R3.

The main instance of Up3q Fukaya–Floer homology relevant to this paper is that of
pS1 ˆ Σg, γd, Lq with d coprime to 3 and L “ prS1 ˆ tptus, rS1 ˆ tptusq. Following a
similar notation as in Section 2, we write

rV3
g,d :“ I˚pS1 ˆ Σg, γd, Lq,

which is an R3-module. Similar to (2.8), r0, 1s ˆ pS1 ˆ Σg, γd, Lq, viewed as a cobordism
from two copies of pS1 ˆ Σg, γd, Lq to the empty set, induces a bilinear pairing

x¨, ¨y : rV3
g,d b rV3

g,d Ñ R3. (6.6)

Analogous to V 3
g,d and in the same way as in (2.16), rV3

g,d is isomorphic to the cohomology
of Ng with an appropriate coefficient ring. An explicit version of the isomorphism in (2.16)
is given in [DX20, Theorem 3.18]. Focusing on the N “ 3 case, there is a vector space
homomorphism S : H˚pNg;Cq Ñ A3

g such that the map

P : H˚pNg;Cqrεs{pε3 ´ 1q Ñ V 3
g,d (6.7)

defined using the relative invariants

P pεi ¨ σq “ D∆g ,δg,d`iΣpSpσqq,

with ∆g :“ D2 ˆ Σg and δg,d “ D2 ˆ tx1, . . . , xdu, is an isomorphism. Similarly, we
can define P : H˚pNg;R3qrεs{pε3 ´ 1q Ñ rV3

g,d, an analogue of (6.7) for the Fukaya–Floer
homology group of S1 ˆ Σg, by setting

Ppεi ¨ σq “ D∆g ,δg,d`iΣpSpσqet2Dp2q`t3Dp3qq. (6.8)

Here we extend S as a module homomorphism H˚pNg;Cq bR3 Ñ A3
g bR3 in the obvious

way and D denotes the disc D ˆ tptu in ∆g.

Lemma 6.9. The R3-module map P : H˚pNg;R3qrεs{pε3 ´ 1q Ñ rV3
g,d is an isomorphism.

In particular, rV3
g,d is a free R3-module.

Proof. It suffices to show that Pj : H˚pNg;R3,jqrεs{pε3 ´ 1q Ñ I3,j˚ pS1 ˆ Σg, γg,d, Lgq,
the R3,j-module homomorphism given by

Pjpεi ¨ σq “ D3,j
∆g ,δg,d`iΣpSpσqeDp2q`Dp3qq,

is an isomorphism. Since Pj is an R3,j-module homomorphism, it is a filtration preserving
homomorphism with respect to the filtration induced by that of R3,j . The induced morphism
of spectral sequences on the second page maps H˚pNg;Cqrεs{pε3 ´ 1q bR3,j to I˚pS1 ˆ

Σg, γg,dq bR3,j by the map P b 1. In particular, it is an isomorphism.
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The ring R3 is not an integral domain and for our purposes it is easier to work with
modules over an integral domain. We define V3

g,d be the Crrt2, t3ss-module given by

V3
g,d :“ im

`

P|H˚pNg ;Crrt2,t3ssqrεs{pε3´1q

˘

It is clear from the definition that V3
g,d as a Crrt2, t3ss-module is isomorphic to Crrt2, t3ss3ng

with ng “ dimCH
˚pNg;Cq. We have the following alternative identification.

Lemma 6.10. Suppose tσku1ďkďng is a basis for H˚pNg;Cq as a vector space over C.
Then, the map Φ : V3

g,d Ñ Crrt2, t3ss3ng given by

Φpζq :“ pxζ,D∆g ,δg,d`iΣpSpσkqet2Dp2q`t3Dp3qqyq1ďkďng , 0ďiď2, (6.11)

defined using the pairing (6.6), is an isomorphism.

Note that (6.5) implies the right side of (6.11) is indeed an element of Crrt2, t3ss3ng .

Proof. If ζ is in the kernel of Φ, then its pairing with any element of rV3
g,d vanishes. Thus

[DX20, Proposition 3.30] implies that ζ “ 0. It remains to show that Φ is surjective. Fix

v “

8
ÿ

k“0

k
ÿ

i“0

ti2t
k´i
3 vi,k´i P Crrt2, t3ss3ng ,

where vi,j P C3ng . We inductively define an element

σ “

8
ÿ

k“0

k
ÿ

i“0

ti2t
k´i
3 σi,k´i

with σi,j P H˚pNg;Cqrεs{pε3 ´ 1q such that for any integer n, in the expression

Φ ˝ Pp

n
ÿ

k“0

k
ÿ

i“0

ti2t
k´i
3 σi,k´iq ´ v P Crrt2, t3ss3ng

only terms of the form ti2t
j
3 with i` j ą n appear. In fact, assuming this holds for a given n,

then we have the following, where wi,j P C3ng :

Φ ˝ Pp

n
ÿ

k“0

k
ÿ

i“0

ti2t
k´i
3 σi,k´iq ´ v “

8
ÿ

k“n`1

k
ÿ

i“0

ti2t
k´i
3 wi,k´i

The non-degeneracy of the pairing on V 3
g,d implies that for any 0 ď i ď n ` 1, there is a

unique σi,n`1´i P H˚pNg;Cqrεs{pε3 ´ 1q such that ϕ ˝ P pσi,n`1´iq “ wi,n`1´i. Here
ϕ : V 3

g,d Ñ C3ng is defined in a similar way as Φ. It is straightforward to check that we can
carry out the induction step with this choice of σi,j when i` j “ n` 1.
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Corollary 6.12. Any relative invariant D∆g ,δg,d`iΣpzeDp2q`Dp3qq where z P A3
g is an

element of V3
g,d. In particular, V3

g,d is the Crrt2, t3ss-module generated by such invariants.

Proof. Using Lemma 6.10, there is ζ P V3
g,d such that

xζ ´D∆g ,δg,d`jΣpzeDp2q`Dp3qq, D∆g ,δg,d`iΣpSpσqet2Dp2q`t3Dp3qqy “ 0.

This implies that the pairing of ζ ´ D∆g ,δg,d`jΣpzeDp2q`Dp3qq with any element of rV3
g,d

is trivial, and hence by [DX20, Proposition 3.30] this element vanishes. In particular,
ζ “ D∆g ,δg,d`jΣpzeDp2q`Dp3qq belongs to Crrt2, t3ss.

For any integer i and z P A3
g, consider the homomorphism

Ipr´1, 1s ˆ S1 ˆ Σg, r´1, 1s ˆ γg,d ` iΣg, ze
t2Cp2q`t3Cp3qq : rV3

g,d Ñ rV3
g,d

where C “ r´1, 1sˆS1 ˆtptu. Corollary 6.12 and functoriality of Fukaya–Floer homology
implies that this homomorphism maps V3

g,d to itself. This gives V3
g,d the structure of a

cyclic module over A3
g b Crrt2, t3ssrεs{pε3 ´ 1q. That is to say, there is an ideal J3g,d of

A3
g b Crrt2, t3ssrεs containing ε3 ´ 1 such that

V3
g,d “ A3

g b Crrt2, t3ssrεs{J3g,d.

The following is another consequence of Lemma 6.10.

Corollary 6.13. For any element z of the ideal J3
g,d Ă A3

grεs, there is z P J3g,d such that

z “ z `

8
ÿ

k“1

8
ÿ

i“0

ti2t
k´i
3 zi,k´i.

That is to say, z is the constant term of the power series z.

Proof. We may regard z as an element of A3
g b Crrt2, t3ssrεs where the coefficient of ti2t

j
3 is

zero unless i “ j “ 0. Thus z determines an element ζ of V3
g,d. Since z P J3

g,d, Φpζq has a
trivial constant term and hence we can find v2, v3 P Crrt2, t3ss3ng such that

Φpζq “ t2v2 ` t3v3. (6.14)

By Lemma 6.10, we can find η2, η3 P V3
g,d such that Φpηiq “ vi. In particular, ζ´t2η2´t3η3

is a trivial element of V3
g,d. Since V3

g,d is a cyclic module over A3
g b Crrt2, t3ssrεs{pε3 ´ 1q,

there are z2, z3 P A3
g b Crrt2, t3ssrεs{pε3 ´ 1q such that zi is mapped to ηi. This implies

that z :“ z ´ t2z2 ´ t3z3 is in J3g,d and has the form in (6.14).

Next, we define a Fukaya–Floer analogue of the simple-type ideal (2.17):

S3g,d :“ kerpβ32 ´ 27q X kerpβ3q X
č

r“2,3
1ďjď2g

kerpψjrq Ă V3
g,d.

An important ingredient in the proof of the structure theorem involves an understanding of
this Crα2, α3, β2, β3srrt2, t3ss-module. The following is an adaption of the main argument
that proves Theorem 2.14, given in Section 2.
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Theorem 6.15. S3g,d is a free Crrt2, t3ss-module of rank 3p2g ´ 1q2. Moreover,

S3g,d “
à

kPt0,1,2u

pa,bqPCg

Rk,a,b (6.16)

where Rk,a,b is the free Crrt2, t3ss-module of rank one given by

Rk,a,b “
Crrt2, t3ssrα2, α3, β2, β3s

pα2 ´ pζk
?
3a` ζ2kt2q, α3 ´ pζ2k

?
´3b´ 2ζkt3q, β2 ´ 3ζ2k, β3q

(6.17)

The above description also determines S3g,d as an Crα2, α3, β2, β3srrt2, t3ss-module.

As preparation for the proof, we need the blowup formula for Up3q polynomial invariants.
This will also be an essential ingredient in the proof of the structure theorem. Write pX
for a blowup of X , and denote the exceptional class by E P H2p pX;Zq. The following is
essentially due to Culler [Cul14], and is stated in [DX20, §2.5].

Theorem 6.18. If pX,wq is Up3q simple type, then for Γ,Λ P H2pX;Zq, we have

D
pX,w

pt2Ep2q ` t3Ep3q ` Γp2q ` Λp3qq

“
1

3
e´t22{2`t23

´

coshp
?
3t2q ` 2 cosp

?
3t3q

¯

DX,wpΓp2q ` Λp3qq,

D
pX,w`E

pt2Ep2q ` t3Ep3q ` Γp2q ` Λp3qq

“
1

3
e´t22{2`t23

´

coshp
?
3t2q ´ cosp

?
3t3q ´

?
3 sinp

?
3t3q

¯

DX,wpΓp2q ` Λp3qq.

Below, we will make use of the identity

DX,wpp1 `
1

3
ζkxp2q `

1

9
ζ2kx2p2qqe

zq “ ζk dwDX,wpζ´kdegpzqzq (6.19)

where dw :“ b`pXq ´ b1pXq ´ w ¨ w ` 1 and z is a homogenous element of A3pXq. This
relation follows from the observation that the mod 3 dimension of the moduli spaces of Up3q

instantons for pX,wq is fixed and equal to dw.

Proof of Theorem 6.15. Suppose rJ3g,d is the ideal of A3
g b Crrt2, t3ssrεs generated by J3g,d

and pβ32 ´ 27, β3, ψ
i
2, ψ

i
3q

2g
i“1. The pairing x¨, ¨y : V3

g,d bCrrt2,t3ss V3
g,d Ñ Crrt2, t3ss induces

S3g,d bCrrt2,t3ss V3
g,d{pβ32 ´ 27, β3, ψ

i
2, ψ

i
3q

2g
i“1 Ñ Crrt2, t3ss.

The non-degeneracy of the pairing gives

rankCrrt2,t3sspS3g,dq ď rankCrrt2,t3ss

´

A3
g b Crrt2, t3ssrεs{rJ3g,d

¯

.
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Corollary 6.13 implies that the right hand side of the above inequality is not greater than

dimCA3
grεs{ rJ3

g,d “ 3p2g ´ 1q2,

where the latter is established in Section 2. Thus

rankCrrt2,t3ssS3g,d ď 3p2g ´ 1q2. (6.20)

We can construct elements of the simple-type ideal using a K3 surface. (A similar
construction can be done for smooth 4-manifolds of Up3q simple type.) Let Σ1 be a surface
of genus g in a K3 surface with Σ1 ¨ Σ1 “ 2g ´ 2. For instance, we can construct Σ1 in
the following way. The 4-manifold K3 admits an elliptic fibration with a section that is a
p´2q-embedded sphere. The union of this sphere and g regular fibers, after resolving the
intersection points, gives a surface with the desired genus and self intersection number. We
fix another surface F with F ¨ F “ 0 and F ¨ Σ1 “ 1. For instance, take F to be a regular
fiber. Let also w be the union of d other regular fibers and regard it as a 2-cycle in K3 with
trivial self-intersection number. Next, let X be the blowup of the K3 surface at 2g´2 points
on Σ1 away from F and w, and denote the proper transform of Σ1 by Σ. Then Σ determines
a surface of genus g and self intersection number 0. We also obtain a surface and a 2-cycle
in X induced by F and w, which are denoted by the same notation.

Removing a regular neighborhood of Σ from X , w and F determines a 4-manifold X˝

with boundary S1 ˆΣg, a 2-cycle w˝ that intersects the boundary of X at S1 ˆ tx1, . . . , xdu

and an embedded surface F ˝ which intersects the boundary at S1 ˆ tyu. In particular, for
any z P A3pXq, the following is an element of V3

g,d:

DX˝,w˝pze
t2F ˝

p2q
`t3F ˝

p3qq. (6.21)

Analogous to (2.29), one can see the above element of V3
g,d belongs to S3g,d.

Next, we define a homomorphism Ψ : S3g,d Ñ Crrt2, t3ss3p2g´1q2 and use the upper
bound in (6.20) on the rank of S3g,d and the elements of S3g,d constructed in (6.21) to show
that Ψ is an isomorphism. For any λ “ pa, b, kq in Cgˆt0, 1, 2u, let Pλ P Crrt2, t3ssrw, x, ys

be a polynomial such that for any λ1 “ pa1, b1, k1q P Cg ˆ t0, 1, 2u, the value of Pλ at

p3ζ2k
1

,
?
3ζk

1

a1 ` ζ2k
1

t2,
?

´3ζ2k
1

b1 ´ 2ζk
1

t3q

is 1 if λ1 “ λ and is 0 if λ1 ‰ λ. The homomorphism Ψ is defined as

Ψpζq :“
␣

xζ,D∆g ,δg,dpPλpxp2q,Σp2q,Σp3qqe
Dp2q`Dp3qqy

(

λ
.

To compute Ψpζq for an element of S3g,d that is a relative invariant as in (6.21), we can
use the pairing formula (6.5) to compute

xDX˝,w˝pze
t2F ˝

p2q
`t3F ˝

p3qq, D∆g ,δg,dpPλpxp2q,Σp2q,Σp3qqe
Dp2q`Dp3qqy

“DX,wpzPλpxp2q,Σp2q,Σp3qqe
t2Fp2q`t3Fp3qq. (6.22)
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We consider the special case that

z “ p1 `
1

3
ζkxp2q `

1

9
ζ2kx2p2qqP pxp2q,Σp2q,Σp3qq (6.23)

for some P P Crrt2, t3ssrw, x, ys. Then the right hand side of (6.22) is given by evaluating
the following expression at s2 “ s3 “ 0:

Rp3ζ2k,
B

Bs2
,

B

Bs3
q pDζk

X,wpes2Σp2q`s3Σp3q`t2Fp2q`t3Fp3qq (6.24)

where R is the element of Crrt2, t3ssrw, x, ys given by P ¨ Pλ. Here we use the fact that K3
has Up3q simple type [DX20]. For any cycle w in a K3 surface and Γ, Λ P H2pK3q, the
Up3q Donaldson-type invariant is computed in [DX20] to be

DK3,wpΓp2q ` Λp3qq “ e
QpΓq

2
´QpΛq. (6.25)

This identity, Theorem 6.18 and (6.19) can be used to show that (6.24) is equal to

Rp3ζ2k,
B

Bs2
,

B

Bs3
q

„

1

32g´2
ζkeζ

2ks2t2´2ζks3t3pcoshp
?
3ζks2q ` 2 cosp

?
3ζ2ks3qq2g´2

ȷ

.

In particular, (6.24) is equal to

Rp3ζ2k,
B

Bs2
,

B

Bs3
q

»

–eζ
2ks2t2´2ζks3t3

ÿ

pa,bqPCg

ca,be
?
3ζkas2`

?
´3ζ2kbs3

fi

fl ,

for some non-zero constants ca,b. We may simplify the above expression as

eζ
2ks2t2´2ζks3t3

ÿ

pa,bqPCg

ca,bRp3ζ2k,
?
3ζka`ζ2kt2,

?
´3ζ2kb´2ζkt3qe

?
3ζkas2`

?
´3ζ2kbs3 .

The assumption R “ P ¨ Pλ for a fixed λ “ pa, bq can be used to further (6.24) simplify as

ca,be
ζ2ks2t2´2ζks3t3P p3ζ2k,

?
3ζka` ζ2kt2,

?
´3ζ2kb´ 2ζkt3qe

?
3ζkas2`

?
´3ζ2kbs3 .

For a given pa0, b0, k0q P Cg ˆ t0, 1, 2u, we pick z in (6.23) with k “ k0 and P “ Pλ0
where λ0 “ pa0, b0q. Then all components of Ψ applied to this element of S3g,d are equal to
0 except the component corresponding to pa0, b0, k0q, which is a non-zero real number. This
shows that the map Ψ is surjective. This observation and (6.20) imply that the rank of S3g,d is
3p2g ´ 1q2 and the kernel of Ψ is torsion. However, the kernel is a submodule of the free
module V3

g,d, and hence the kernel of Ψ is trivial. Consequently, Ψ gives an isomorphism,
and is the direct sum of rank 1 modules given by the above elements as pa0, b0, k0q ranges
over all elements of Cg ˆ t0, 1, 2u. Furthermore, the computation of the previous paragraph
shows that any such rank 1 summand is invariant with respect to the action of the operators
α2, α3, β2 and β3, and it is isomorphic Rk0,a0,b0 , defined as in (6.17).
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6.2 Proof of the structure theorem

We now prove the structure theorem. For the convenience of the reader, we recall the
statement of Theorem 1.10. Retaining the convention of the previous subsection, we write
DX,w for D3

X,w, and so forth. Let ζ “ e2πi{3.

Theorem 6.26. Suppose b`pXq ą 1, and X is Up3q simple type. Then there is a finite set
tKiu Ă H2pX;Zq and ci,j P Qr

?
3s such that for any w P H2pX;Zq, and Γ,Λ P H2pXq:

DX,wpΓp2q ` Λp3qq “ e
QpΓq

2
´QpΛq

ÿ

i,j

ci,jζ
w¨

´

Ki´Kj
2

¯

e
?
3
2

pKi`Kjq¨Γ`
?

´3
2

pKi´Kjq¨Λ

Each class Ki is an integral lift of w2pXq, and satisfies the following: if Σ Ă X is a
smoothly embedded surface of genus g with Σ ¨ Σ ě 0 and rΣs non-torsion, then

2g ´ 2 ě |xKi,Σy| ` rΣs2. (6.27)

Remark 6.28. The authors suspect a stronger statement holds: namely, that if pX,wq is Up3q

simple type for any single w P H2pX;Zq, then X is Up3q simple type. However, it appears
that to adapt the proof to address such a statement requires equality in Proposition 2.11, and
does not follow from the partial description of eigenvalues given in Theorem 2.14.

Remark 6.29. Kronheimer and Mrowka used an adjunction inequality in the Up2q setting
[KM93] to prove the Milnor conjecture on the slice genus of torus knots. This motivated the
introduction of concordance invariants constructed from versions of Up2q instanton Floer
theory for knots [KM11b, KM13]. The Up3q adjunction inequality in Theorem 6.26 implies
the Milnor conjecture in a similar way, and it would be interesting to explore whether there
are similar concordance invariants that can be defined using Up3q instantons.

Our proof of Theorem 6.26 is largely an adaptation of Muñoz’s proof in the N “ 2 case
[Muñ00], which uses Up2q Fukaya–Floer homology. A key ingredient is Theorem 6.15,
regarding the Up3q Fukaya–Floer analogue of the simple-type ideal (2.17). We being with
the following N “ 3 analogue of Lemma 11 from [Muñ00].

Lemma 6.30. Suppose X satisfies b`pXq ą 1 and is Up3q simple type. Fix w P H2pX;Zq.
Let Σ Ă X be a surface of genus g with rΣs2 “ 0 and Σ ¨ w “ d ı 0 pmod 3q. Then there
are ha,b P Crrt2, t3ss such that for all Γ,Λ P H2pXq and l P Z, we have:

DX,w`lΣps2Σp2q ` s3Σp3q ` t2Γp2q ` t3Λp3qq (6.31)

“ eQps2Σ`t2Γq{2´Qps3Σ`t3Γq
ÿ

pa,bqPCg

ζ lbha,be
?
3as2`

?
´3bs3

Proof. We may suppose Γ and Λ are represented by surfaces which intersect Σ transversely
in a single point, and Γ ¨Σ “ Λ ¨Σ “ 1. The general case follows from this case and linearity
of the resulting expression. Identify a regular neighborhood of Σ Ă X with D2 ˆ Σ, and
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write X “ X˝ Y D2 ˆ Σ. Write Γ “ Γ˝ Y D and similarly for Λ, where D and δ both
denote D2 ˆ tptu in ∆ “ D2 ˆ Σ. As in (6.22), the gluing formula (6.5) gives

DX,wpzet2Γp2q`t3Λp3qq “ xDX˝,w˝pze
t2Γ˝

p2q
`t3Λ˝

p3qq, D∆,δpe
t2Dp2q`t3Dp3qqy (6.32)

for all z P A3pX,Σq, where we define rΣsK “ ty P H2pXq|y ¨ Σ “ 0u, and

A3pX,Σq :“
`

Sym˚pH0pXq ‘ rΣsKq b Λ˚H1pXq
˘b2

Ă A3pXq.

The two invariants appearing on the right side of (6.32) are elements of the Fukaya–Floer
homology V3

g,d. Now let s2, s3 be formal variables and set

z “ p1 `
1

3
xp2q `

1

9
x2p2qqe

s2Σp2q`s3Σp3q . (6.33)

Then the left side of (6.32) is equal to the left side of (6.31) when l “ 0. By the simple type
assumption and the gluing formula, we have

DX˝,w˝pzet2Γp2q`t3Λp3qq P S3g,d bC Crrs2, s3ss.

Furthermore, by Theorem 6.15 we can write

DX˝,w˝pzet2Γp2q`t3Λp3qq “
ÿ

pa,bqPCg

fwa,b

where fwa,b P R0,a,b bC Crrs2, s3ss. (The presence of 1 ` xp2q{3 ` x2
p2q

{9 in z implies k “ 0
in (6.16).) From the description of R0,a,b, fwa,b is a solution of the differential operator

ˆ

B

s2
´ p

?
3a` t2q

˙ˆ

B

s3
´ p

?
´3b´ 2t3q

˙

. (6.34)

By the gluing formula we can then write

DX,wps2Σp2q ` s3Σp3q ` t2Γp2q ` t3Λp3qq “
ÿ

pa,bqPCg

gwa,b

where gwa,b P Crrs2, s3, t2, t3ss is given by the pairing xfwa,b, D∆,δpe
t2Dp2q`t3Dp3qqy. Further-

more, gwa,b is also a solution of the operator (6.34). Thus we obtain

gwa,b “ hwa,bpt2, t3qe
?
3as2`s2t2`

?
´3bs3´2s3t3 .

This proves the claim in the case l “ 0.
For the case of general l, first note the above argument carries through to show that

DX,w`lΣps2Σp2q ` s3Σp3q ` t2Γp2q ` t3Λp3qq “
ÿ

pa,bqPCg

hw`lΣ
a,b e

?
3as2`s2t2`

?
´3bs3´2s3t3
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for some hw`lΣ
a,b P Crrt2, t3ss. Next, recall that there is a class ε “ εpΣq that acts on V3

g,d

as an operator of degree ´4d pmod 4Nq, and can also be used via the gluing formula as a
class when evaluating DX,w. Namely, in the situation at hand, we have the relation

DX,wpεlzq “ DX,w`lΣpzq

for any z P A3pX,Σq. The operator ε restricted to S3g,d acts as follows:

ε : Rk,a,b Ñ Rk,a,b is multiplication by ζb`dk.

This follows from the fact that the eigenvalues in (2.12) have ε “ `1, combined with the
argument of Lemma 2.5 (using that ε has degree ´4d pmod 4Nq). Replace z in (6.33) by

z “ p1 ` ζiε` ζ2iε2qp1 `
1

3
xp2q `

1

9
x2p2qqe

s2Σp2q`s3Σp3q .

From this substitution, carrying the above argument through, we obtain the relation
ÿ

l“0,1,2

ζ lihw`lΣ
a,b “ 0 if b` i ı 0 pmod 3q (6.35)

for each i P Z; the key point is that the term p1 ` ζiε` ζ2iε2q places the relative invariants
in the pζ´iq-eigenspace of ε. The relations (6.35) are then used to solve

hw`lΣ
a,b “ ζ lbhwa,b.

This proves the claimed formula for general l, upon setting ha,b :“ hwa,b.

Proof of Theorem 6.26. The proof runs parallel to Steps 2–5 of the proof of Theorem 2 from
[Muñ00] for the N “ 2 case; we begin with an analogue of Step 2. Fix X a smooth closed
oriented 4-manifold with b`pXq ą 1 and of Up3q simple type. We first show that for each
w P H2pX;Zq there exists a finite set tKiuiPI Ă H2pX;Zq and cwi,j P Qr

?
3s such that

DX,wpΓp2q ` Λp3qq “ e
QpΓq

2
´QpΛq

ÿ

i,j

cwi,je
?
3
2

pKi`Kjq¨Γ`
?

´3
2

pKi´Kjq¨Λ (6.36)

The blow-up formulas of Theorem 6.18 show that it suffices to prove this for any blowup ofX .
For simplicity we assume H2pX;Zq has no torsion (in the general case, mod out by torsion
in the argument). After possibly blowing up, we may assume (using b`pXq ą 1) that the in-
tersection form ofX can be diagonalized, Q “ p`1qr ‘p´1qs. LetA1, . . . , Ar, B1, . . . , Bs
be a corresponding basis, so that A2

k “ 1, B2
k “ ´1, Ak ¨Bk “ 0. Define

Σ1 “ A2 ´B1, Σk “ ´Ak ´B1 p2 ď k ď rq,

Σr`1 “ A1 ´B2, Σr`k “ A1 `Bk p2 ď k ď sq,
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and also define w “ A1 ` B1. Writing n “ r ` s, we obtain a full rank subgroup
H “ xΣ1, . . . ,Σny of H2pX;Zq such that 2H2pX;Zq is contained in H . We also have

Σk ¨ Σk “ 0, w ¨ Σk “ 1.

Represent each Σk by a connected oriented surface of genus gk. Then iterating the argument
of Lemma 6.30, we obtain the following:

DX,wp
ÿ

t2,kΣ
k
p2q `

ÿ

t3,kΣ
k
p3qq

“ eQp
ř

t2,kΣ
kq{2´Qp

ř

t3,kΣ
kq

ÿ

1ďkďn
pak,bkqPCgk

hwa1,b1,...,an,bne
?
3
ř

akt2,k`
?

´3
ř

bkt3,k

where each unindexed sum runs from k “ 1 to k “ n, and where hwa1,b1,...,an,bn P C. Here
tj,k are formal variables, for j “ 2, 3 and 1 ď k ď n. Now let Γ,Λ P H2pXq be arbitrary.
We may write Γ “

ř

xkΣ
k and Λ “

ř

ykΣ
k for some complex numbers xk, yk. Then

specializing each t2,k to xkt2 and each t3,k to ykt3 gives the following expression:

DX,wpt2Γp2q ` t3Λp3qq

“ eQpt2Γq{2´Qpt3Λq
ÿ

1ďkďn
pak,bkqPCgk

hwa1,b1,...,an,bne
t2

?
3
ř

akxk`t3
?

´3
ř

bkyk

Write Σk‹ P H2pXq for the dual basis of the Σk under the intersection pairing, so that
Σk‹ ¨ Σl “ δkl. Note 2Σk‹ P H2pX;Zq. Define

I :“ ti “ pi1, . . . , inq P Zn | |ik| ă gku,

Ki :“ 2
n
ÿ

k“1

ikΣ
k
‹ P H2pX;Zq for i P I. (6.37)

Then we obtain (6.36) (setting t2 “ t3 “ 1) by letting i, j range over I and setting

cwi,j “ hwa1,b1,...,an,bn

where i, j P I are uniquely determined by pa1, b1, . . . , an, bnq, and conversely, through the
relations ik ` jk “ ak and ik ´ jk “ bk for all 1 ď k ď n.

Note that the argument of Lemma 6.30 shows that the classes Ki obtained above do not
depend on w. Alternatively, without appealing to this point, one can take the union of the
classes obtained for each w, where one ranges over one w for each class in H2pX;Z{3q, to
eliminate any a priori dependency.

Next, we argue that the Ki are integral lifts of w2pXq, which amounts to showing
Ki ¨ x ” x2 pmod 2q for all x P H2pX;Zq. This is an adaptation of Step 3 in the
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proof of Theorem 2 from [Muñ00]. It is clear from the definition of Ki in (6.37) that
Σk ¨Ki ” 0 pmod 2q, which agrees mod 2 with Σk ¨ Σk “ 0, and this verifies the claim on
H Ă H2pX;Zq. The general property used here in fact essentially follows from Lemma
6.30: if Σ Ă X satisfies Σ ¨ w ı 0 and Σ ¨ Σ “ 0, then Σ ¨Ki is even for any of the Ki.

Now suppose x P H2pX;ZqzH . Then there is some k for which x ¨ Σk ‰ 0. We can
find m P Z such that x1 :“ x`mΣk satisfies

N :“ px1q2 ě 0, w ¨ x1 ı 0 pmod 3q.

(Here the property w ¨ Σk “ 1 is used to obtain the second condition.) Now let rX be X
blown up at N points, and denote by E1, . . . , EN the associated exceptional divisors. It
follows from the blowup formulas of Theorem 6.18 that if tKiu are the classes in (6.36) for
X , then classes associated to rX are given by

Ki `

N
ÿ

l“1

εlEl, εl P t1,´1u. (6.38)

Consider y “ x1 ´ E1 ´ ¨ ¨ ¨ ´ EN . This satisfies y2 “ 0 and y ¨ w ı 0 pmod 3q. By the
previous paragraph, we have that y ¨ pKi `

řN
l“1 εlElq is even. On the other hand,

y ¨ pKi `

N
ÿ

l“1

εlElq ” x ¨Ki `N pmod 2q.

Since x2 ” px1q2 “ N pmod 2q, this proves the claim for x, and shows that each Ki is
indeed characteristic.

We next consider the analogue of Step 4 in the proof of Theorem 2 from [Muñ00]. The
goal is to show, upon setting ci,j “ c0i,j , that we have the relation

cwi,j “ ζ
w¨

´

Ki´Kj
2

¯

ci,j . (6.39)

We now suppose w2 ą 0, as the invariants only depend on the mod 3 reduction of w, and
every non-zero class in H2pX;Zq is mod 3 congruent to one with positive square. Consider
again rX , the blowup of X at N :“ w2 points, with exceptional divisors E1, . . . , EN . By
the blowup formula, the classes associated to rX are as in (6.38). Write

rKi “ Ki `

N
ÿ

l“1

εilEl,
rKj “ Kj `

N
ÿ

l“1

εjlEl

for two such classes. Then the blowup formula gives

cE1

rKi, rKj
“
q1p2 ¨ ¨ ¨ pN

3N2
cKi,Kj (6.40)

where the numbers pk and qk are defined as follows:

pk “

#

1{2, εjk “ εik
1, εjk ‰ εik

qk “

#

1{2, εjk “ εik
ζ´pεik´εjkq{2, εjk ‰ εik
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Consider x “ w ´ E1 ´ ¨ ¨ ¨ ´ EN . Note that x2 “ 0 and x ¨ E1 ı 0 pmod 3q. In this
situation Lemma 6.30 provides the relationship

cw´E2´¨¨¨´EN

rKi, rKj
“ ζ

1
2
x¨p rKi´ rKjqcE1

rKi, rKj
“ ζ

1
2
w¨pKi´Kjq` 1

2

řN
l“2pεil´ε

j
l qcE1

rKi, rKj
. (6.41)

On the other hand, another application of the blowup formula yields

cw´E2´¨¨¨´EN

rKi, rKj
“
p1q2 ¨ ¨ ¨ qN

3N
cwKi,Kj

. (6.42)

Combining (6.40)–(6.42), we obtain the desired relation (6.39).
The claim that ci,j P Qrζs follows from (6.36) and the fact that the invariants DX,w

output rational values. These same observations also imply that ci,j is the complex conjugate
of cj,i. Furthermore, there is the general property

DX,´wpzq “ DX,wpτpzqq (6.43)

where z P A3pXq and τ : A3pXq Ñ A3pXq is the algebra homomorphism which maps
αprq to p´1qrαprq; see [DX20, 2.10]. Taking w “ 0, relations (6.43) and (6.36) yield
ci,j “ cj,i. We conclude that ci,j is real and hence ci,j P Qr

?
3s.

Finally we consider the adjunction inequality (6.27). The proof of Step 5 in the proof of
Theorem 2 from [Muñ00] carries over nearly verbatim. An argument in [KM95] reduces the
proof to the case in which N :“ Σ ¨Σ ą 0. Consider again rX , the blowup of X at N points,
and the proper transform rΣ Ă rX of Σ, which represents the class Σ ´ E1 ´ ¨ ¨ ¨ ´ EN . As
rΣ ¨ rΣ “ 0 and rΣ ¨ w ı 0 pmod 3q for w “ E1, Lemma 6.30 yields

2g ´ 2 ě |

´

Ki `
ÿ

εlEl

¯

¨ pΣ ´ E1 ´ ¨ ¨ ¨ ´ EN q |

for all of the associated classes Ki of X , and all ε P t1,´1uN . This implies the desired
inequality (6.27), and completes the proof of the theorem.

7 A non-vanishing theorem for symplectic 4-manifolds

In this section, we prove Theorem 1.14 of the introduction, which we restate here:

Theorem 7.1. Let X be a closed symplectic 4-manifold with b`pXq ą 1. Then the invariant
D3
X,w is non-trivial for all w P H2pX;Zq.

As a consequence of Theorem 7.1, we have the following non-vanishing result for
admissible bundles. In the same way that we deduce Theorem 1.3 from Corollary 5.21, the
following non-vanishing result can be used to give another proof of Theorem 1.3.

Corollary 7.2. Let pY, γq be an admissible pair such that Y is irreducible. Then the
instanton Floer homology group I3˚pY, γq is non-trivial.
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Proof. The corollary is a consequence of Theorem 7.1 and a result about embeddings of
3-manifolds into symplectic manifolds. Since pY, γq is admissible, we have b1pY q ą 0. In
particular, Y can be embedded in a symplectic manifold X as a separating submanifold
such that the map H2pX;Zq Ñ H2pY ;Zq is surjective and the two components X1 and X2

obtained by cutting X along Y have b` ą 0. This follows from Gabai’s theorem about the
existence of taut foliations on 3-manifolds with b1 ą 0 [Gab83] and [KM04, Proposition
15]. The latter is obtained by combining various earlier results [Eli04, Etn04, ET98, KM04]
(see also [KM07, Section 41.3]). Our control on H2pX;Zq implies that there is a 2-cycle w
on X whose intersection with Y is homologous to γ. Using Theorem 7.1, we know

D3
X,wpΓp2q ` Λp3qq

is non-trivial for some Γ,Λ P H2pX;Zq where Γ and Λ are represented by embedded
surfaces whose intersection with Y are respectively equal to c and l. Now we can use the
pairing formula (6.5) to see that the Fukaya–Floer homology group I3˚pY, γ, Lq with L given
by the homology classes of c and l is non-trivial. The non-vanishing of this Fukaya–Floer
homology group implies that I3,j˚ pY, γ, Lq is non-zero for some j. The spectral sequence
from I˚pY, γq b C22j to I3,j˚ pY, γ, Lq implies that I3˚pY, γq is non-zero.

Proof of Theorem 7.1. After possibly perturbing the symplectic form of X and then rescal-
ing, we can assume that the symplectic form ω of X represents an integral cohomology
class. Now [Don99, Theorem 2] implies that X admits a (topological) Lefschetz pencil such
that the fibers are symplectic subvarieties representing the Ponicaré dual of krωs where k
is a large enough integer. In particular, the base locus of this Lefschetz pencil is given by
a non-empty set of points tx1, ¨ ¨ ¨ , xmu, and by blowing up X at these points, we obtain
pX , which is a Lefschetz fibration over S2 where a generic fiber F (obtained as the proper

transform of a fiber of the Lefschetz pencil) represents the cohomology class

krωs ´ E1 ´ ¨ ¨ ¨ ´ Em

with Ei the exceptional classes. Taking k large enough, we may also assume that the genus
of F is as large as we wish and all fibers of the Lefschetz fibration are irreducible. The latter
claim is [Smi01, Theorem 3.10] and the former follows from adjunction formula. (See, for
example, (3.9) in [Smi01].) The 2-cycle w in X induces a cycle in pX and if necessary we
add ˘E1 to this cycle to guarantee that the resulting cycle pw in pX satisfies pw ¨ F ” 1 mod 3.
By Theorem 6.18, if we show that D3

pX, pw
is non-trivial, then D3

X,w is also non-trivial.

We decompose the base S2 of the Lefschetz fibration structure on pX as a union D´ Y

A1 Y ¨ ¨ ¨Al YD` such that D˘ are discs and the Ai are annuli, and the Lefschetz fibration
has no critical point over the discs and exactly one critical point over each annulus. This
induces a decomposition of pX as follows:

pX “ D´ ˆ F YW1 Y ¨ ¨ ¨ YWl YD` ˆ F

where Wi : Yi´1 Ñ Yi is a cobordism that admits a Lefschetz fibration over the annulus Ai
with one singular fiber. In particular, Yi fibers over S1 with fiber F . We regard D´ ˆ F
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as a cobordism from the empty set to Y0 “ S1 ˆ F and D` ˆ F as a cobordism from
Yl “ S1 ˆF to the empty set. Without loss of generality, we can assume that the intersection
of pw and Yi is transversal and we write γi for the induced 1-cycle on Yi. We also denote the
intersection of pw with D˘ ˆF and Wi by w˘ and wi. Our assumption on pw ¨F implies that
pYi, γiq is 3-admissible. (In the special case of γ0 and γl, they are given by circle fibers of
Y0 and Yl.) The 3-manifolds Yi can be regarded as a closure of the product sutured manifold.
In particular, we can use Theorem 1.5 to see that I3˚pYi, γi|F q “ C.

As the Floer homology of pS1 ˆ F, γ1q is generated by relative invariants of D2 ˆ F ,
there exist polynomials p˘ P Crx, y, zs such that

D3
D´ˆF,w´

pp´pxp2q, Fp2q, Fp3qqq P I3˚pY0, γ0|F q, (7.3)

D3
D`ˆF,w`

pp`pxp2q, Fp2q, Fp3qqq : I3˚pYl, γl|F q Ñ C (7.4)

are non-trivial. The gluing formula expresses the invariant

D3
pX, pw

pp`p´pxp2q, Fp2q, Fp3qqq

in terms of a composition of the two quantities (7.3), (7.4) and the maps

I3˚pWl, wlq : I
3
˚pYl´1, γl´1|F q Ñ I3˚pYl, γl|F q. (7.5)

Thus to prove our claim, it suffices to show that (7.5) is non-zero.
The cobordism Wl : Yl´1 Ñ Yl can be decomposed further as the composition of the

following two 4-dimensional cobordisms:

Ll : H Ñ Yϕl , Pl : Yl´1 \ Yϕl Ñ Yl,

where Yδl is the mapping torus of a positive Dehn twist along a non-separating simple closed
curve in F . Here we are using the fact that the fibers of our Lefschetz fibration are irreducible.
The positive Dehn twist δl is determined by the property that if Yi is the mapping torus of
the diffeomorphism ϕi : F Ñ F , then ϕl “ δl ˝ ϕl´1. The cycle wl induces the cycles cl
and c1

l on Ll and Pl. We also write εl for the induced cycle on Yδl . The excision theorem of
[DX20] implies that the cobordism map

I3˚pPl, c1
lq : I

3
˚pYl´1, γl´1|F q b I3˚pYδl , εl|F q Ñ I3˚pYl, γl|F q (7.6)

is an isomorphism of 1-dimensional vector spaces. The following lemma and the non-
vanishing of (7.6) implies the non-vanishing of (7.5), completing the proof.

Lemma 7.7. For an oriented closed surface F , let L be a Lefschetz fibration over the
2-dimensional disc with one irreducible singular fiber. Let c be a 2-cycle on L such that
c ¨ F ” 1 mod 3. Then I3˚pL, cq has a non-trivial component in I3˚pY, γ|F q where pY, γq is
the boundary of pL, cq.
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. . .
C1

C2

C3

C4

C2g+1

C2g

Figure 1: The curves Ci for 1 ď i ď 2g ` 1 on a surface of genus g.

Proof. The 4-manifold L can be embedded into any closed 4-manifold X together with
the structure of a genus g “ gpF q Lefschetz fibration, which has at least one irreducible
singular fiber. For instance, we can take the elliptic surface X “ Epg ` 1q, which has a
genus g Lefschetz fibration in addition to its standard elliptic fibration. In fact, we may take
a Lefschetz fibration with the singular fibers given by the monodromies

pψ1, ψ2, ¨ ¨ ¨ , ψ2g´1, ψ2g´1, ¨ ¨ ¨ , ψ2, ψ1q4

where ψi denotes the Dehn twist along the simple closed curve Ci in Figure 1. See [GS99,
Chapter 8]. We still denote the fibers of this Lefschetz fibration by F . Then the algebraic
intersection of F and a fiber f of the elliptic fibration of Epg ` 1q is equal to 2.

The 4-manifold L can be identified with a regular neighborhood of the singular fiber
corresponding to ψ1. The complement of L determines another Lefschetz fibration Z over a
disc. This manifold has the homotopy type of F where we glue 2-cells to it along simple
close curves corresponding to the Dehn twists involved in the Lefschetz fibration structure of
Z . In particular, H1pZq is trivial, and hence there is a 2-cycle c1 on Z whose restriction to Y
is γ. The 2-cycles c and c1 can be glued to each other to form a 2-cycle c̃ on Epg ` 1q. We
may further split pZ, cq as the composition of pZ0, c0q and pZ1, c1q such that Z1 is a regular
neighborhood of regular fiber of the Lefschetz fibration of Z and Z1 is the complement. In
particular, Z1 is diffeomorphic to D2 ˆF and we can assume that c1 “ D2 ˆ txu for x P F .
The pair pZ0, c0q can be regarded as a cobordism from pY, γq to pS1 ˆ F, γ1q. To prove the
claim, it suffices to show that there is a polynomial Q P Crx, ys such that

pD3
Z0,c0pQpFp2q, Fp3qqq ˝ I3˚pL, cq (7.8)

is a non-zero element of I3˚pS1 ˆ F, γ1|F q. Then functoriality implies that I3˚pL, cq has a
non-trivial component in I3˚pY, γ|F q.

The polynomial p can be constructed as in [DX20, Proposition 5.7] using the calculation
of Up3q invariants of elliptic surfaces in [DX20]. For the pair pEpg ` 1q, wq, we have

D3
Epg`1q,wpt2Fp2q ` t3Fp3qq “

ˆ

2

3
coshp2

?
3t2q ´

2

3
coshp´

2πi

3
w ¨ f ` 2

?
3it3q

˙

g´1.
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In particular, it is a power series of the form

D3
Epg`1q,wpt2Fp2q ` t3Fp3qq “

ÿ

a,b

dwa,be
2

?
3at2`2

?
3ibt3 (7.9)

where dwa,b are constant coefficients, a` b has the same parity as g´ 1 and |a| ` |b| ď g´ 1.
For instance, we have dwg´1,0 “ p2{3qg´1. We may use the above identities to compute
pDX,wpP pFp2q, Fp3qqq for any polynomial P . In fact, using the notation in (7.9) we have

pD3
Epg`1q,wpP pFp2q, Fp3qqq “

ÿ

a,b

dwa,bP pa, bq. (7.10)

Now let Q be a polynomial such that Qpg ´ 1, 0q “ 1, and Qpa, bq “ 0 for any other pa, bq
as above. Using (7.11) and the fact that Epnq with n ě 2 is Up3q simple type, we have

pD3
Epg`1q,wpRpxp2q, xp3q, Fp2q, Fp3qqQpFp2q, Fp3qqq “

ˆ

2

3

˙g´1

Rp3, 0, g ´ 1, 0q (7.11)

for any polynomial R P Crv, w, x, ys. We claim that this polynomial Q satisfies the required
property for (7.8).

Gluing pZ0, c0q and pL, cq produces a pair p rZ0,rc0q with boundary pS1 ˆ F, γ1q, and by
functoriality (7.8) is equal to the following:

pD3
rZ0,rc0

pQpFp2q, Fp3qqq. (7.12)

Using the functoriality of instanton Floer homology again, we see that

x pD3
rZ0,rc0

pQpFp2q, Fp3qqq, D3
Z1,c1`l¨F pRpxp2q, xp3q, Fp2q, Fp3qqqy

“ pD3
Epg`1q,rc`l¨F pRpxp2q, xp3q, Fp2q, Fp3qqQpFp2q, Fp3qqq.

Since instanton Floer homology of pS1 ˆ F, γ1q is generated by elements of the form
D3
Z1,c1`l¨F pRpxp2q, xp3q, Fp2q, Fp3qqq, we may combine the above pairing formula and (7.11)

to see that (7.12) is non-zero and belongs to the eigenspace I3˚pS1 ˆ F, γ1|F q.

8 UpNq framed instanton homology

In this section we study the UpNq framed instanton homology for 3-manifolds. These groups
were essentially introduced by Kronheimer and Mrowka [KM11b], and have been extensively
studied in the N “ 2 case, see for example [KM11, Sca15, BS23]. After establishing some
basic properties of UpNq framed instanton homology, we compute its Euler characteristic
and state a connected sum theorem. In the final subsection we discuss a decomposition
result for cobordism maps in the N “ 3 case, which follows from an adaptation of the Up3q

Structure Theorem in this setting.
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8.1 Definition

Let Y be a closed, oriented, connected 3-manifold. Delete a small embedded open 3-ball
from Y to obtain M , which has a 2-sphere boundary. Let α be any simple closed curve on
the boundary of M . Define the Up3q framed instanton homology of Y as follows:

I#,3˚ pY q “ SHI3˚pM,αq.

More concretely, the Up3q framed instanton homology is given as

I#,3˚ pY q “ I3˚pY#T 3, γ|Rq

where γ is the 1-cycle S1 ˆ txu in T 3 “ S1 ˆ T 2 and R “ tyu ˆ T 2, where x P T 2 and
y P S1. As µ2pRq “ µ3pRq “ β3 “ 0 on the group I3˚pY#T 3q, it follows that I#,3˚ pY q

is defined as the p3q-eigenspace of β2 acting on I3˚pY#T 3q. Note that we have already
encountered these groups at the end of Section 5.

More generally, we define the UpNq framed instanton homology for N ě 2 as

I#,N˚ pY q “ IN˚ pY#T 3, γ|Rq (8.1)

where the notation on the right-side denotes the pNq-eigenspace of the operator β2 acting on
IN˚ pY#T 3, γq. This construction is due to Kronheimer and Mrowka, see [KM11b, §4.1].
The N “ 2 version has been studied in various settings (see e.g. [Sca15]), often motivated
by Kronheimer and Mrowka’s conjecture [KM10b, §7.9] that I#,2pY q is isomorphic to
Ozsváth and Szabó’s Heegaard Floer group yHF pY q with complex coefficients.

Remark 8.2. Note that definition (8.1) allows one to use any coefficient ring when defining
UpNq framed instanton homology. In what follows, we will continue to assume that complex
coefficients are used.

As IN˚ pY#T 3, γq is relatively Z{4N -graded and β2 has degree 4, the group (8.1) inherits
a relative Z{4-grading. This can be lifted to an absolute Z{4-grading, just as in the N “ 2
case; the discussion in [Sca15, §7.3] adapts in a straightforward manner.

For our purposes, we only need to specify an absolute Z{2-grading on I#,N pY q. To do
this, it suffices to define an absolute Z{2-grading on IN pY, ωq for any N -admissible pair
pY, ωq. For a critical point ρ which is a generator of the complex defining IN˚ pY, ωq, set

grpρq “ indpAq ` pN2 ´ 1qpb1pXq ´ b`pXq ` b1pY q ´ 1q pmod 2q (8.3)

where indpAq is the index of DA, the (perturbed) ASD operator associated to a PUpNq-
connection A over a 4-manifold X with cylindrical end Y ˆ r0,8q, with A restricting to
the pullback of ρ over Y ˆ r0,8q. This is well-defined by an argument analogous to the one
given in [Don02, §5.6], using the index formulas found in [Kro05], for example.

Note from the construction of framed instanton homology that

dim I#,N pY q “
1

N
dim IN˚ pY#T 3, γq.
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Consider Y “ S3. As IN˚ pT 3, γq is of dimension N , generated by N non-degenerate flat
connections (see [Kro05, KM11b]), the dimension of I#,N pS3q is 1.

Note that the p3q-eigenspace of β2 acting on I˚pY#T 3q agrees with the p1q-eigenspace
of the operator ε. The action of ε can also be viewed as the action of a certain PUpNq-gauge
transformation supported on the T 3-factor. From this viewpoint, which will be adapted
below, I#pY, γq is the Morse homology of a (perturbed) Chern–Simons functional on a
configuration space of PUpNq-connections which is quotiented by a slightly larger gauge
group, and its critical set (in the unpertubed case) is homeomorphic to

RN pY q :“ Hompπ1pY q, SUpNqq,

the SUpNq representation space of π1pY q. Note that the quotient of RN pY q by the action
of conjugation, denoted XN pY q, is the SUpNq character variety of Y .

8.2 Euler characteristic

In [Sca15] it was shown that I#,2pY q has Euler characteristic equal to |H1pY ;Zq| if b1pY q “

0, and is otherwise zero. This fact generalizes as follows.

Theorem 8.4. For any N ě 2 and any closed, oriented, connected 3-manifold Y :

χ
´

I#,N pY q

¯

“

#

|H1pY ;Zq|N´1, b1pY q “ 0

0, b1pY q ą 0
(8.5)

Proof. We first explain the proof under the assumption that b1pY q “ 0, XN pY q is a finite
set of non-degenerate points. In particular, RN pY q is Morse–Bott nondegenerate for the
Chern–Simons functional on pY#T 3, γq. In particular, we have a homeomorphism of spaces

RN pY q –
ğ

rρsPXN pY q

SUpNq{Γρ (8.6)

where Γρ Ă SUpNq denotes the stabilizer of ρ under the conjugation action. The stabilizer
Γρ is isomorphic to a group of the form

SpUpn1q ˆ Upn2q ˆ ¨ ¨ ¨ ˆ Upnkqq

where
ř

ni ď N . Let us say that ρ is abelian if
ř

ni “ N . This terminology is justified
by the fact that ρ is abelian if and only if it factors through the abelianization H1pY ;Zq; an
equivalent condition is that the stabilizer Γρ has the same rank as SUpNq. (Recall that the
rank of a compact Lie group is the dimension of a maximal torus.)

A abelian SUpNq representation ρmay be constructed by takingN ´1 homomorphisms
ρi : H1pY ;Zq Ñ Up1q for i “ 1, . . . , N ´ 1 and composing

ρ1 ‘ ¨ ¨ ¨ ‘ ρN´1 ‘ pρ1 ¨ ¨ ¨ ρN´1q´1 : H1pY ;Zq Ñ SUpNq
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with the natural surjection π1pY q Ñ H1pY ;Zq. This constructs |H1pY ;Zq|N´1 abelian
representations; call these standard. Every abelian representation is conjugate to a standard
one, but some standard abelian representations are equivalent by conjugation. Conjugation
induces an action of the Weyl group of SUpNq, the symmetric group SN , on the set of
standard abelian representations. The orbit-stabilizer formula for this SN -action yields

|H1pY ;Zq|N´1 “
ÿ

rρsPRN pY q

|WSUpNq|{|WΓρ | (8.7)

where RN pY q Ă XN pY q is the subset of abelian classes. The notation WG denotes the
Weyl group of G. In writing this formula we have identified the stabilizer of ρ under the
SN “ WSUpNq action with the Weyl group of Γρ. A result of Hopf and Samelson [HS41]
says that a connected homogeneous space G{H , where G is a compact Lie group and H is a
closed subgroup, has Euler characteristic

χpG{Hq “

$

&

%

|WG|{|WH |, rankpGq “ rankpHq

0, rankpGq ą rankpHq

(8.8)

Combining (8.8), (8.6), (8.7), and the earlier observation that ρ is abelian if and only if the
rank of Γρ is that of SUpNq, we obtain

χpRN pY qq “ |H1pY ;Zq|N´1.

A small perturbation used in defining I#,N˚ pY#T 3, γq can be chosen so that the orbit of
ρ appearing in (8.6) is replaced by the set of critical points tαiu of a Morse function on
SUpNq{Γρ. The mod 2 grading of αi is given by its Morse index plus the mod 2 grading of
ρ as defined by equation (8.3). Thus the relation

χ
´

I#,N pY q

¯

“ χpRN pY qq “ |H1pY ;Zq|N´1 (8.9)

will hold in the case at hand once it is shown that the mod 2 grading of each abelian critical
point is even. In what follows, we represent ρ P RN pY q by a connection α#β on Y#T 3,
where α is a flat SUpNq connection on Y and β is one of the N flat non-degenerate PUpNq

connections on T 3 compatible with the bundle data γ.
Let X be a 4-manifold with boundary Y . Denote by W the cobordism from Y to Y#T 3

which is topologically the boundary sum of Y ˆ I with D2 ˆ T 2. Write X 1 for the union of
X and W along Y . Let AX be a PUpNq connection on X with a cylindrical end attached,
restricting to the pullback of α over the end, and ind´pAXq the index of the associated ASD
operator with exponential decay (see for example [Don02, §3.3.1]). Let AW be a PUpNq

connection on W with cylindrical ends attached, equal to the pullback of α on the incoming
end and that of α#β on the outgoing end. Then by index additivity we have

grpα#βq ” indpAq ` pN2 ´ 1qpb1pX 1q ´ b`pX 1q ` b1pY#T 3q ´ 1q (8.10)

” ind´pAXq ` ind`´pAW q ` pN2 ´ 1qpb1pXq ´ b`pXqq pmod 2q
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Here ind`´pAW q is the index of the ASD operator associated to AW with exponential
growth at the incoming end and exponential decay at the outgoing end; see [DX20, §2.2] for
this setup. By the Atiyah–Patodi–Singer theorem [APS75] (see also [DX20, Eq. 2.16]),

ind`´pAW q “ 4NκpAW q ´
N2 ´ 1

2
pχpW q ` σpW qq

`
1

2

`

h0pαq ` h1pαq ´ h0pα#βq ´ h1pα#βq ´ ρadαpY q ` ρadpα#βqpY#T 3q
˘

.

Here hipαq is the dimension of H ipY ; adαq, and so forth. By our current assumptions, we
have h0pα#βq “ h1pαq “ 0 and h0pαq “ dimΓρ, while h1pα#βq “ dimSUpNq{Γρ.
We also choose AW to be a flat connection, obtained by gluing a flat connection extending
β over D2 ˆ T 2 to the product flat connection induced by α on Y ˆ I and extending by
translation to cylindrical ends. (That β extends to a flat connection over D2 ˆ T 2 is easily
verified by the description in [KM11b, §4.1].) By κpAW q “ 0, χpW q “ ´1, σpW q “ 0:

ind`´pAW q “ dimΓρ ´
1

2
pρadαpY q ´ ρadpα#βqpY#T 3qq.

On the other hand, by Atiyah–Patodi–Singer’s result [APS75b, Thm. 2.4], we have

ρadαpY q ´ ρadpα#βqpY#T 3q “ pN2 ´ 1qσpW q ´ σadAW
pW q (8.11)

Here we use that the adjoint bundle has rank N2 ´ 1, see (8.13). A computation using the
Mayer–Vietoris sequence with local coefficients shows H2pW ; adAW q “ 0 and hence the
right side of (8.11) vanishes. Thus ind`´pAW q “ dimΓρ. Plugging into (8.10) yields

grpα#βq ” ind´pAXq ` dimΓρ ` pN2 ´ 1qpb1pXq ´ b`pXqq pmod 2q (8.12)

Now suppose ρ is abelian. Then α is compatible with a splitting L1 ‘ ¨ ¨ ¨ ‘ LN where each
Li is a complex line bundle. The associated adjoint bundle is isomorphic to

à

iăj

Li b L´1
j ‘ RN´1 (8.13)

We may choose X such that H2pX;Zq Ñ H2pY ;Zq is a surjection; then we may choose
line bundles rLi over X which extend the Li. Further, choose AX so that adAX splits as
‘iăjAij ‘ Θ where Θ is a trivial connection on RN´1 and Aij is a Up1q connection on
rLi b rL´1

j . With these choices, we compute

ind´pAXq ” ´pN2 ´ 1qp1 ´ b1pXq ` b`pXqq pmod 2q (8.14)

Indeed, the index of AX splits into a sum; the indices associated to the Aij are even, because
the relevant operators are complex linear, and the index associated to Θ is pN2 ´ 1q times
the index of the standard ASD operator on X . We then obtain from (8.12):

grpα#βq ” dimΓρ ´ pN2 ´ 1q ” 0 pmod 2q
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Here we have used that dimΓρ “
ř

n2i ´ 1 for some non-negative integers ni which satisfy
ř

ni “ N . This completes the proof of claim (8.9) under the given assumptions.
In the general case for b1pY q “ 0, a holonomy perturbation must be used. When N “ 2,

it is explained in [Eis23, Theorem 3.6] that there are small holonomy perturbations for Y
such that the critical set of the Chern–Simons functional is discrete and non-degenerate, and
the corresponding orbits on the framed configuration space are Morse–Bott non-degenerate.
In our case, we use such a perturbation on Y#T 3 which is supported on Y . For the above
argument to adapt, it is important that for a small enough such perturbation, the number of
abelian critical points and their stabilizer-types remain the same; this is true because these
reducibles are cut out transversely within the subspace of the configuration space consisting
of abelian connections.

When b1pY q ą 0, the abelian representations in RN pY q form a disjoint union of tori,
each of dimension b1pY q. In the simplified version of the above argument, these tori now
contribute zero to the Euler characteristic. Adapting the above argument, with similar
remarks regarding perturbations, gives χpI#,N pY qq “ 0 in this case.

Remark 8.15. The absolute Z{2-grading used here agrees with that of [CDX17, Proposition
6.20]. In that reference, the Z{2-grading is determined by the conditions that (i) for any
cobordism pW, cq : pY, ωq Ñ pY 1, ω1q between N -admissible pairs, the degree of the
corresponding cobordism map is the parity of

N2 ´ 1

2
pχpW q ` σpW q ` b0pY 1q ´ b0pY q ` b1pY 1q ´ b1pY qq;

and (ii) the generator of IN˚ pHq, which is by convention 1-dimensional, is supported in even
degree. Condition (i) follows from the definition (8.3) along the same lines as [Sca15, Prop.
7.1]. Furthermore, the normalization condition (ii) is equivalent, assuming (i), to the
condition that I#,N pS3q is supported in even degree.

The framed instanton homology can also be defined for any 3-manifold Y with a 1-cycle
ω Ă Y . In this case the UpNq framed instanton homology is denoted

I#,N˚ pY, ωq (8.16)

and is defined as the pNq-eigenspace of the operator β2 acting on IN˚ pY#T 3, ω Y γq. The
isomorphism type of this group only depends on Y and rωs P H1pY ;Z{Nq, and sometimes
we conflate ω with its homology class, or its Poincaré dual. The argument of Theorem 8.4
can be adapted to show that the Euler characteristic of (8.16) is also given by the right side
of (8.5), and is in particular independent of ω.

Remark 8.17. Theorem 8.4 (and its extension to (8.16) mentioned above) is compatible with
the surgery exact pN ` 1q-gons of [CDX17], which were proven for N ď 4. In particular, it
satisfies the Euler characteristic relation [CDX17, Cor. 1.9], giving evidence for the existence
of surgery exact pN ` 1q-gons for N ą 4.
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It follows from a result of Borel [Bor53] that if G is a compact connected Lie group
and H is a closed connected subgroup with rank equal to that of G, then the cohomology
of G{H with complex coefficients is supported in even degrees. In particular, in the case
that b1pY q “ 0, if RN pY q consists entirely of abelian representations and is Morse–Bott
non-degenerate for the Chern–Simons functional, then

dim I#,N pY q “ |H1pY ;Zq|N´1. (8.18)

This occurs in the case that Y is a lens space. The condition (8.18), that the dimension
of the UpNq framed instanton homology is equal to its Euler characteristic, is a natural
generalization of the Up2q instanton L-space condition [BS23]. A natural question is whether
the class of 3-manifolds defined by the condition (8.18) depends on N . In the case that Y is
an Up2q instanton L-space and also satisfies (8.18) for some N ą 2, we have

I#,N pY q – I#,2pY qbpN´1q. (8.19)

Thus we are led to ask: is there an example of a 3-manifold Y for which (8.19) does not
hold for some N ą 2?

Remark 8.20. In the above discussion, one may also include the case N “ 1. The Up1q

framed instanton homology of Y is a special case of the plane Floer homology of the first
author [Dae], and is isomorphic to the homology of the Jacobian torus of Y .

8.3 A product formula for connected sums

The UpNq framed instanton homology behaves in a simple way with respect to connected
sums. The following generalizes a known result in the N “ 2 case.

Theorem 8.21. Let pY, ωq and pY 1, ω1q be connected 3-manifolds with 1-cycles. Then

I#,N pY#Y 1, ω Y ω1q – I#,N pY, ωq b I#,N pY 1, ω1q (8.22)

The proof of this result is analogous to the proof in the N “ 2 case, which is a slight
variation of the argument given in [KM11, Cor. 5.9]. The main device used is genus 1
excision, which holds for all N , just as in the N “ 2 case, by the simple description of the
Floer homology of pT 3, γq as given in [Kro05, KM11b]. With genus 1 excision, the key
observation in proving (8.22) is that one may cut open Y#T 3 and Y 1#T 3 along the copies
of 2-tori labelled R in each 3-torus, and reglue the resulting boundary components so as to
form a connected 3-manifold diffeomorphic to Y#Y 1#T 3. From the proof it is also easy to
see that, just as in the N “ 2 case, the isomorphism (8.22) preserves Z{2-gradings, and is
natural with respect to “split” cobordisms.

8.4 A decomposition result for cobordism maps

Despite the various properties of UpNq framed instanton homology discussed above, for
N ą 2 very few computations of these groups are currently known. In the N “ 2 case,
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many computations have been aided by the use of Floer’s exact triangle [Flo95, Sca15]. The
surgery exact pN`1q-gons of [CDX17], proved in the casesN ď 4, provide a generalization
that may be useful for computations in the higher rank cases. Another tool that has been
very useful in the N “ 2 case, as is illustrated in the work of Baldwin and Sivek [BS23],
is a decomposition result for cobordism maps. In this subsection we explain how to obtain
an analogous decomposition result in the N “ 3 case. This is essentially an adaptation of
Theorem 6.26 to the setting of cobordism maps in Up3q framed instanton homology.

Let pX,wq : pY, ωq Ñ pY 1, ω1q be a cobordism of pairs, where w is a 2-cycle restricting
to ω and ω1 at the boundary components. Here and below we suppose X , Y and Y 1 are
connected. There is an associated cobordism map of framed instanton homology groups

I#,N pX,wq : I#,N pY, ωq Ñ I#,N pY 1, ω1q

obtained by choosing a path c embedded in Xzw and splicing I ˆ T 3 onto X along this
path, to obtain a cobordism X# from Y#T 3 to Y 1#T 3; see [Sca15, §7.1]. The choice of
path c is suppressed from the notation.

In the case N “ 3, following the decomposition (5.8) we may write

I#,3pY, ωq “
à

s

I#,3pY, ω; sq (8.23)

where the direct sum is over homomorphisms s : H2pY ;Zq Ñ Γ Ă Z ‘ Z, with Γ being
the sublattice of pairs pa, bq with a and b of the same parity.

In what follows, we write s “ ps2, s3q for any such homomorphism, where s2 and s3 are
the projections to the two Z factors. Further, if s : H2pX;Zq Ñ Z ‘ Z is a homomorphism
where X is manifold with a submanifold Y Ă X , we write s|Y for the composition of s
with the inclusion-induced homomorphism H2pY ;Zq Ñ H2pX;Zq.

The decomposition result for cobordism maps in this setting is as follows.

Theorem 8.24. Let pX,wq : pY, ωq Ñ pY 1, ω1q be a cobordism of pairs with b1pXq “ 0
and b`pXq ą 0. Then there is a natural decomposition of the cobordism map

I#,3pX,wq “
ÿ

s

I#,3pX,w; sq,

I#,3pX,w; sq : I#,3pY, ω; s|Y q Ñ I#,3pY 1, ω1; s|Y 1q

where the sum is over homomorphisms s : H2pX;Zq Ñ Z ‘ Z. These maps satisfy:

(i) I#,3pX,w; sq “ 0 for all but finitely many s.

(ii) If I#,3pX,w; sq ‰ 0, then s2pxq ` s3pxq ` x ¨ x ” 0 pmod 2q for all x P H2pX;Zq,
and for any smoothly embedded, connected, orientable surface Σ Ă X with non-
negative self-intersection and having rΣs non-torsion we have

|s2prΣsq ˘ s3prΣsq| ` rΣs ¨ rΣs ď 2gpΣq ´ 2.
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(iii) If pX,wq is a composition of two cobordisms pX2, w2q : pY, ωq Ñ pY 2, ω2q and
pX 1, w1q : pY 2, ω2q Ñ pY 1, ω1q each with b1 “ 0 and b` ą 0, then

I#,3pX 1, w1; s1q ˝ I#,3pX2, w2; s2q “
ÿ

I#,3pX,w; sq

where the sum is over s : H2pX;Zq Ñ Z ‘ Z such that s|X 1 “ s1 and s|X2 “ s2.

(iv) Let pX “ X#CP2
denote the blowup of X , with e the exceptional sphere and E its

Poincaré dual. Let ζ “ e2πi{3. Then for all s : H2pX;Zq Ñ Z and l, k P Z:

I#,3p pX,w; s` lE2 ` kE3q “

$

’

&

’

%

1
6I

#,3p pX,w; sq, l “ ˘1, k “ 0
1
3I

#,3p pX,w; sq, l “ 0, k “ ˘1

0, otherwise

I#,3p pX,w ` e; s` lE2 ` kE3q “

$

’

&

’

%

1
6I

#,3p pX,w; sq, l “ ˘1, k “ 0
1
3ζ
kI#,3p pX,w; sq, l “ 0, k “ ˘1

0, otherwise

Here E2 (resp. E3) is the homomorphism H2p pX;Zq Ñ Z which is pairing with E
composed with the inclusion of Z into the first factor (resp. second factor) of Z ‘ Z.

(v) I#,3pX,w ` a; sq “ ζs3paqI#,3pX,w; sq for any a P H2pX;Zq.

This result should be compared to a similar decomposition result in the case of Up2q

framed instanton homology, given as Theorem 1.16 in [BS23]. The proof of Theorem 8.24
is largely a consequence of a straightforward adaptation of Theorem 6.26 to the case of
cobordisms. This adaptation is carried out in the Up2q case in [BS23]. We only mention
some essential points. First, one defines a formal power series in Γ,Λ P H2pX;Rq by

D#
X,wpΓp2q ` Λp3qq “ I#,3pX,w, p1 `

1

3
xp2q `

1

9
x2p2qqe

Γp2q`Λp3qq (8.25)

where the notation I#,3pX,w, zq for z P A3pXq is the cobordism map defined by cutting
down via the divisor associated to z. The coefficients of this power series in Γ,Λ are linear
maps from I#,3pY, ωq to I#,3pY 1, ω1q. The proof of Theorem 6.26 adapts to show that

D#
X,wpΓp2q ` Λp3qq “ e

QpΓq

2
´QpΛq

ÿ

i,j

ci,jζ
w¨

´

Ki´Kj
2

¯

e
?
3
2

pKi`Kjq¨Γ`
?

´3
2

pKi´Kjq¨Λ (8.26)

The new feature here is that the ci,j are no longer constants, but are instead linear maps
I#,3pY, ωq Ñ I#,3pY 1, ω1q. Furthermore, ci,j has coefficients in Qr

?
3s with respect to

rational bases of the framed instanton groups. Here we view Ki : H2pX;Zq Ñ Z; these are
characteristic, just as before, and the adjunction inequality is also as stated in (6.27).

The presence of T 3 with its non-trivial bundle in the formation of X#, and the assump-
tion b1pXq “ 0, guarantee that X# has the corresponding Up3q simple type condition for
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all choices of w Ă X (with bundle data over the I ˆ T 3 part in X# fixed). By the definition
of framed instanton homology, β2 “ µ2pxq acts as 3, and so the right side of (8.25) is

3I#,3pX,w, eΓp2q`Λp3qq.

Now for a homomorphism s “ ps2, s3q : H2pX;Zq Ñ Z ‘ Z we define

I#,3pX,w; sq “

$

&

%

1
3ζ
w¨

´

Ki´Kj
2

¯

ci,j if s2 “ 1
2pKi `Kjq, s3 “ 1

2pKi ´Kjq

0 otherwise

The properties listed in Theorem 8.24 are then proved in much the same way as in the Up2q

case, using the formula (8.26) and its properties related to the structure theorem; see [BS23]
for details. Note that property (iv) follows from a straightforward adaptation of Theorem
6.18, the N “ 3 blowup formula, to the invariants (8.25).
Remark 8.27. In the Up2q decomposition result of [BS23], the assumption b`pXq ą 0 is
removed using a trick that involves the trace cobordism of 1-surgery on the p2, 5q torus knot.
We expect that the assumption b`pXq ą 0 can also be removed from Theorem 8.24.

9 N “ 3 knot homology and the Alexander polynomial

In this final section, we describe a conjectural relationship between the Up3q instanton
knot homology group KHI3˚pY,Kq introduced in Section 5 and the Alexander polynomial.
Throughout this section, K is a knot in an integer homology 3-sphere Y .

There is a Z{2-grading on KHI3˚pY,Kq defined analogously as in the Up2q case. More
generally, there is a relative Z{2-grading on the Up3q sutured instanton homology of any
balanced sutured 3-manifold. This is because of the following: Up3q instanton homology of
an admissible bundle has a relative Z{2-grading; the operators from which the simultaneous
eigenspaces are defined all have even degree; and the excision maps used in the proof of
invariance are also homogeneously Z{2-graded. To define an absolute Z{2-grading on
KHI3˚pY,Kq, one can use (8.3) for a particular closure of the knot complement. However,
the specific choice of convention will not concern us for what follows.

Using the Z{2-grading on KHI3˚pY,Kq and the decomposition

KHI3˚pY,Kq “
à

pa,bqPCg`1

KHI3˚pY,K; a, bq, (9.1)

from Section 5 (where g is the Seifert genus ofK), which is compatible with the Z{2-grading,
we define a Laurent polynomial in two-variables t2 and t3 as follows:

∆3
pY,Kqpt2, t3q :“

ÿ

pa,bqPCg`1

χpKHI3˚pY,K; a, bqqta2t
b
3

The authors expect that this polynomial is determined by the symmetrized Alexander poly-
nomial ∆pY,Kqptq through the following formula:

∆3
pY,Kqpt2, t3q “ ˘∆pY,Kqpt2t3q∆pY,Kqpt2t

´1
3 q. (9.2)
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We present an argument for this relation that is based on some hypotheses which will be
made clear momentarily. Let Z “ ZpKq be the closed 3-manifold which is the following
closure of the sutured manifold associated to the knot:

Z “ Y zNpKq Y S1 ˆ pF1,1zD2q

Let c, c1 be two closed simple curves in the interior of F1,1 which generate H1pF1,1;Zq.
Then there are tori Σ1 “ S1 ˆ c, Σ2 “ S1 ˆ c1 in Z, and a surface Σ0 Ă Z formed by
gluing a Seifert surface for K to tptu ˆ BF1,1. (The surface Σ0 is denoted by S at the end of
Section 5.) Recall from (5.23) that we have:

KHI3˚pY,Kq “ I3˚pZ, c1|T q. (9.3)

Consider the 4-manifold X “ S1 ˆ Z. We have tori Σ3 “ S1 ˆ c, Σ4 “ S1 ˆ c1,
Σ5 “ S1 ˆ µ (in each case the S1 is external to Z), where µ is a meridian for K. Then

H2pX;Zq “

5
à

i“0

Z ¨ rΣis

Furthermore, Σi ¨ Σi “ 0 for all i. Note the signature of X is zero. The 4-manifold X is
Up2q strong simple type in the sense of Muñoz [Muñ00]; this means that

D2
X,wpx2zq “ 4D2

X,wpzq, D3
X,wpδzq “ 0 (9.4)

for all z P A2pXq “ Sym˚pH0pXqbH2pXqqbΛ˚H1pXq, δ P H1pXq, andw P H2pX;Zq,
where x is a point class. To see that X is Up2q strong simple type, one first shows that
pX,wq is Up2q strong simple type for a certain w P H2pX;Zq. Choose

w “ P.D. pΣ0 Y Σ1 Y Σ2q .

Then w has odd pairing with Σi for 3 ď i ď 5. The strong simple type relations are
obtained for D2

X,w through gluing formulas along the Fukaya–Floer homology of S1 ˆ Σi
for 3 ď i ď 5. Here it is key that the surfaces Σi for 3 ď i ď 5 are genus 1, and the
Fukaya–Floer homology in the genus 1 case is particularly simple; in particular, the action
of a 1-cycle in S1 ˆ Σi on its Fukaya–Floer homology is trivial, and the operator associated
to the point class squares to 4 times the identity. As each element of H1pXq comes from
some element of H1pΣiq for 3 ď i ď 5, one obtains the relations

D2
X,wpδzq “ 0

for all δ P H1pXq and z P A2pXq “ Sym˚pH0pXq bH2pXqq b Λ˚H1pXq. Then, strong
simple type for one w P H2pX;Zq implies the result for all w (see Muñoz [Muñ00]).

Next, as X is Up2q strong simple type, we can apply the structure theorem in this case
(again, see Muñoz [Muñ00]). Let K P H2pX;Zq be a Up2q basic class for X . Then

2gpΣiq ´ 2 ě |K ¨ Σi| ` Σi ¨ Σi “ |K ¨ Σi|
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by the adjunction inequality. For 1 ď i ď 5, we have gpΣiq “ 1, and we obtain K ¨ Σi “ 0.
For i “ 0, we obtain |K ¨ Σ0| ď 2g where g “ gpΣ0q ´ 1 is the Seifert genus of K. Define

Kr “ 2rP.D.rΣ5s.

We conclude that the possible Up2q basic classes of X are the Kr for which r P Z, |r| ď g.
Now let w “ P.D.rΣ4s. The structure theorem in the Up2q case then reads

pD2
X,wpeΣ0q “ D2

X,wpp1 `
x

2
qeΣ0q “ eQpΣ0q{2

g
ÿ

r“´g

p´1qpw2`Kr¨wq{2βre
Kr¨Σ0 .

Witten’s conjecture adapted to this case gives βr “ 22` 1
4

p7χpXq`11σpXqqSWpKrq “ 4SWXpKrq.
Using this, and QpΣ0q “ 0, w ¨ w “ 0, Kr ¨ w “ 0, we obtain

pD2
X,wpeΣ0q “ 4

g
ÿ

r“´g

SWXpKrqe
2r

This invariant can also be expressed as the super trace of a combination of maps induced on
the Up2q instanton knot homology KHI2˚pY,Kq by the cobordism X 1 “ r0, 1s ˆ Z with
bundle cyle w1 “ r0, 1s ˆ c1, adorned with the operators p1 ` x

2 qµpΣ0qi. First, we recall that

KHI2˚pY,Kq “

g
à

j“´g

KHI2˚pY,K; jq

where KHI˚pY,Kq is the generalized eigenspace of µpptq acting on I2˚pZ, c1q with eigen-
value 2, and KHI2˚pY,K; jq is the simultaneous generalized eigenspace of pµpptq, µpΣ0qq

acting on I2˚pZ, c1q with eigenvalues p2, 2jq. We compute:

pD2
X,wpeΣ0q “ 2

8
ÿ

i“0

1

i!
trs

´

I2pX 1, w1, p1 `
x

2
qµpΣ0qiq

¯

“ 2

g
ÿ

j“´g

8
ÿ

i“0

1

i!
χpKHI˚pY,K; jqq2p2jqi “ 4

g
ÿ

j“´g

Aje
2j

whereAj is the coefficient of tj in ∆pY,Kqptq. Here, in the last equality, we have used that the
graded Euler characteristic of KHI˚pY,Kq is the Alexander polynomial [KM10, Lim10].
The “2” appearing outside the summands in the middle expressions comes from a gluing
factor (see the discussion [KM11, §5.2]). In particular, we obtain

SWXpKrq “ Ar. (9.5)

We then repeat this analysis in the Up3q setting. Assume X is Up3q simple type (we
predict this is true, but we cannot adapt the above argument in the Up2q case; see Remark
6.28). Mariño and Moore [MM98] conjecture that the basic classes in the Up3q structure
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theorem are the same as the Up2q basic classes (see also [DX20, Conjecture 7.2]). The Up3q

structure theorem then gives the following:

pD3
X,wpes2pΣ0qp2q`s3pΣ0qp3qq “

ÿ

i,j

ci,je
s2

?
3pi`jq`s3

?
´3pi´jq. (9.6)

The conjecture also states that the constants ci,j are given by

ci,j “ 2χpXq` 3
2
σpXq` 1

2
Ki¨Kj32` 7

4
χpXq` 11

4
σpXqSWXpKiqSWXpKjq

“ 9SWXpKiqSWXpKjq. (9.7)

We compute that the left side of (9.6) is also equal to the following (where the “3” on the
outside of the first sum comes from a gluing factor analogous to the N “ 2 case):

3
8
ÿ

k,l“0

1

k!l!
trs

˜

I3pX 1, w1, p1 `
xp2q

3
`
x2

p2q

9
qps2µ2pΣ0qqkps3µ3pΣ0qqlq

¸

“ 3
ÿ

pa,bqPCg`1

8
ÿ

k,l“0

1

k!l!
χpKHI3˚pY,K; a, bqq3p

?
3aqkp

?
´3bql

“ 9

g
ÿ

pa,bqPCg`1

Aa,be
?
3as2`

?
´3bs3

where Aa,b is the coefficient of ta2t
b
3 in ∆3

pY,Kq
pt3, t3q. By (9.5), (9.6) and (9.7), we get:

Aa,b “ cpa`bq{2,pa´bq{2 “ Apa`bq{2Apa´bq{2.

This establishes (9.2) under the assumptions stated above, apart from an overall sign ˘,
which is determined by conventions that are not discussed here.

A question arises regarding the extent to which the relationship (9.2), which is at the level
of graded Euler characteristics, might hold at the level of Floer homologies. For example,
in the special case that the Up2q and Up3q instanton knot homology groups of pY,Kq are
supported in even gradings, (9.2) implies a vector space isomorphism

KHI3˚pY,Kq – KHI2˚pY,Kq bKHI2˚pY,Kq. (9.8)

Thus, along the same lines following (8.19), we are led to ask: is there a knot for which the
isomorphism (9.8) does not hold?

Remark 9.9. The 4-manifold X “ S1 ˆ ZpKq is an instance of Fintushel–Stern’s knot
surgery on a standard T 2 inside the 4-torus T 4, and the relationship (9.5) is the same kind that
is established in [FS98] between Seiberg–Witten invariants and the Alexander polynomial
(see [Ni17] for a more general statement, relevant to our case). One approach to proving (9.2)
is to establish Fintushel–Stern knot surgery formulas in the setting of Donaldson invariants,
of type Up2q and Up3q, removing the dependency of the above argument on conjectural
relationships to Seiberg–Witten theory.
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Remark 9.10. The Up2q instanton knot homology group KHI2˚pY,Kq is isomorphic to a
version of singular instanton homology where one takes the connected sum of pY,Kq with
the Hopf link in S3, uses a bundle associated to an arc connecting the two resulting link
components, and the singular condition is that the holonomy of a connection along shrinking
meridians limits to an element in Up2q conjugate to diagpi,´iq. See [KM11, §5.4].

The Up3q instanton knot homology KHI3˚pY,Kq is isomorphic to a version of Up3q

singular instanton homology as developed in [KM11b], using a similar description as above,
but with the singular condition that the holonomy of a connection along shrinking meridians
limits to an element in Up3q conjugate to diagp1, ζ, ζ2q. A similar application of excision as
in [KM11] can be used to give this isomorphism.

A natural question is whether the relationship between Khovanov homology and the
instanton group KHI2˚pS3,Kq established in [KM11] has a counterpart in the setting of
Up3q (or more generally, UpNq), and if so, what quantum knot homology theory plays the
role of Khovanov homology in this setting.
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