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Abstract. The cosmetic surgery conjecture predicts that for a non-trivial knot in the three-sphere,
performing two different Dehn surgeries results in distinct oriented three-manifolds. Hanselman
reduced the problem to ±2 or ±1/n-surgeries being the only possible cosmetic surgeries. We
remove the case of ±1/n-surgeries using the Chern–Simons filtration on Floer’s original irreducible-
only instanton homology, reducing the conjecture to the case of ±2-surgery on genus 2 knots with
trivial Alexander polynomial. Along the way, we establish a new surgery relationship for Floer’s
instanton homology and prove some similar results for surgeries on knots in S2 × S1.

1. Introduction

1.1. Cosmetic surgeries. For a knot K in S3, let the result of p/q-surgery be denoted S3
p/q(K).

If U is the unknot, then S3
p/q(U) = L(p,−q) and hence there are infinitely many different surgeries

on U that can produce orientation-preserving diffeomorphic three-manifolds. The cosmetic surgery
conjecture [Gor91, Conjecture 6.1] (see also [Kir97, Problem 1.81A]) predicts that the unknot is
very special in this regard:

Conjecture 1.1. Let K be a non-trivial knot in S3. If p/q ̸= p′/q′, then S3
p/q(K) and S3

p′/q′(K)

are not orientation-preserving diffeomorphic.

For notation, we say that p/q and p′/q′ are a cosmetic pair. Note that the orientations here
are key. For example, S3

p/q(41) is orientation-reversing diffeomorphic to S3
−p/q(41) for any p/q since

the figure-eight knot is amphichiral. As a less tautological example, the trefoil admits the chirally
cosmetic surgery S3

9(31)
∼= −S3

9/2(31) [DM91].

There has been quite a lot of progress on this conjecture. For example, ∞ can never be part
of a cosmetic pair [GL89, Theorem 2]. A sequence of results using Heegaard Floer homology
[Wan06,OS11,Wu11,NW15,Han23] gave increasingly stronger constraints on the potential surgery
slopes. In particular, [NW15, Theorem 1.2] and [Han23, Theorem 2(i)] combine to give:

Theorem 1.2. If p/q, p′/q′ are a cosmetic pair for a non-trivial knot K ⊂ S3, then p/q = −p′/q′.
Furthermore, p/q = ±2 or ±1/n for some non-zero integer n.

We remark that these arguments using Heegaard Floer homology also give further constraints on
the cosmetic surgery slopes given more information about the knot (e.g. its knot Floer homology).
Hanselman verified the cosmetic surgery conjecture for all knots up to 16 crossings [Han23, Theorem
6]. There have also been many important advances using other aspects of low-dimensional topology.
Detcherry found various obstructions using quantum invariants, and checked the conjecture for
knots up to 17 crossings [Det21, Corollary 1.10]. Additionally, work of Futer–Purcell–Schleimer
[FPS22, Theorem 7.29] rules out cosmetic pairs for hyperbolic knots roughly whenever the slopes
have large enough length. They were then able to use a variety of bounds, including Chern–Simons
invariants, to verify the cosmetic surgery conjecture for all knots up to 19 crossings [FPS24, Theorem
2.10]. For some other examples of the variety of progress on the cosmetic surgery conjecture, see
[Ito23,SS21,Tao22].
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There is some upper limit on what the Heegaard Floer homology techniques can give: Ozsváth–
Szabó observed that the Heegaard Floer homology of the 1 and −1 surgeries on the knot 944 are
graded isomorphic [OS11]. In the current article, we incorporate the values of the Chern–Simons
functional on instanton Floer homology to obtain more information.

Theorem 1.3. If K is a non-trivial knot in S3, then S3
1/n(K) and S3

−1/n(K) are not orientation-

preserving diffeomorphic for any integer n ̸= 0. Furthermore, they cannot be related by a ribbon
homology cobordism.

Recall that a ribbon homology cobordism is a homology cobordism that admits a handle decom-
position without any 3-handles [DLVVW22].

Combining this theorem with the previous literature and a quick Casson invariant computation
(see Theorem 6.1 below) yields:

Corollary 1.4. If a non-trivial knot admits a cosmetic surgery, then the pair of slopes is ±2, the
knot has genus 2, the Alexander polynomial is trivial, and the value of the Jones polynomial at
e2πi/5 is 1. In particular, the cosmetic surgery conjecture holds for fibered knots, knots which are
not topologically slice, and HFK-thin knots.

Proof. That the only possible pair of cosmetic slopes is ±2 is a combination of Theorems 1.2 and
1.3. Hanselman shows that if ±2 is a cosmetic pair, then the knot has genus 2. The claim about
the Jones polynomial of K follows from [Det21, Theorem 1.4]. Finally, in Theorem 6.1 below, we
show that in this special case the Alexander polynomial must be trivial. Since non-trivial knots
with Alexander polynomial one are non-fibered, are topologically slice [Fre84,FQ90], and have thick
knot Floer homology [OS04b,OS04a], we have the desired result. □

Remark 1.5. Since any alternating knot is HFK-thin, Corollary 1.4 implies that the cosmetic
surgery conjecture holds for alternating knots. For a large family of alternating knots, this was
already verified in the recent work [IJ24].

Remark 1.6. Dave Futer has reported to the authors that there are in fact no non-trivial knots
with at most 17 crossings which have both JK(e2πi/5) = 1 and ∆K = 1. We also remark that the
results of [Det21] can be used to give further constraints for the remaining case of surgery slopes
±2 in terms of colored Jones polynomial of K.

Remark 1.7. Combined with work of Ravelomanana [Rav18], this proves that there are no excep-
tional cosmetic surgeries on hyperbolic knots in S3.

Using similar arguments, we are also able to prove a restricted cosmetic surgery statement in
S2 × S1.

Theorem 1.8. Let L be a knot in S2×S1 which is homologous but not isotopic to {∗}×S1. No two
integral surgeries on L can produce the same oriented three-manifold. Furthermore, they cannot be
related by a ribbon homology cobordism.

Note that the three-manifolds described in Theorem 1.8 are all homology spheres. Furthermore,
they are boundaries of Mazur manifolds and hence are homology cobordant to S3. (A Mazur
manifold is a four-manifold obtained by attaching a 2-handle to S1 × D3 along a curve which
generates H1.) In particular, the homology spheres from Theorem 1.8 are homology cobordant
to each other, but the ones provided by surgeries on the same knot are not related by homology
cobordisms without any 3-handles.

A Mazur manifold is B4 if and only if the attaching curve is isotopic to {∗} × S1 [Gab87].
Theorem 1.8 has the following related four-dimensional consequence. We are not aware of any
other three- or four-dimensional proof of this fact in general.
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Corollary 1.9. Let M be a Mazur manifold other than B4. Changing the framing of the 2-handle
in the Mazur description results in a four-manifold not oriented homeomorphic to M .

As another application of Theorem 1.8, we are able to reprove and extend part of a theorem of
Josh Wang [Wan22, Theorem 1.1].

Corollary 1.10. Let K0 be obtained as a non-trivial band surgery on a two-component unlink. Let
Kn be the result of putting n full twists in the band. For any non-zero integer p, if S3

1/p(Kn) =

S3
1/p(Km) then m = n. Consequently, Kn and Km are distinct knots.

Proof. Fix p. Let γ denote the meridian of the band, thought of as a knot in S3
1/p(K0). This surgery

is not S3 as long as p ̸= 0 and K0 is non-trivial, which is the case when the band is non-trivial
[Sch85]. Then S2 × S1 is 0-surgery on γ, while S3

1/p(Kn) is the result of −1/n-surgery on γ, or

alternatively, integral surgery on the core of γ in S2×S1. The result follows from Theorem 1.8. □

Note that the statement is in some ways slightly stronger than Wang’s theorem for full twists,
as his results do not immediately distinguish the surgered manifolds. However, his results apply to
a broader class of links, namely possibly half-twisted bandings between arbitrary two-component
split links. Wang has proposed a strategy for generalizing Corollary 1.10 to this more general case,
but it seems like the requisite technical machinery for instanton Floer homology is not currently
developed.

Remark 1.11. While we do not do this here, similar ideas to the ones in this paper can be applied
to prove analogous results in other manifolds. For example, suppose K is a knot in RP3 which is
neither null-homologous nor a core curve of the genus 1 Heegaard splitting. Then the two integer
homology spheres which arise as integral surgeries on K are distinct as oriented three-manifolds.

1.2. The strategy and surgery exact triangles in instanton Floer homology. We now
describe our overarching strategy. For the introduction, we give broad strokes for non-experts.
Instanton Floer homology morally assigns to a homology sphere a chain complex over Z[t, t−1]
whose generators corresponds to conjugacy classes of non-trivial SU(2) representations of π1. Any
monomial generator α gets a real value from the Chern–Simons functional denoted CS(α) and a
Z-grading denoted by gr(α). Multiplication by t raises gr(α) by 8 and CS(α) by 1.1 Furthermore,
the differential has degree −1 with respect to gr and is filtered by the Chern–Simons functional.
Our strategy is to show that the Chern–Simons filtered instanton homologies of different surgeries
on knots are different. The strategy is roughly to find an isomorphism which strictly lowers the
filtration. These maps will come from functoriality of instanton Floer complexes with respect to
cobordisms.

A cobordism W : Y → Y ′ between integer homology spheres induces a map of instanton Floer
homologies by counting certain objects called ASD connections, given a choice of bundle on W .
In the simplest case, if W is a negative-definite cobordism and A is an ASD connection over the
trivial SU(2)-bundle on W which is asymptotic to monomial generators α at Y and α′ at Y ′, then
CS(α) ≥ CS(α′) and gr(α) = gr(α′). This inequality is strict if π1(W ) = 0. Consequently, if
W is simply-connected, negative-definite, and W : Y → Y ′ induces an isomorphism on instanton
homology, then we get a filtration decreasing isomorphism of Floer homologies. If the instanton
Floer homology of Y is non-trivial, this is only possible if the filtered instanton Floer homologies of
Y and Y ′ are different, and so the three-manifolds are not orientation-preserving diffeomorphic to

1For the experts, we consider flat connections modulo degree zero gauge transformations, so Chern–Simons can
be viewed as real-valued and the associated Floer homology is Z-graded. Of course, we also need to introduce
perturbations everywhere to obtain the desired transversality results. We assume in this introduction that all moduli
spaces are cut out transversely and so no perturbations are needed.
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each other. This strategy is sufficient to prove Theorem 1.8, which we next describe. The strategy
for 1/n-surgeries is more complicated, and is discussed after the warm-up case of knots in S2 ×S1.

1.2.1. The strategy to prove Theorem 1.8. We will use Floer’s original exact triangle for a knot K
in a homology sphere Y :

(1) . . . → I∗(Y ) → I∗(Y−1(K)) → Iw∗ (Y0(K)) → . . .

where Iw∗ (Y0(K)) is the admissible version of instanton homology for three-manifolds with w de-
termining the bundle data [Flo90,BD95]. If L ⊂ S2 × S1 is given as in the statement of Theorem
1.8, we apply (1) to the case that Y is given by an integral surgery on L and K ⊂ Y is the dual
knot. Then Y0(K) = S2 × S1 and Y−1(K) is the integral surgery on K where we increase the
surgery coefficient by one. Since Iw∗ (S

2 × S1) = 0, the map I∗(Y ) → I∗(Y−1(K)) in (1) is an
isomorphism. This map is induced by the 2-handle cobordism W : Y → Y−1(K), which is negative
definite and simply-connected. Furthermore, I∗(Y ) is non-zero because L is not isotopic to {∗}×S1

[LPCZ23, Theorem 1.3]. Thus the observation in the previous paragraph can be applied to W to
show that Y and Y−1(K) are not orientation-preserving diffeomorphic to each other. By stacking
such cobordisms together, we can more generally show that any two integral surgeries on K are not
orientation-preserving diffeomorphic to each other. The proof of the second part of Theorem 1.8
uses a result from [DLVVW22] about the behavior of instanton Floer homology with respect to
ribbon homology cobordisms to obtain a similar contradiction.

1.2.2. The strategy to prove Theorem 1.3 for n = ±1. Unfortunately, it is generally impossible to
construct a simply-connected, negative definite cobordism from S3

1/n(K) to S3
−1/n(K) whose usual

cobordism map is an isomorphism. Such a map would necessarily have degree zero, but for example
S3
1(31) and S3

−1(31) have their instanton Floer homology supported in different gradings; we need
a variation on the constructions above to make this work. We begin with ±1-surgery.

In order to relate S3
1(K) and S3

−1(K), we need to establish another surgery exact triangle —
which we call the distance-two surgery triangle — and extract information from it in a novel way.
The exact triangle we prove is predicted in [CDX20], who prove an analogous version for Floer
homology with admissible bundles:

Theorem 1.12. Let K be a knot in a homology sphere Y . Then there is an exact triangle of the
following form:

(2) . . . I∗(Y1(K)) → I∗(Y )⊕ I∗(Y ) → I∗(Y−1(K)) → . . .

Remark 1.13. A similar exact triangle for the Heegaard Floer homology groups ĤF is established

as [OS08, Theorem 3.1]. While the groups ĤF should be understood as analogous to the instanton
homology groups I#(Y ), there is no known analogue of Floer’s irreducible instanton homology
groups I∗(Y ) in Heegaard Floer theory.

Taking Y = S3, we obtain an isomorphism from I∗(S
3
−1(K)) to I∗(S

3
1(K)) because I∗(S

3) = 0.

Unfortunately, the cobordism W : S3
−1(K) → S3

1(K) inducing the isomorphism has b+ > 0, and it
does not behave in the desired way with respect to the Chern–Simons filtration; the existence of
this map does not lead to a contradiction.

However, this is not the only cobordism map available to us. In the proof of the exact triangle,
one needs to find a nullhomotopy of the chain map that represents the composition

I∗(Y1(K)) → I∗(Y )⊕ I∗(Y ) → I∗(Y−1(K)).

This nullhomotopy comes from a count of ASD connections over a 1-parameter family of metrics
on a different cobordism W ′. In the case of Y = S3, this count turns out to be a chain map
g1, and even better, a quasi-isomorphism which is a homotopy inverse of the cobordism map for
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W . (It is important to emphasize that the 1-parameter family map is different from the usual
cobordism map for W ′, which is identically 0.) The cobordism W ′ is negative-definite and if α± on
S3
±1(K) are related by an ASD connection over W ′, then 8CS(α+)− gr(α+) > 8CS(α−)− gr(α−);

that is, W ′ induces a strictly filtered map with respect to a degree-shifted Chern–Simons filtration.
The instanton Floer complex is finitely generated over Z[t, t−1] and thus, the function 8CS − gr
is bounded on the collection of all monomial generators. Because g1 is strictly filtered, this once
again implies that the filtered Floer homologies of S3

1(K) and S3
−1(K) are not isomorphic.

This can be explained more succinctly by defining an invariant ℓ(Y ), which is loosely the minimal
value of 8CS−gr on a generator of instanton homology. The exact triangle (2) is used to show that
ℓ(S3

1(K)) > ℓ(S3
−1(K)). By further applying (1) and (2), we obtain a sequence of inequalities

(3) . . . ℓ(S3
1/2(K)) > ℓ(S3

1(K)) > ℓ(S3
−1(K)) > ℓ(S3

−1/2(K)) . . .

which completes the proof that S3
1/n(K) is not orientation-preserving diffeomorphic to S3

−1/n(K).

(The additional inequalities do not require the use of the nullhomotopy maps.) The claim about
ribbon homology cobordisms follows as in the proof of Theorem 1.8.

Remark 1.14. It is worth pointing out that this argument does not require knowing the theorem of
Ni–Wu that S3

p/q(K) = S3
p/q′(K) implies q = ±q′.

Remark 1.15. Cobordism maps with respect to families of metrics are widely used in Floer theory;
for instance, these are used to prove that the cobordism map is independent of metric, and they are
used in the proof of Floer’s exact triangle. They are also relevant in the study of diffeomorphism
groups of 3- and 4-manifolds. To the best of the authors’ knowledge, however, Theorem 1.3 is the
first known example where such a map is used to define an isomorphism of Floer homology groups.

In [LLP23, Proposition 1.15], it was shown that the existence of a non-trivial knot K with
S3
1(K) = S3

−1(K) would produce an exotic S1×S3#S2×S2. This is now ruled out by Theorem 1.3.

Similarly, if there exist non-trivial knots K1, . . . ,Kn such that S3
1(Ki) = S3

−1(Ki+1) for i = 1, . . . , n

with indices computed mod n, then there exists an exotic S3 × S1#nS
2 × S2. By the inequalities

in (3), we see this is also impossible.

Theorem 1.16. Let K1, . . . ,Kn be a sequence of knots and a1, . . . , an and b1, . . . , bn integers with
ai > bi+1 with indices computed mod n. If S3

1/ai
(Ki) = S3

1/bi+1
(Ki+1) for all i, then all Ki are

unknotted.

Remark 1.17. It is natural to wonder whether our arguments can be applied to the case of ±2
surgery. Even though S3

±2(K) are not integer homology spheres, these still have a well-defined

filtered irreducible instanton homology I∗(S
3
±2(K)), and one can define invariants ℓ(Y±2). We have

ℓ(S3
1(K)) > ℓ(S3

2(K)) and ℓ(S3
−2(K)) > ℓ(S3

−1(K)), but our initial investigations suggest that it is

more difficult to compare the values ℓ(S3
±2(K)) even though these manifolds have isomorphic Floer

homology. In addition, while there exist variations on Theorem 1.12 relating the instanton homolo-
gies of ±2 surgery, the variations known to the authors at the time of writing are all inadequate
in some way: for one variation, the complex replacing C∗(S

3)⊕ C∗(S
3) is no longer trivial so that

the map g1 is no longer a chain map; for another variation, this complex is trivial and g1 is a chain
map, but it behaves unfavorably with respect to the Chern–Simons filtration. We plan to explore
this circle of ideas elsewhere.

Organization

In Section 2, we review the basics of persistent homology, including a variation in the instanton
setting. We then introduce the invariant ℓ used above and verify its basic properties. In Section
3, we recall the necessary background material on filtered instanton Floer homology, and state the
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new results relating to the distance-two exact triangle. In Section 4 we prove Theorems 1.8 and
1.3, taking for granted the distance-two exact triangle of Theorem 1.12; we establish the existence
of this exact triangle in Section 5, which comprises about half of the paper. The final Section 6
gives a short proof that if K admits cosmetic surgeries then ∆K(t) = 1.
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2. Filtered groups and numerical invariants

Real-valued lifts of the Chern–Simons functional have been used extensively to define filtered
algebraic structures and extract numerical invariants of 3-manifolds, and these numerical invariants
have had extensive topological applications [Fur90,HK11,Dae20,NST24].

Here we will use the language of persistent homology to define the relevant algebraic structure.
A persistence module is a collection of R-modules FrV indexed by r ∈ R ∪ {∞}, together with

connecting homomorphisms ir
′

r : FrV → Fr′V when r ≤ r′ which are functorial in the sense

that ir
′′

r′ i
r′
r = ir

′′
r [ELZ02, ZC05]. The basic example is the interval module, and over a field every

persistence module decomposes into these basic pieces:

Example 2.1. Suppose I ⊂ R is an interval I. The interval module RI has

FrRI =

{
R r ∈ I

0 otherwise,

with connecting homomorphisms ir
′

r equal to the identity if r, r′ ∈ I and equal to zero otherwise.

Theorem 2.2 ([CB15]). Suppose V is a persistence module over a field k for which FrV is finite-
dimensional for all r. Then there exist a collection of intervals I1, I2, . . . and an isomorphism of
persistence modules V ∼=

⊕
j kIj .

The collection of intervals in a direct sum decomposition V =
⊕

j kIj is well-defined, and called
the barcode of V . Notice that the statement above does not imply that there are finitely many
intervals in the barcode for V , only that each r ∈ R lies in finitely many of these intervals.

In the instanton theory, the filtration has a natural 8-periodicity, so we introduce the closely
related notion of instanton persistence modules or IP -modules.

Definition 2.3. An IP -module A over the ring R consists of the following data.

(i) For each integer d and each r ∈ R ∪ {∞}, an R-module FrAd, and an isomorphism φr,d :
FrAd → Fr+1Ad+8.

(ii) For each integer d and each r ≤ r′, a homomorphism ir
′

r : FrAd → Fr′Ad.

We demand that these satisfy the following:

(a) The map irr is the identity, ir
′′

r′ i
r′
r = ir

′′
r , and φr′,di

r′
r = ir

′+1
r+1 φr,d.

(b) For each d, we have FrAd = 0 for sufficiently small r ∈ R, while the map i∞r : FrAd → F∞Ad

is an isomorphism for sufficiently large r ∈ R.

When there is no risk of confusion, we will often write Ad in place of F∞Ad.
In the case of an IP -module V over a field k, with each FrVd finite-dimensional, so that Vd

∼=⊕
j kIj,d , the periodicity property is essentially equivalent to the statement that the barcode in

degree d+ 8 is a shift of the barcode in degree d. More precisely, the number of intervals Ij,d and
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Ij,d+8 is the same, and each interval Ij,d+8 of Vd+8 is the shift Ij,d + 1 of a corresponding interval
for Vd.

We will only use fairly crude numerical invariants, which ignore much of the structure of an
IP -module.

Definition 2.4. If A is an IP -module, define κA : Z → [−∞,∞] and ℓ(A) ∈ [−∞,∞] as

κA(d) = inf{r ∈ R | i∞r : FrAd → Ad is nonzero},
ℓ(A) = inf{κA(d)− d/8 | d ∈ Z}.

These are transparently invariant under IP -module isomorphisms (isomorphisms FrAd
∼= FrBd

which commute with the structure maps). If we work over a field k and A is a direct sum of interval
modules, then κA(d) is the least r such that [r,∞] appears in the barcode of Ad, while ℓ(A) is the
least r such that [r + d/8,∞] appears in the barcode of Ad for some d.

Lemma 2.5. The κ and ℓ invariants satisfy the following properties.

(a) We have κA(d) > −∞ for all d, and κA(d) = ∞ if and only if Ad = 0.
(b) We have κA(d+ 8) = κA(d) + 1.
(c) We have ℓ(A) > −∞, and ℓ(A) = ∞ if and only if Ad = 0 for all d.

Proof. The first claim follows immediately from axiom (b) of an IP -module. For the second claim,
we may assume κA(d) = r < ∞. Suppose x ∈ Fr+ϵAd has i∞r+ϵx = y ̸= 0. Then by axiom (a), we
have

i∞r+1+ϵφr+ϵ,d(x) = φ∞,di
∞
r+ϵ(x) = φ∞,d(y) ̸= 0.

The last claim holds because y ̸= 0 and φ∞,d is an isomorphism. Because y ∈ Fr+1Ad+8, it follows
that κA(d + 8) ≤ κA(d) + 1 + ϵ for all ϵ > 0, and hence that κA(d + 8) ≤ κA(d) + 1. The other
inequality is similar. For the last claim, observe that κA(d) − d/8 is an 8-periodic function, and
hence takes on only finitely many values. The minimum of these values is infinite if and only if
κA(d) = ∞ for all d, so the result follows from (a). □

Next, we introduce the type of morphisms relevant to us.

Definition 2.6. Suppose A and B are IP -modules. An IP -morphism f : A → B of degree D
and level L is a collection of homomorphisms fr,d : FrAd → Fr+LBd+D satisfying

fr′,di
r′
r = ir

′+L
r+L fr,d, fr+1,d+8φr,d = φr+L,d+Dfr,d.

Lemma 2.7. Suppose f : A → B is an IP -morphism of degree D and level L.

(a) If f∞,d : Ad → Bd+D is injective, then κB(d+D) ≤ κA(d) + L.
(b) If f∞,d is injective for all d, then ℓ(B) ≤ ℓ(A) + (L−D/8).

Proof. If κA(d) = ∞ the first claim is vacuous, so suppose κA(d) = r < ∞, and that x ∈ Fr+ϵAd

has i∞r+ϵ(x) ̸= 0. Setting y = fr+ϵ,d(x) ∈ Fr+ϵ+LBd+D, we have

i∞r+ϵ+L(y) = f∞,di
∞
r+ϵ(x) ̸= 0,

as f∞,d is injective. It follows that κB(d+D) ≤ κA(d)+L+ ϵ for all ϵ > 0, proving the first claim.
As for the second claim, we have

ℓ(B) = inf{κB(d+D)− d/8−D/8 | d ∈ Z}
≤ inf{κA(d)− d/8 + L−D/8 | d ∈ Z} = ℓ(A) + (L−D/8). □

Remark 2.8. The above statement also has an interpretation in terms of barcodes when working
over a field. If fr′,d is injective, and [r, r′] is an interval in the barcode of Ad, then [r+L, r′ +L] is
contained in an interval in the barcode of Bd+D. Lemma 2.7(a) above is the case r′ = ∞.
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We will later need a mild generalization of the above claim.

Lemma 2.9. Suppose A,B are IP -modules, and f i : A → B is an IP -morphism of degree Di and
level Li for i = 1, 2. If the map (f1

∞, f2
∞) : Ad → Bd+D1 ⊕Bd+D2 is injective for all d, then we have

ℓ(B) ≤ ℓ(A) + max(L1 −D1/8, L2 −D2/8).

Proof. If ℓ(A) = r, for all ϵ > 0 there exists some d and x ∈ Fr+ϵ+d/8Ad so that i∞r+ϵ+d/8(x) ̸= 0.

Because (f1
∞, f2

∞) is injective, for some i ∈ {1, 2} we have

0 ̸= f i
∞i∞r+ϵ+d/8(x) = i∞r+ϵ+d/8+Li

(f i
r+ϵ+d/8x).

As f i
r+ϵ+d/8(x) ∈ Fr+ϵ+d/8+Li

Bd+Di
, this implies that

ℓ(B) ≤ κB(d+Di)− d/8−Di/8 ≤ (r + ϵ+ d/8 + Li)− d/8−Di/8

= ℓ(A) + ϵ+ (Li −Di/8) ≤ ℓ(A) + max(L1 −D1/8, L2 −D2/8) + ϵ.

Taking ϵ to zero completes the argument. □

3. Instanton Floer homology

In this section, we review the aspects of instanton Floer theory necessary to prove our main
results. At first, we let R be an arbitrary commutative ring. Later we will specialize to R = F2.

Proposition 3.1. Floer’s instanton homology groups satisfy the following properties.

(a) If Y is an integer homology sphere, there is an associated Z/8-graded module Id(Y ;R), in-
variant under orientation-preserving diffeomorphism and functorial under cobordisms (W, c) :
Y → Y ′ with b1(W ) = b+(W ) = 0, where c ⊂ W is a closed, oriented, embedded surface.

(b) If Y ′ is a homology S2 × S1, there is an associated Z/4-graded module Iwd (Y
′;R), again

invariant under orientation-preserving diffeomorphism.
(c) We have Id(S

3;R) = 0 and Iwd (S
2 × S1;R) = 0 for all d.

Proof. For integer homology spheres see [Flo88]. For homology S2 × S1 see [Flo90]; this is the
instanton Floer homology of Y ′ equipped with a U(2)-bundle with odd first Chern class. This
bundle is a non-trivial admissible bundle, which supports no reducible connections. The vanishing
result follows because neither S3 nor S2 × S1 (with the corresponding non-trivial U(2) bundle)
admits irreducible projectively flat U(2)-connections. □

More general functoriality statements hold, but we will not need them. We will also suppress the
base ring R from notation.

In the case of integer homology spheres, these groups have a natural enrichment to IP -modules.

Proposition 3.2. If Y is an integer homology sphere, the graded module I∗(Y ) may be enriched
with the structure of an IP -module I(Y ), invariant under orientation-preserving diffeomorphism.

Remark 3.3. Keep in mind that I(Y ) is the data of FrId(Y ) for all r ∈ R∪{∞} and d ∈ Z, together
with connecting homomorphisms i and periodicity maps φ. On the other hand, I∗(Y ) is the data
of Id(Y ) for all d ∈ Z/8. In particular, I∗(Y ) is the direct sum of F∞Id(Y ) for all d ∈ Z/8. (Note
that our assumptions on IP -modules imply that F∞Id(Y ) depends only mod 8 value of d.) In
summary, I∗(Y ) is part of the information contained in I(Y ).

Proof. This claim is strictly weaker than the result of the main constructions of [Dae20,NST24].
(The language of IP -modules is closer to the language used in [NST24].) Both papers also pay close
attention to the interaction with the reducible connection, which is irrelevant for our purposes. We
briefly review the construction.
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Write B∗(Y ) for the space of irreducible SU(2)-connections on the trivial bundle over Y , modulo
gauge. This space is equipped with the Chern–Simons functional CS : B∗(Y ) → R/Z. The
universal cover of this space, the space of irreducible SU(2)-connections modulo degree-zero gauge

transformations, carries a canonical Z-periodic lift C̃S : B̃∗(Y ) → R. We determine the lift by
requiring that the natural extension to the space of all SU(2)-connections modulo degree-zero

gauge transformations has C̃S(θ) = 0, where θ is the trivial connection.
So long as r is not a critical value of the Chern–Simons function on Y , we define FrId(Y ) to

be the degree-d Morse homology of the sublevel set C̃S
−1

(−∞, r], with respect to an appropriately
perturbed Chern–Simons functional. The degree i(α) of an irreducible connection α is defined to be
the index of the (appropriately perturbed) ASD operator D+

A associated to a connection on R× Y
which is equal to α at −∞ and the trivial connection θ at +∞.

For r not a critical value, that this Morse homology is well-defined is given as [NST24, Lemma 2.6]
(when comparing, take s = −∞). To simplify the definition of IP -module, we extend the definition
of FrId(Y ) to include the critical values by demanding this assignment be right-continuous: for r
a critical value we set FrId(Y ) = Fr+ϵId(Y ) for sufficiently small ϵ > 0. □

The functoriality of Proposition 3.1 extends to IP -morphisms.

Proposition 3.4. Suppose W : Y → Y ′ is a cobordism between integer homology spheres with
b1(W ) = b+(W ) = 0, and c ⊂ W is an embedded oriented surface. Then there is a constant
η(W, c) ≥ 0 which is strictly positive if π1(W ) = 0 and an induced IP -morphism (W, c)∗ : I(Y ) →
I(Y ′) of degree D = −2c2 and level L = −c2/4 − η(W, c), which enriches the cobordism maps of
Proposition 3.1(a).

Remark 3.5. The data of (W, c)∗ : I(Y ) → I(Y ′) consists of induced maps (W, c)∗ : FrId(Y ) →
Fr+LId+D(Y

′) for all r ∈ R ∪ {∞} and d ∈ Z compatible with the connecting homomorphisms
i and periodicity maps φ. In particular, we use the same notation (W, c)∗ for the induced map
Id(Y ) → Id+D(Y

′) on Floer’s instanton homology.

Proof. When c = ∅, the final claim is established for a more complicated chain complex in [Dae20,
Proposition 2.15, Lemma 2.35] and similarly [NST24, Lemma 2.10-2.11]. These maps arise by
counting irreducible connections of index zero on the trivial SU(2)-bundle over W satisfying an
appropriately perturbed ASD equation. While the latter reference only defines these maps for r
outside the critical set of the two Chern–Simons functions, again we may extend them to all r in a
right-continuous fashion.

The cobordism map for nonempty c is given by the same construction, counting connections on
the U(2)-bundle Ec over W with c1(Ec) Poincaré dual to c, for which the traceless part of the
curvature F0(A) satisfies a perturbed version of the ASD equation F0(A)+ = 0. Here we count
connections whose induced connection on the determinant bundle is fixed, modulo determinant-1
gauge transformations. The proof that this map is well-defined goes through with no change, but
we will discuss the computation of its degree and level.

Given critical values α, α′ of the perturbed Chern–Simons functional of Y , Y ′, we can form the
moduli space of connections on Ec satisfying the perturbed ASD equation and asymptotic to α and
α′ on the ends. This moduli space has connected components with different expected dimensions.
Furthermore, the expected dimension of the connected component containing a connection A is
uniquely determined by the topological energy of A defined as

(4) E(A) =
1

8π2

∫
tr(F0(A)2).

We use the following convention to fix a subspace M(W, c;α, α′) of the moduli space of instantons
on Ec with a fixed expected dimension.
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The bundle Ec has a splitting as Lc ⊕ C where Lc is a line bundle whose c1 is Poincaré dual to
c. If Ac is a connection on Lc which is asymptotic to the trivial connection on the ends, then it
induces a reducible connection on Ec compatible with the splitting Lc ⊕ C, which we still denote
it by Ac. The quantity E(Ac) is equal to −c2/4 by Chern–Weil theory. Then the moduli space
M(W, c;α, α′) consists of gauge equivalence classes of instantons A on Ec that are asymptotic to
α, α′ on the ends, and their topological energy satisfies

E(A) = E(Ac) + C̃S(α)− C̃S(α′)

= −c2/4 + C̃S(α)− C̃S(α′).(5)

Now we turn to the definition of (W, c)∗. The coefficient of α′ in (W, c)∗(α) is given by counting
the number of points in M(W, c;α, α′) when this space has expected dimension zero. Observe that
by additivity of the ASD index [Don02, Equation (3.2), Proposition 3.10], we have

i(W, c;α, α′) = i(α) + 3 + i(W, c; θ, θ′) + 3 + i(Y ′; θ′, α′)

= i(α) + 3 + i(W, c; θ, θ′)− i(α′).(6)

Here i(W, c;α, α′) denotes the index of the ASD operator associated to connections on W that are
asymptotic to α, α′. The other terms above are defined in a similar way. Using the index formula
for the ASD operators, we have i(W, c; θ, θ′) = −2c2 − 3. Using this and (??), i(W, c;α, α′) = 0 if
and only if i(α′) = i(α)− 2c2, giving the degree.

To determine the level, we argue similarly. Following [Dae20, Definition 3.46], let η(W, c) denote
the least topological energy of any ASD connection on (W,Ec) with irreducible flat limits. Since the
topological energy of any instanton is non-negative, the quantity η(W, c) is also non-negative. Fur-
thermore, if η(W, c) is zero, then Ec admits some projectively flat U(2)-connection with irreducible
limits, and therefore its adjoint bundle admits a flat connection with irreducible limits. It follows
that there is a homomorphism π1(W ) → SO(3) which restricts to a non-trivial homomorphism on
both ends. Conversely, if π1(W ) = 0, then η(W, c) > 0. In the definition of ⟨(W, c)∗α, α

′⟩, we count
instantons with irreducible flat limits α and α′. Therefore, (5) implies that

C̃S(α′) = C̃S(α)− c2/4− E(A) ≤ C̃S(α)− 1

4
c2 − η(W, c).

This gives the claim about the level of (W, c)∗. □

Proposition 3.2 allows us to define numerical invariants of integer homology spheres, while Propo-
sition 3.4 — together with Lemma 2.7 — allows us to analyze their behavior under certain cobor-
disms. We will now focus on R = F2.

Definition 3.6. Suppose Y is an integer homology sphere. We define κY : Z → R ∪ {∞} and
ℓ(Y ) ∈ R ∪ {∞} as

κY (d) = κI(Y ;F2)(d), ℓ(Y ) = ℓ(I(Y ;F2)),

the numerical invariants of the IP -module associated with Y .

These quantities are invariant under orientation-preserving diffeomorphisms of integer homology
spheres. Notice that Lemma 2.5(c) immediately implies that ℓ(Y ) ∈ R if and only if Id(Y ;F2) ̸= 0
for some d ∈ Z/8.

3.1. Exact triangles. We state the two exact triangles relevant to this paper. The first is now
classical, and due to Floer; the second originates, in the context of admissible bundles, in [CDX20].
In this section, Y is an integer homology sphere, K ⊂ Y is a knot, and Yr(K) is the manifold
obtained by r-surgery on K.
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The following is [Flo90, Theorem 2.4]. Our index convention compares to Floer’s as i(α) =
−3 − iFloer(α). Here, we collapse the Z/8-grading on I∗(Y ) to a Z/4-grading, so for instance the
degree 1 mod 4 part of I∗(Y ) is I1(Y )⊕ I5(Y ).

Proposition 3.7. There is an exact triangle of Z/4-graded modules

I∗(Y ) I∗(Y−1(K))

Iw∗ (Y0(K))

[−3]

W∗

The horizontal homomorphism is the cobordism map associated to the 2-handle cobordism, and the
leftmost homomorphism has degree −3.

In particular, by Proposition 3.4, the homomorphism W∗ : I∗(Y ) → I∗(Y−1) naturally extends
to an IP -morphism I(Y ) → I(Y−1) of degree and level zero.

We will establish the following distance-two surgery exact triangle only over R = F2, to avoid
checking tedious details with signs. The result is expected to hold with coefficients in any commu-
tative ring.

Proposition 3.8. There is an exact triangle of Z/8-graded F2-vector spaces

I∗+2(Y−1(K);F2) I∗(Y1(K);F2)

I∗(Y ;F2)⊕ I∗+2(Y ;F2)

(W ′,c′)∗⊕W ′
∗

[−1]

W∗⊕(W,c)∗

The diagonal homomorphisms are induced by direct sums of cobordism maps, where W and W ′ are
the 2-handle cobordisms with c, c′ the cocore and core respectively, capped off with a Seifert surface
in Y to give a closed surface.

Here, because of the degree shift in the domain, the statement that the top homomorphism
I∗+2(Y−1) → I∗(Y1) has degree −1 means that Id(Y−1) maps to Id−3(Y1).

Now Proposition 3.4 states that the rightmost and leftmost homomorphisms have natural ex-
tensions to a direct sum of IP -morphisms. The morphisms W∗ and W ′

∗ have degree zero and
nonpositive level, while (W, c)∗ and (W ′, c′)∗ have degree 2 and level at most 1/4. It will be rele-
vant later that L−D/8 ≤ 0 in both cases, with strict inequality if π1(Y \K) is normally generated
by the meridian µK . The proof of Proposition 3.8 will be given in Section 5.4.

When Y = S3, the top map is an isomorphism. The proof of the exact triangle in this particular
case gives an explicit description of its inverse, a map g1 : I∗(Y1(K);F2) → I∗−1(Y−1(K);F2). This
map is obtained by counting instantons on the composite cobordism with respect to a certain one-
parameter family of metrics on the composite. As a result, it gives rise to an IP -morphism. We
record its properties in the following proposition, whose proof is given in Section 5.5.

Proposition 3.9. Let K be a knot in S3. Then there is an IP -morphism g1 : I(S3
1(K);F2) →

I(S3
−1(K);F2) of degree 3 and level 1

4 − η(K), where η(K) ≥ 0 is strictly positive when K is not

the unknot. The induced map on Floer’s instanton homology Id(S
3
1(K);F2) → Id−1(S

3
−1(K);F2) is

an isomorphism.
11



4. Proof of the main theorems

Here we use the results stated in the previous section to prove our main results.

4.1. Proof of Theorem 1.8. Theorem 1.8 follows from the following more precise claim. To set
notation, let L be a knot in S2 × S1 which generates H1 and fix a choice of framing curve λ. Let
Sn(L) be the three-manifold obtained by surgery on L with framing nµ+ λ. Note that Sn(L) is a
homology sphere for every n. We write Kn ⊂ Sn(L) for the dual knot.

Theorem 4.1. In the situation above, if L is not isotopic to {∗} × S1, we have

∞ > · · · > ℓ(Sn−1(L)) > ℓ(Sn(L)) > ℓ(Sn+1(L)) > · · ·

Proof. Our assumption on L implies that Sn(L) \ N(Kn) ∼= S2 × S1 \ N(L) is an irreducible 3-
manifold whose boundary is incompressible. By [LPCZ23, Theorem 1.3], each Sn(L) has non-trivial
instanton homology, hence ℓ(Sn(L)) < ∞ for all n.

The 2-handle cobordism W (n) : Sn(L) → Sn+1(L) has b+ = 0 and trivial π1. To see the
latter claim, note that the Seifert–Van Kampen theorem implies that π1(W (n)) is isomorphic to
the quotient of π1(S

2 × S1 \ N(L)) by the normalizer of π1(∂N(L)). This is equivalent to the
quotient of π1(S

2×S1) by the normal subgroup generated by the class of L, and hence it is trivial.
Proposition 3.4 gives an IP -morphism W (n)∗ : I(S3

n(L)) → I(S3
n+1(L)) with degree 0 and level

−η
(
W (n)

)
< 0. Applying Proposition 3.7 to the pair (Sn(L),Kn) gives an exact triangle

I∗(Sn(L)) I∗(Sn+1(L))

Iw∗ (S
2 × S1)

[−3]

W (n)∗

By Proposition 3.1(c), Iw∗ (S
2 × S1) = 0, so the induced map W (n)∗ : I∗(Sn(L)) → I∗(Sn+1(L))

is an isomorphism. By Lemma 2.7(b), we see that

ℓ(Sn+1(L)) ≤ ℓ(Sn(L))− η(W (n)).

Because ℓ(Sn(L)) is finite, we in fact have a strict inequality ℓ(Sn(L)) > ℓ(Sn+1(L)) for all n. □

Proof of Theorem 1.8. Theorem 4.1 implies that for any pair of distinct integers n and m, the 3-
manifolds S3

n(L) and S3
m(L) are not orientation-preserving diffeomorphic. Next, let X : S3

n(L) →
S3
m(L) be a ribbon homology cobordism, and let X : S3

m(L) → S3
n(L) be the reverse of X (the

orientation-reversal −X considered as a cobordism in the other direction). Proposition 3.4 implies
that

X∗ : I(S
3
n(L)) → I(S3

m(L)), X∗ : I(S
3
m(L)) → I(S3

n(L))

are IP -morphisms of degree 0 and level 0. Furthermore, [DLVVW22, Theorem 4.1] asserts that
X∗ : I∗(Sn(L)) → I∗(Sm(L)) and X∗ : I∗(Sm(L)) → I∗(Sn(L)) are respectively injective and
surjective homomorphisms of vector spaces for any d. Since it is shown in the proof of Theorem
4.1 that I∗(Sn(L)) and I∗(Sm(L)) are isomorphic, the maps X∗ and X∗ are also isomorphisms on
Floer homology, which extend to IP-morphisms of degree 0 and level 0. By another application of
Lemma 2.7(b), we conclude that ℓ(Sn(L)) = ℓ(Sm(L)), which is a contradiction. □
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4.2. Proof of Theorem 1.3. The proof of Theorem 1.3 is similar, but more intricate, and requires
some more initial input. Henceforth, K denotes a knot in S3. We begin with a computation of
instanton Floer groups for surgeries on a knot.

The following statement is restricted to the case R = F2 because Proposition 3.8 is. An interested
reader willing to lift the proof of Proposition 3.8 to the integers would be able to generalize the
following statement to allow coefficients in an arbitrary commutative ring.

Lemma 4.2. For any integer n > 0 we have an isomorphism of Z/8-graded F2-vector spaces

I∗
(
S3
−1/n(K);F2

) ∼= n−1⊕
i=0

I∗−2i

(
S3
−1(K);F2

)
, I∗

(
S3
1/n(K);F2

) ∼= n−1⊕
i=0

I∗+2i

(
S3
1(K);F2

)
.

Furthermore, we have isomorphisms of Z/4-graded F2-vector spaces

I∗(S
3
−1(K);F2) ∼= Iw∗ (S

3
0(K);F2) ∼= I∗−3(S

3
1(K);F2).

Proof. The coefficient ring R = F2 will be suppressed from notation for the rest of the argument.
We will prove the first statement for I∗(S

3
1/n(K)) for n > 0; the argument for I∗(S

3
−1/n(K)) can be

proved similarly. To simplify notation, for this proof we write S1/n = S3
1/n(K).

We will prove the following stronger claim by induction on n ≥ 1:

• For each n there is an isomorphism

φn : I∗(S1/n) →
n−1⊕
i=0

I∗+2i(S1).

• These isomorphisms can be chosen so that for all n ≥ 2, the 2-handle cobordism map
I∗(S1/n) → I∗(S1/(n−1)) is identified with the projection to the first n− 1 coordinates (and

in particular is surjective).2

The base case n = 1 is tautological; one may take φ1 to be the identity.
Suppose the claim is proved for n ≥ 2. Apply Proposition 3.8 to the pair (Y,K) = (S1/n, K̃).

By inductive hypothesis the 2-handle cobordism map W∗ : I∗(S1/n) → I∗(S1/(n−1)) is known to be
surjective, so our exact triangle is in fact a short exact sequence

0 → I∗(S1/(n+1))
W∗⊕(W,c)∗−−−−−−−→ I∗(S1/n)⊕ I∗+2(S1/n)

(W ′,c′)∗⊕W ′
∗−−−−−−−−→ I∗+2(S1/(n−1)) → 0.

Applying the inductive hypothesis, this sequence is isomorphic to the short exact sequence

0 → I∗(S1/(n+1))
φnW∗⊕φn(W,c)∗−−−−−−−−−−→

n−1⊕
i=0

I∗+2i(S1)

n⊕
j=1

I∗+2j(S1)
f⊕π−−−→

n−1⊕
j=1

I∗+2j(S1) → 0,

where π is projection onto the first n− 1 coordinates.
Thus by exactness the map φnW∗ ⊕ φn(W, c)∗ induces an isomorphism

I∗(S1/(n+1)) ∼= {(x, y, z) ∈
n−1⊕
i=0

I∗+2i(S1)
n−1⊕
j=1

I∗+2j(S1)⊕ I∗+2n(S1) | f(x) = y}

∼=
n−1⊕
i=0

I∗+2i(S1)⊕ I∗+2n(S1),

where the final map sends (x, y, z) to (x, z). The isomorphism φn+1 is the composite of these two
identifications. Finally, with respect to these isomorphisms the map I∗(S1/(n+1)) → I∗(S1/n) is

2The corresponding statement for −1/n is that the 2-handle cobordism map W∗ : I∗(S−1/(n−1)) → I∗(S−1/n) is

identified with the inclusion of the first n− 1 coordinates, and in particular is injective.
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given by sending (x, z) to x, completing the induction.

The second claim is Proposition 3.7 applied to the pairs (Y,K) = (S3,K) and (S3
1(K), K̃). □

Corollary 4.3. If K is any non-trivial knot in S3, the vector space I∗(S1/n(K);F2) is non-trivial
for all integers n ̸= 0.

Proof. By the universal coefficient theorem, it suffices to show I∗(S1/n(K);C) ̸= 0. By the preceding
lemma, it is equivalent to show Iw∗ (S0(K);C) ̸= 0. Finally, because K is non-trivial, [KM10,
Proposition 7.16] gives the nonvanishing of a certain summand KHI(K, g) ⊂ Iw∗ (S0(K);C). □

Finally, Theorem 1.3 follows immediately from the following more precise claim.

Theorem 4.4. If K is a non-trivial knot in S3, we have

∞ > · · · > ℓ
(
S3
1/2(K)

)
> ℓ

(
S3
1(K)

)
> ℓ

(
S3
−1(K)

)
> ℓ

(
S3
−1/2(K)

)
> · · ·

In fact, we have ℓ
(
S3
1/n(K)

)
− ℓ

(
S3
−1/n(K)

)
> 1/8 for all n > 0.

Proof. That these ℓ-invariants are all finite follows from Corollary 4.3 and Lemma 2.5(c).
It was established in the proof of Lemma 4.2 that for n > 0, the cobordism Wn : S−1/n(K) →

S−1/(n+1)(K) induces an injection on Floer homology. Thus, Floer’s exact triangle collapses to a
short exact sequence

0 → I∗(S−1/n(K)) → I∗(S−1/(n+1)(K)) → Iw∗ (S0(K)) → 0,

where the first map (Wn)∗ is the cobordism map induced by the simply-connected negative-definite

cobordism Wn : S−1/n(K) → S−1/(n+1)(K) given by attaching a (−1)-framed handle along K̃.
Because (Wn)∗ is injective, and by Proposition 3.4 extends to an IP -morphism

I
(
S−1/n(K)

)
→ I

(
S−1/(n+1)(K)

)
of degree 0 and level−η(Wn) < 0, it follows from Lemma 2.7(b) that ℓ(S−1/n(K)) > ℓ(S−1/(n+1)(K))
for all n > 0.

Next, Proposition 3.9 and Lemma 2.7(b) immediately combine to give

ℓ
(
S3
1(K)

)
≥ ℓ

(
S3
−1(K)

)
−
(
− 1

4
− η(K) + 1/8

)
= ℓ

(
S3
−1(K)

)
+

1

8
+ η(K) > ℓ

(
S3
−1(K)

)
+

1

8
.

Finally, we use that the triangle of Proposition 3.8 also collapses into a short exact sequence

0 → I∗(S
3
1/(n+1)(K)) → I∗(S

3
1/n(K))⊕ I∗+2(S

3
1/n(K)) → I∗+2(S

3
1/(n−1)(K)) → 0.

In particular, the first map is injective. This map is the direct sum W∗⊕(W, c)∗ of cobordism maps,
where W is simply-connected and negative-definite. Proposition 3.4 implies that this enriches to a
direct sum of morphisms of I-modules, the first of which has L1−D1/8 = −η(W ) < 0, the latter of
which has L2 −D2/8 = −η(W, c) < 0. In particular, the larger of the two is still negative. Lemma
2.9 immediately gives

ℓ
(
S3
1/(n+1)(K)

)
> ℓ

(
S3
1/n(K)

)
,

completing the proof. □

Proof of Theorem 1.3. By Lemma 4.2, we see that I∗(S
3
1/n(K);F2) and I∗(S

3
−1/n(K);F2) have the

same rank. As in the proof of Theorem 1.8, we see that if X : S3
1/n(K) → S3

−1/n(K) is a ribbon

homology cobordism and X is its reverse, then the induced maps X∗, X∗ are both isomorphisms.
From this it follows that ℓ(S3

1/n(K)) = ℓ(S3
−1/n(K)), a contradiction. □

14



5. The distance-two surgery triangle

The goal of this section is to construct the exact triangle in Proposition 3.8. The existence
of such an exact triangle is proposed in [CDX20], and our proof here follows closely the proof of
[CDX20, Theorem 1.6], which concerns the analogue of Proposition 3.8 for instanton homology of
admissible bundles with respect to the more general gauge group SU(N). In particular, the proof
of the N = 2 case of [CDX20, Theorem 1.6] provides the skeleton of the proof of Proposition 3.8,
except that we also need to analyze the reducible ASD connections over various cobordisms to
guarantee that they do not cause any issue in the construction of the distance-two surgery triangle.
Our proof of Proposition 3.8 is also formally similar to the proof of Floer’s surgery exact triangle
as given in [Sca15], though the argument is complicated by the presence of the more complicated
‘middle ends’ discussed in Section 5.2.

In the first subsection below, we review a standard homological algebra lemma about exact
triangles. In the next subsection, we review the definition of various cobordisms with families of
Riemannian metrics relevant in the proof of Proposition 3.8. Then we study the reducible ASD
connections with respect to these families of metrics. The proofs of Proposition 3.8 and Proposition
3.9 are given in the final two subsections.

To avoid dealing with the study of orientations of moduli spaces, we work with F2 coefficients in
this section. In particular, all chain complexes in this section are defined over F2.

5.1. Homological algebra of surgery exact triangles. As with many exact triangles in Floer
theory, the proof of Proposition 3.8 is given by the triangle detection lemma (see [Sei08, Lemma
3.7] and [OS05, Lemma 4.2]).

Proposition 5.1. For each i ∈ Z, let (Ci, di) be a chain complex. Suppose that for all i ∈ Z we
are given maps

fi : Ci → Ci−1 gi : Ci → Ci−2 hi : Ci → Ci−3,

which satisfy the following properties:

d2i = 0

di−1fi + fidi = 0

di−2gi + fi−1fi + gidi = 0

di−3hi + fi−2gi + gi−1fi + hidi = qi

where qi : Ci → Ci−3 is an isomorphism. Then the map

Ci+1
(fi,gi)−−−−→ Cone(fi−1)

def
=

(
Ci−1 ⊕ Ci−2[1],

[
di−1 0
fi−1 di−2

])
is a chain homotopy equivalence. In particular, if Hi denotes the homology of (Ci, di), then we have
the following exact triangle:

H−1 H1

H0

(f0)∗

(f−1)∗

(f1)∗

To prove Proposition 3.8, we apply this lemma to the case that

C−1 := CI∗(Y−1(K)), C0 := CI∗(Y )⊕ CI∗−2(Y ), C1 := CI∗(Y1(K)).

More generally, Ck is defined by requiring that Ck = Ck+3 for any k. The homomorphism di in
each case is given by the corresponding Floer differential and the maps fi, gi and hi are given by
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cobordism maps in instanton Floer theory. We recall the definition of these cobordisms in the next
subsection.

5.2. Cobordisms and families of metrics. First we fix some notations for the discussion of the
cobordisms involved in the proof of Proposition 3.8. A cobordim from a 3-manifold Z to another
3-manifold Z ′ with a middle end L is a 4-manifold W with

∂W = −Z ⊔ Z ′ ⊔ L.

We write W : Z
L−→ Z ′ for any such cobordism, and we drop L from the notation when the

choice of the middle end is clear from the context. Given two such cobordisms W0 : Z
L−→ Z ′ and

W1 : Z ′ L′
−→ Z ′′, we may compose them to obtain W0 ◦ W1 : Z

L⊔L′
−−−→ Z ′′. In the following, fix a

knot K in an integer homology sphere Y , and let E(K) denote the exterior of K. We assume that
an identification of ∂E(K) with S1 × S1 is fixed. For −1 ≤ i ≤ 1, let Zi denote the result of 1/i
surgery on the knot K in Y , and extend the definition of Zi to any integer i by requiring that
Zk+3 = Zk for any k.

Form a 4-manifold by gluing [−3,−1]×S1×D2 and [1, 3]×S1×D2 to [−3, 3]×E(K) respectively
along [−3,−1]× ∂E(K) and [1, 3]× ∂E(K) using the identifications 1[−3,−1] × f−1 and 1[1,3] × f1
where f±1 : ∂(S1 ×D2) → ∂E(K) corresponds to ±1-surgery on K. The resulting 4-manifold X
has three boundary components (after smoothing the corners) which may be identified with −Z−1,
Z1 and RP3. In particular, X can be regarded as a cobordism from Z−1 to Z1 with the middle end
RP3. (This is a special case of the construction described in [CDX20, Section 3.1].) A schematic
diagram of this construction is presented as Figure 1 below. Using a similar construction, we
construct cobordisms

X ′ : Z1
S3

−→ Z0, X ′′ : Z0
S3

−→ Z−1.

Filling the S3 boundary components of the latter two cobordisms with 4-balls give rise to the

standard 2-handle cobordisms. For any integer i, let W i
i−1 : Zi

Li−→ Zi−1 be given by either of X,

X ′ or X ′′ where Li is either RP3 or S3. More generally, we define W i
j : Zi

L−→ Zj for any j ≤ i as
the iterated composite

W i
j := W j+1

j ◦ · · · ◦W i
i−1

with L = Li ⊔ · · · ⊔ Lj+1.
An explicit understanding of the cohomology groups of these cobordisms will be useful later

when studying their reducible instantons. The 4-manifolds X, X ′ and X ′′ all have trivial first
cohomology, and their second cohomology groups are isomorphic to Z. In the description of X
above, the cylinders

c− := [−3,−1]× S1 × {0} ⊂ [−3,−1]× S1 ×D2, c+ := [1, 3]× S1 × {0} ⊂ [1, 3]× S1 ×D2

determine relative homology classes for (X, ∂X), and the Poincaré dual of each of these determines
a generator for the second cohomology group of X. The intersection of c± with Z±1 is the dual
knot of the Dehn surgery, and we can glue a Seifert surface of this knot to c± to obtain a properly
embedded surface c± representing the same cohomology class as c± in X. Note that the only
boundary component of c± is in RP3 and the restriction of the cohomology class of c± to this
middle end is the generator of H2(RP3). We may similarly form embedded surfaces c′± ⊂ X ′ and
c′′± ⊂ X ′′ which represent generators of the second cohomologies of X ′ and X ′′. The intersection
form of X is positive-definite and the intersection forms of X ′ and X ′′ are negative definite. Because
each of X,X ′, X ′′ has boundary a union of rational homology spheres, a second cohomology class
has a well-defined square c2 ∈ Q, defined using the isomorphism H2(X, ∂X;Q) → H2(X;Q). For
the cohomology classes above, we have c2± = 1/2, while (c′±)

2 = (c′′±)
2 = −1.
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Figure 1. A representation of the cobordism X = W−1
−2 . The three boundary components

are labeled by their oriented diffeomorphism types; the embedded surface c− = [−3,−1] ×
S1 × {0} is represented as the darker red curve, while c+ is represented as the lighter
blue curve. We visualize c+ and c− by the same picture, with the understanding that the
intersections with integer homology spheres are capped off by Seifert surfaces.

We define a pair of embedded surfaces ĉij , č
i
j ⊂ W i

j by the formulas

ĉ10 = ∅ ⊂ W 1
0 ĉ0−1 = c+ ⊂ W 0

−1, ĉ−1
−2 = c− ⊂ W−1

−2 ,

č10 = c+ ⊂ W 1
0 , č0−1 = c− ⊔ c+ ⊂ W 0

−1, č−1
−2 = c− ⊂ W−1

−2

in the case that j = i − 1. For general i > j, we define ĉij = ĉii−1 ◦ · · · ◦ ĉ
j+1
j , and similarly for čij .

(This is a special case of the more general construction of [CDX20, Section 3.2]).
The cobordism W i

j admits a family of metrics Gi
j parametrized by the associahedron of dimension

i − j − 1. We need these families of metrics with i − j ≤ 3 to define the homomorphisms used
in the proof of Proposition 3.8. So, we only focus on recalling the definition of these families of
metrics within this range. First fix Riemannain metrics on the 3-manifolds Z1, Z0 and Z−1. (This
choice is already assumed in the definition of the complexes Ci in the previous subsection.) Fix
Riemannian metrics Gi

i−1 on the cobordisms W 1
0 ,W

0
−1,W

−1
−2 with cylindrical ends modeled on the

chosen metrics on Z1, Z0 and Z−1 and the round metrics on S3 and RP3. This construction may
be extended to arbitrary i by requiring that Gi+3

i+2 = Gi
i−1.

The family of metrics Gi
i−2 on W i

i−2 is parametrized by the interval [−1, 1]. Each end of the inter-
val corresponds to a Riemannian metric which is broken along a separating codimension-1 subman-
ifold; for a detailed reference discussing such families including broken metrics, see [KMOS07, Sec-
tion 5]. Since W i

i−2 is the composition of the cobordisms W i
i−1 and W i−1

i−2 , the chosen metrics on

these cobordisms determine a metric on W i
i−2, which is broken along an embedded copy of Zi−1.

This metric is the element of the family of metrics Gi
i−2 associated to the endpoint 1 of the interval

[−1, 1]. For 1/3 ≤ t < 1, let T = 1/(1 − t). Then the metric corresponding to t in the family of
metrics is given by removing the subspaces [T,∞) × Zi−1 from W i

i−1 and (−∞,−T ] × Zi−1 from

W i−1
i−2 and then gluing the boundary components Zi−1 together.
The metric corresponding to the other endpoint is given by a broken metric fully stretched along

an embedded copy of S3 or RP3 in W i
i−2. First we consider the cobordism W 1

−1 = X ′ ◦X ′′. This
cobordism is given by gluing

[−5,−3]× S1 ×D2, [−1, 1]× S1 ×D2, [3, 5]× S1 ×D2
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to [−5, 5] × E(K) respectively using the gluing maps 1[−5,−3] × f1, 1[−1,1] × f0 and 1[3,5] × f−1.

(Analogous to f±1, the map f0 is a diffeomorphism ∂(S1 × D2) → ∂E(K), which in this case
corresponds to ∞-surgery.) Then the union of following subspaces of W 1

−1

{−4} × S1 ×D2 ⊂ [−5,−3]× S1 ×D2, {4} × S1 ×D2 ⊂ [3, 5]× S1 ×D2,(7)

γ × S1 × S1 ⊂[−5, 5]×N(∂E(K))(8)

gives a submanifold M1
−1 of W 1

−1 diffeomorphic to RP3. Here N(∂E(K)) is a regular neighborhood

of the boundary ∂E(K) in E(K), and in particular, it can be identified with (−1, 0] × S1 × S1.
This gives an identification of [−5, 5] ×N(∂E(K)) with [−5, 5] × (−1, 0] × S1 × S1. In (7), γ is a
properly embedded path in [−5, 5]× (−1, 0] whose endpoints are (−4, 0) and (4, 0).

The submanifold M1
−1 is separating and the two connected components of the complement of a

tubular neighborhood of M1
−1 can be described as follows. One of the components can be regarded

as a cobordism from Z1 to Z−1 with the middle end RP3, and is given by reversing the cobordism
W−1

−2 . The other connected component is a 4-manifold N with three boundary components, one of

which is RP3 and the other two are S3. Let D be a twice punctured 3-ball with three boundary
components S−1, S0 and S1 which are diffeomorphic to the 2-sphere. Then N is diffeomorphic to the
total space of the S1-bundle over D whose Euler class evaluates to −1 on the boundary components
S±1 of D and to 2 on the boundary component S0. In particular, the boundary component RP3

of N corresponds to the circle bundle over S0. The manifold N contains the embedded surface
c = ĉ1−1 ∩N , and the Poincaré dual cohomology class has c2 = −1/2. (This discussion is a special
case of the discussion of ‘spherical cuts’ and their complements in [CDX20, Section 3.1].)

The metric corresponding to −1 in the family of metrics Gi
i−2 is given by a broken metric on

W 1
−1, which is broken along M1

−1. To be more precise, we fix metrics with cylindrical ends on the

complement of M1
−1, which has two cylindrical ends corresponding to the round metrics on RP3,

two cylindrical ends corresponding to the round metric on S3 and one cylindrical end for each of
Z±1. Similar to the previous case, we define our family of metrics for the interval by (−1,−1/3]
by removing half cylinders from the RP3 ends, and then gluing the two connected components
along their RP3 boundaries. Finally we extend our family of metrics on W 1

−1 to (−1/3, 1/3) in an

arbitrary way so that all metrics gt coincide on the four ends of W 1
−1 with the chosen cylindrical

end metrics.
The definitions of the families of metrics on W 2

0 and W 0
−2 follow a similar scheme. In the same

way as in the previous case, we can form separating submanifolds M2
0 ⊂ W 2

0 and M0
−2 ⊂ W 0

−2,

which are in this case diffeomorphic to S3. Then the family of metrics G2
0 (resp. G0

−2) for t = 1 is
given by a broken metric that is fully stretched along Z1 (resp. Z−1), for t = −1 is given by a broken
metric that is fully stretched along M2

0 (resp. M0
−2) and is extended by (non-broken metrics) for

t ∈ (−1, 1). Finally we extend this construction to any W i
i−2 by requiring that Gk+3

k+1 = Gk
k−2 for

any k. We also remark that the complement of M i
i−2 in W i

i−2 has a similar description as before;
one of the components is still diffeomorphic to N and the other component is given by reversing
the cobordism W i+1

i .
Next, we turn into the description of the family of metrics Gi

i−3 on W i
i−3 parametrized by a

pentagon P , which is the 2-dimensional associahedron. First we consider the case of G2
−1. We

start by describing five codimension-1 submanifolds of the cobordism W 2
−1 = W 0

−1 ◦W 1
0 ◦W 2

1 . The
definition of this cobordism as a composite implies that there are natural embeddings of Z0 and Z1

in W 2
−1. Since W 2

−1 = W 2
0 ◦W 0

−1 = W 2
1 ◦W 1

−1, there are also natural embeddings of M2
0 and M1

−1

into W 2
−1. To describe the fifth submanifold M2

−1, note that W 2
−1 is given by gluing

[−7,−5]× S1 ×D2, [−3,−1]× S1 ×D2, [1, 3]× S1 ×D2, [5, 7]× S1 ×D2
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Figure 2. A representation of the cobordism W 2
−1, with its five boundary components la-

beled. The more thin arcs represent the five submanifolds used in the construction of the
family of metrics G2

−1, and each arc is labeled by the diffeomorphism type of the corrre-
sponding submanifold. The surface ĉ2−1 is represented as the lighter blue curve; the surface

č2−1 is the union of the darker red and lighter blue curves. The middle end RP3 is drawn
differently than the S3 middle ends to make the asymmetry more apparent. The pictures
for other W i

i−3 are similar; for instance, the bundle data can on W i
i−3 obtained by cyclically

permuting the three depicted pieces.

to [−7, 7] × E(K) respectively using the gluing maps 1[−7,−5] × f−1, 1[−3,−1] × f1, 1[1,3] × f0 and

1[5,7] × f−1. Then M2
−1 is a submanifold of W 2

−1 given as the union of the following three parts:

{−6} × S1 ×D2 ⊂ [−7,−5]× S1 ×D2, {6} × S1 ×D2 ⊂ [5, 7]× S1 ×D2,

γ × S1 × S1 ⊂[−7, 7]×N(∂E(K))

where similar to (7), γ ⊂ [−7, 7]×(−1, 0] is a properly embedded path with the endpoints (−6, 0) and
(6, 0). The manifoldM2

−1 is diffeomorphic to S1×S2. The complement of a tubular neighborhood of

this submanifold of W 2
−1 has two connected components; one of the connected components, denoted

V−1, is given by removing from the product cobordism [−7, 7] × Z−1 a tubular neighborhood of
{0}×K−1. The other connected component, denoted by N ′, is given by removing from N a tubular
neighborhood of one of the fibers of the S1 fibration of N .

Label the edges of the pentagon P cyclically by ej with j ∈ Z/5, and label the common vertex of
ej and ej+1 with vj,j+1. Then the edge ej of P corresponds to the submanifold Qj of W 2

−1, where

Q0 = Z0, Q1 = Z1, Q2 = M1
−1, Q3 = M2

−1, Q4 = M2
0 .

In particular, for any j the submanifolds Qj and Qj+1 are disjoint from each other. The metrics
corresponding to the edge ej of P are fully stretched along the submanifold Qj . Furthermore, the
endpoint vj−1,j (respectively vj,j+1) of this edge corresponds to the metric that is also fully stretched
respectively along Qj−1 (respectively, Qj+1). As we move from vj−1,j to vj,j+1 the corresponding
metrics vary from having large necks along Qj−1 to small necks along Qj−1 and then from small
necks along Qj+1 to large necks along Qj+1, while all the metrics in parametrized by this edge are
broken along Qj . In particular, we require that the metric parametrized by the edge e0 is given by
the metric G2

1 on W 2
1 and the family of metrics G1

−1 on W 1
−2. A similar requirement applies to the

edge e1. We extend the family of metrics from the boundary of P first to a tubular neighborhood
of the vertices vj,j+1 in P by replacing infinite length necks along Qj and Qj+1 with finite length
necks. Then we extend this family to a tubular neighborhood of ej by replacing the infinite length
necks along Qj with finite length necks along this submanifold. Finally we extend this family to the
rest of P in a smooth way by non-broken metrics on W 2

−1, which are assumed to all coincide with
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Figure 3. The three pentagons of metrics. Each boundary edge corresponds to an interval
of metrics broken along a given submanifold, and each edge in the diagram is labeled by the
diffeomorphism type of the breaking submanifold. The vertex v0,1 is the topmost vertex,
and the edges ej proceed counter-clockwise.

the chosen cylindrical metrics on the five ends of W 2
−1. (This is a special case of the construction

of an associahedron of metrics in [CDX20, Section 4.3].)
The definition of the families of metrics G1

−2 and G0
−3 are similar, and we extend the construction

of this family of metrics on W i
i−3 to any i by requiring that Gk+3

k = Gk
k−3 for any k. In particular,

as a part of the construction of the family of metrics, we from a submanifold M i
i−3 of W i

i−3 which

is diffeomorphic to S2 × S1, and the complement of its tubular neighborhood has two connected
components. One of the connected components is again diffeomorphic toN ′ and the other connected
component, denoted by Vi, is the complement of a tubular neighborhood of {0}×Ki in [−7, 7]×Zi.

5.3. Reducibles. The maps fi, gi, hi will be defined by counting isolated irreducible instantons on
W i

j with respect to the family of metrics Gi
j . The relations for these maps will be computed by

studying the ends of the 1-dimensional moduli spaces of irreducible instantons.
To ensure that these counts are defined, we need the 0-dimensional moduli spaces of irreducible

instantons to be compact. Similarly, to get the expected boundary relations, we need some control
over the reducible instantons that appear in 1-dimensional moduli spaces. There was no such
issue in [CDX20], where the 3-manifolds were equipped with admissible bundles, which support no
reducible flat connections. In this subsection, we will analyze the reducible instantons with respect
to the families of metrics Gi

j . Using the study of such reducibles, we will show in the following

subsection that the argument of [CDX20] goes through with minimal change, by showing that the
only reducibles which appear in the compactification of the moduli spaces of interest are precisely
those used in the proof of [CDX20, Theorem 1.6].

First, we review the definition of the relevant moduli spaces of instantons. Previously, we intro-
duced properly embedded oriented surfaces ĉij and čij in W i

j , which are abbreviated to c for now.

For flat connections α on Zi and β on Zj , there is a moduli space M(W i
j , c, int(G

i
j);α, β) of pairs

(g,A), where g ∈ int(Gi
j) and A is a g-ASD connection on (W i

j , c) which is asymptotic to α on Zi

and β on Zj ; these pairs are considered up to gauge equivalence.
To first extend this to a moduli space M(W i

j , c, G
i
j ;α, β), we include instantons with respect to

the broken metrics. Suppose g ∈ Gi
j is a broken metric, broken along a single connected submanifold

Y (so W i
j = W ∪Y W ′, with Y being the end intermediate to these). Then an instanton with respect

to this broken metric is a pair (A,A′) of an instanton on W and an instanton on W ′ with respect to
the relevant cylindrical-end metrics, so that the A and A′ are asymptotic to the same flat connection
along Y , now considered up to simultaneous gauge equivalence.3 The definition is similar for metrics

3A better definition in general includes gluing factors associated to the stabilizers Γ of the intermediate flat
connections. However, these will not play any role in the examples that appear below. This is because when we glue
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broken along more than one connected submanifold. We define M(W i
j , c, G

i
j ;α, β) to be the moduli

space of pairs (g,A), where g ∈ Gi
j and A is a g-instanton on (W i

j , c) asymptotic to α on Zi and β
on Zj , considered up to gauge equivalence; when g is broken, this is understood in the generalized
sense described above. We topologize this with respect to convergence on compact subsets in the
complement of the broken submanifolds.

This moduli space remains noncompact. Just as we pass from M(W, c, int(G)) to M(W, c,G)
by introducing instantons with respect to these broken metrics, there exists a compactification
M+(W, c,G;α, β) which introduces broken solutions to the ASD equations. In the statement below,
if A is an instanton on a cobordism W , the positive limit of A is the flat connection A is asymptotic
to on its outgoing boundary component; similarly with negative limit and middle limit.

Definition 5.2. Let (W, c) : Y
L−→ Y ′ be a cobordism with a middle end. Suppose W is equipped

with an unbroken Riemannian metric g. A broken instanton on (W, c) is a sequence

A = (B1, · · · , Bn, AW , C1, · · · , Cm, B′
1, · · · , B′

ℓ)

of connections satisfying the following conditions:

(a) The connection Bi (resp. B
′
i, Ci) is a nonconstant instanton on R×Y (resp. R×Y ′, R×L)

considered modulo translation, while AW is an instanton on (W, c).
(b) For 1 ≤ i < n, the positive limit of Bi is equal to the negative limit of Bi+1, and similarly

for Ci and B′
i.

(c) The negative limit of AW is the positive limit of Bn, while the middle limit of AW is the
negative limit of C1 and the positive limit of AW is the negative limit of B′

1.

The outer limits of a broken instanton are given by the negative limit of B1 and the positive
limit of B′

ℓ. If every instanton in the sequence is irreducible and all limiting flat connections are
irreducible, we say this broken instanton is fully irreducible.

A similar definition holds in the case that W is equipped with a broken metric g. We will say
‘instanton’ to refer to a possibly-broken instanton, and specify ‘unbroken instanton’ when we want
to assume n = m = ℓ = 0 (including in the case that g is a broken metric).

A broken instanton has a total of n+m+ ℓ intermediate limits, the positive limits of Bi (resp.
negative limits of B′

j , Cj). Each intermediate limit β gives rise to a gluing factor dimΓβ, the
dimension of the stabilizer of β. When β is irreducible, this is zero; when β has abelian holonomy
this dimension is one, and when β has central holonomy this dimension is three. We write g(A) for
the sum of all of these gluing factors.

Definition 5.3. Given a broken instanton A, its index is defined to be

i(A) = g(A) + i(AW ) +
n∑

j=1

i(Bj) +
m∑
j=1

i(Lj) +
ℓ∑

j=1

i(B′
ℓ),

where i is the index of the ASD operator.

This coincides with the index of the connection obtained by gluing the constintuent instantons
of A into a connection on W . These definitions are relevant as follows. We define the space
M+(W, c,G;α, β)d to be the space of pairs (g,A), where g ∈ G is a (possibly broken) metric and
A is (possibly broken) instanton on (W, c) with index d − dimG. This is given the topology of
‘chain-convergence’, as in [Don02, Section 5.1]. This moduli space has expected dimension d. It
is established as [Don02, Proposition 5.5] that if M+(W, c,G;α, β)d−8n is empty for all n > 0, the
moduli space M+(W, c,G;α, β)d is compact.

instantons along some reducible flat connection, one will be irreducible and the other will be reducible with the same
stabilizer as the intermediate flat connection.
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By a generic choice of perturbation, irreducible instantons can be assumed to be cut out trans-
versely, and thus that any fully irreducible instanton on (W, c,G) has index i(A) ≥ −dimG. We
will define our maps by counting the number of elements in two moduli spaces M(W i

j , c, G
i
j ;α, β)0

for c = ĉij or c = čij . To ensure these counts are well-defined, we will need to ensure that this
space coincides with its compactification; that is, that there are no broken instantons of index
i(A) ≤ −dimG.

When verifying the boundary relations for these maps, we will investigate the moduli space
M(W, c,G;α, β)1. Our boundary relations mostly involve counts of fully irreducible broken instan-
tons, and we therefore need to rule out the possibility of small index instantons which are not fully
irreducible. Because reducible flat connections on a cylinder are constant, there are two ways a
connection could fail to be fully irreducible:

• It could be possible that all components of A are irreducible, but some interior limit is
reducible;

• The connection AW could be reducible.

The first type is easy to rule out.

Lemma 5.4. Suppose A is a broken instanton on (W i
j , ĉ

i
j) or (W i

j , č
i
j) with respect to a metric

g ∈ int(Gi
j). If the constituent instantons are all irreducible but A is not fully irreducible, then

i(A) ≥ 2− (i− j − 1).

Proof. As discussed above, all irreducible instantons on (W i
j , c, G

i
j) have i(AW ) ≥ − dimGi

j =

−(i− j − 1), and all irreducible instantons on a cylinder have i(B) ≥ 1. Any broken instanton has
at least one component which is an instanton on a cylinder, and because A is not fully reducible
at least one interior gluing factor is positive, so i(A) ≥ 1 + 1− (i− j − 1). □

As for the second type, observe that if W : Y
L−→ Y ′ is a cobordism between integer homology

spheres (with L a disjoint union of S3s and RP3s) and AW is reducible, then the positive and
negative limits of AW are also reducible, hence central because Y, Y ′ are integer homology spheres.
Therefore, any broken instanton with irreducible outer limits for which AW is reducible has at least
two components which are instantons on cylinders, as well as two central gluing factors, so

i(A) ≥ 1 + 3 + i(AW ) + 3 + 1 = 8 + i(AW ).

It suffices to give a suitable lower bound on the minimal index of such AW .

Lemma 5.5. If AW is a reducible unbroken instanton on (W i
j , ĉ

i
j) or (W i

j , č
i
j) with respect to a

metric g ∈ Gi
j, then i(AW ) ≥ −4.

Proof. In our case, the index formula of [MMR94, Proposition 8.4.2] simplifies to the following
equation, where we write L = L1 ⊔ · · · ⊔ Ln with AW |Li = αi:

(9) i(AW ) = 8E(AW )− 3(1 + b+(W )) +
1

2

n∑
i=1

(3− hαi − ρ(αi)).

The quantity hαi is 3 when αi is central and 1 when αi is abelian. For us, (Li, wi) are all either
(S3,∅) or (RP3, w) for [w] ̸= 0 ∈ H1(RP3;Z/2), and the quantity ρ(αi) is zero for any flat connection
on S3 or RP3 by explicit computation, e.g. [APS75, Proposition 2.12].

The manifold S3 supports only the central flat connection, and (RP3, w) with [w] ̸= 0 ∈
H1(RP3;Z/2) supports exactly one abelian flat connection. In particular, the sum over i gives
twice the number of RP3 middle ends.

If the reducible AW gives rise to a splitting Ec
∼= Lx ⊕ Ly, where c = x + y, then Chern–Weil

theory gives that the energy term 8E(AW ) is equal to −2(x − y)2 = −2(2x − c)2. The energy is
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non-negative and strictly positive unless AW is projectively flat, which is the case precisely when
x− y = 2x− c is torsion. In particular, the energy is strictly positive when there is some RP3 end,
as in this case 2x− c is never torsion.

For the manifolds W i
j with i − j ≤ 3, either b+(W ) = 0 or we have that b+(W ) = 1 and L is

a disjoint union of RP3 and some number of copies of S3 with c|RP3 is non-trivial. In the former
case, the index computation gives i(AW ) ≥ −3. In the latter case, the index computation gives
i(AW ) > −6 + 1 = −5 because E(AW ) is positive. □

These two lemmas will be the main way we rule out broken instantons which are not fully
irreducible. However, there are some places in the argument of [CDX20] where reducible connections
do enter in an essential way. In particular, we will need to understand the reducibles on the manifold
(N, c) discussed in Section 5.2 for c = N ∩ ĉ1−1 or c = N ∩ č1−1.

Lemma 5.6. For either generator c ∈ H2(N ;Z), there is exactly one minimal-index reducible AN

on (N, c), for which i(AN ) = −1.

Proof. By Hodge theory and the fact that b+(N) = 0, reducible solutions to the ASD equation are
in bijection with pairs {x, y} ⊂ H2(N ;Z) for which x+ y = PD(c). Because H2(N ;Z) ∼= Z and c
is a generator, there is one reducible solution {nc, (1− n)c} for each integer n ≥ 1.

As discussed above, the quantity E(AW ) in (8) for such a reducible is precisely −2(x− y)2. The
surface c represents a generator of H2(N ;Z), for which c2 = −1/2. Any pair {nc, (1 − n)c} gives
−2(x− y)2 = (2n− 1)2, which is minimized for n = 1. There is thus one minimal-index reducible.

Because (N, c) has boundary (S3,∅) ⊔ (S3,∅) ⊔ (RP3, w), we see that AN restricts trivially to
two boundary components, and to an abelian connection on the third. Therefore, (8) gives

i(AN ) = 1− 3 + 1 = −1. □

5.4. Proof of Proposition 3.8. Here we establish the existence of the maps fi, gi, hi, as well as
their boundary relations; by the discussion of Section 5.1, this gives us the desired exact triangle.

The general principle is as follows. If (W, c) : Y → Y ′ is a cobordism equipped with a family
of metrics G, if the solutions to the G-ASD equation are cut out transversely and there are no
reducible instantons with index less than −dimG, then counting instantons over (W, c,G) with
index equal to −dimG gives rise to a well-defined map C∗(Y ) → C∗(Y

′) satisfying the relation

dY ′ ◦ (W, c,G)∗ + (W, c,G)∗ ◦ dY = (W, c, ∂G)∗.

The relation is derived by inspecting the ends of the moduli space of instantons M+(W, c,G;α, β)1
with α and β irreducible.

Our task is to verify that instantons supported by the interior of each face of G are cut out
transversely and to compute the map (W, c, ∂G)∗.

5.4.1. The maps fi. Each manifold W i
i−1 is equipped with an unbroken metric. The manifold W 2

1

has b+(W ) > 0 and a geometric representative c ⊂ W 2
1 for a non-trivial admissible U(2)-bundle. A

combination of Lemmas 5.4 and 5.5 imply that the moduli spaces of irreducible instantons on W i
i−1

of index 0, with irreducible outer limits, are compact, and thus consists of finitely many points.
We can therefore define

f2 = (W 2
1 , G

2
1, ĉ

2
1)∗ : C∗(Z−1) → C∗(Z1),

f1 = (W 1
0 , G

1
0, ĉ

1
0)∗ ⊕ (W 1

0 , G
1
0, č

1
0)∗ : C∗(Z1) → C∗(Z0)⊕ C∗(Z0)

f0 = (W 0
−1, G

0
−1, ĉ

0
−1)∗ ⊕−(W 0

−1, G
0
−1, č

0
−1) : C∗(Z0)⊕ C∗(Z0) → C∗(Z−1)

to be the maps which count index zero irreducible instantons with irreducible outer limits on the
relevant cobordisms.
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The moduli spaces of index 1 consists of fully irreducible solutions by Lemmas 5.4 and 5.5, where
standard gluing techniques apply. We therefore obtain the following result.

Proposition 5.7. The maps fi are well-defined chain maps.

5.4.2. The maps gi. Now we consider the 1-parameter family of metrics Gi
i−2 on W i

i−2. We count
instantons with irreducible limits and of index −1 with respect to this family to define the maps gi,
and use the moduli space of index 0 instantons with irreducible limits to prove the desired chain
homotopy relation. The combination of Lemmas 5.4 and 5.5 imply that for any unbroken metric
g ∈ int(Gi

i−2) these moduli spaces consist of fully irreducible connections, but the broken metrics
require somewhat more care. In fact, it is important to the argument that one boundary point of
G1

−1 does support a broken instanton with a reducible component.

Lemma 5.8. Suppose A is a broken instanton with irreducible outer limits on (W i
i−2, ĉ

i
i−2) or

(W i
i−2, č

i
i−2) with respect to the metric broken along Zi−1. If A is not fully irreducible, then i(A) ≥ 1.

Proof. Suppose Ai
i−1 and Ai−1

i−2 are the connections on W i
i−1 and W i−1

i−2 induced by A. If A has
irreducible components but some reducible intermediate flat connection, then each constituent
instanton has non-negative index but some positive gluing factor, so i(A) ≥ 1. If Ai

i−1 is reducible

but Ai−1
i−2 is not, then we have

i(A) ≥ 1 + 3 + i(Ai
i−1) + 3 + i(Ai−1

i−2),

as Ai
i−1 must be glued to some trajectory on the cylinder to have irreducible outer limits. Applying

Lemma 5.5 and the fact that i(Ai−1
i−2) ≥ 0, we see that i(A) ≥ 3. The same argument applies to

the case that Ai−1
i−2 is reducible but Ai

i−1 is not. Finally, if both the connections Ai
i−1 and Ai−1

i−2 are
reducible, then Lemma 5.5 implies that

i(A) ≥ 1 + 3 + (−4) + 3 + (−4) + 3 + 1 = 3. □

The other endpoint of Gi
i−2 corresponds to a decomposition W i

i−2 = (−W i+1
i ) ∪−Li+1 N . The

index i determines whether −W i+1
i has middle end diffeomorphic to S3 or RP3, with the latter

corresponding to the case i ≡ 1 mod 3.

Lemma 5.9. Suppose A is a broken instanton with irreducible outer limits on (W i
i−2, ĉ

i
i−2) or

(W i
i−2, č

i
i−2) with respect to the metric broken along M i

i−2. Suppose A is not fully itreducible.
If i ̸≡ 1 mod 3, then i(A) ≥ 2. If i ≡ 1 mod 3, then i(A) ≥ 0 with equality if and only if
A = (AW , AN ) for AW an unbroken irreducible instanton of index zero on W = −W i+1

i and AN

the unique reducible of minimal index on (N, c).

Proof. Suppose first that the component of A on −W i+1
i is reducible. As discussed before Lemma

5.5, this implies i(A) ≥ 8 + i(AW ) + i(AN ) + g, where g is the dimension of the gluing factor
associated to M i

i−2. By Lemma 5.5 and Lemma 5.6, we see that in this case i(A) ≥ 4. Thus
we may assume that AW is irreducible. We may also assume that A contains no instantons on a
cylinder, as these increase the index by at least one. Thus, we may suppose A = (AW , AN ), for
which the index is i(A) = i(AW ) + i(AN ) + g.

Because AW is irreducible, i(AW ) ≥ 0. By Lemma 5.6, we have i(AN ) ≥ −1. Finally, g = 1 if
i ≡ 1 mod 3 and g = 3 otherwise. Thus if i ≡ 1 mod 3 we have i(A) ≥ 0 with equality if and only
if i(AW ) = 0 and i(AN ) = −1, whereas if i ̸≡ 1 mod 3 we have i(A) ≥ 2. □

24



Now we define maps

g2 = (W 2
0 , G

2
0, ĉ

2
0)∗ ⊕ (W 2

0 , G
2
0, č

2
0)∗ : C∗(Z−1) → C∗(Z0)⊕ C∗(Z0)

g1 = (W 1
−1, G

1
−1, ĉ

1
−1)∗ − (W 1

−1, G
1
−1, č

1
−1) : C∗(Z1) → C∗(Z−1)

g0 = (W 0
−2, G

0
−2, ĉ

0
−2)∗ ⊕ (W 0

−2, G
0
−2, č

0
−2)∗ : C∗(Z0)⊕ C∗(Z0) → C∗(Z1)

by counting instantons with irreducible limits and index −1 in the respective family of metrics
and perturbations, with the approptiate bundle. By a combination of Lemmas 5.4, 5.5 and the
Lemmas 5.8-5.9 above, we see that this moduli space is compact, so the maps gi are well defined.
The boundary relations are slightly more subtle.

Proposition 5.10. The maps gi defined above satisfy the relations

di−2gi + fi−1fi + gidi = 0.

Proof. We focus first on g2; the same argument will apply for g0 with essentially no change. The
desired relation decomposes as a direct sum of two relations involving the two components of g2
and the two components of f2, f0, and the argument is now standard.

More precisely, if A is a broken instanton for g ∈ Gi
i−2 with i(A) ≤ 0, then A is fully irreducible,

so one finds by the usual gluing techniques that

d0(W
2
0 , G

2
0, ĉ

2
0)∗ + (W 2

0 , G
2
0, ĉ

2
0)d2 = (W 2

0 , ∂G
2
0, ĉ

2
0)∗,

and similarly for č20. The map induced by the incoming boundary component of (∂G2
0, ĉ

2
0) is the

composite map (W 1
0 , G

1
0, ĉ

1
0)◦ (W 2

1 , G
2
1, ĉ

2
1) of the first component of f1f2. By Lemma 5.9, the other

boundary component induces the zero map. Running the same argument for č20 (which gives the
second component of f1f2) and taking a direct sum, we obtain the relation d0g2 + f1f2 + g2d2 = 0.

As for g1, now the strategy instead must follow [CDX20, Proposition 5.14(i)]. The argument is
slightly more subtle because the map induced by (W 1

−1, ĉ
1
−1), corresponding to the metric broken

along RP3, is not automatically zero. Rather, this map is the same for ĉ1−1 and č1−1, so when we
take the difference we obtain zero. This corresponds to the definition

f0f1 = (W 0
−1, G

0
−1, ĉ

0
−1)∗(W

1
0 , G

1
0, ĉ

1
0)− (W 0

−1, G
0
−1, č

0
−1)∗(W

1
0 , G

1
0, č

1
0)∗.

To see that the maps induced by the bundles ĉ1−1 and č1−1 corresponding to the metrics broken

along RP3 are the same, observe that

ĉ1−1 ∩ (−W−1
−2 ) = −ĉ−1

−2 = −č−1
−2 = č1−1 ∩ (−W−1

−2 ),

while the intersection with N gives the two generators of H2(N ;Z). Now by Lemma 5.9, with
respect to the metric broken along RP3, the only broken instantons of index zero have AW an
irreducible instanton of index zero, and AN the unique minimal index reducible. Thus, for ĉ this
map coincides on the chain level with the map (−W−1

−2 ,−ĉ−1
−2)∗, and similarly for č; but as discussed

above ĉ−1
−2 = č−1

−2, so indeed the two maps are the same. □

5.4.3. The maps hi. We move on to the maps hi and their boundary relations. These are defined
by counting index −2 irreducible instantons on the cobordisms W i

i−3 with respect to the family of

metrics Gi
i−3. For this family,

• we need to show there are no instantons of index less than −2 supported by metrics in the
interior of Gi

i−3;

• we need to show there are no instantons of index less than −1 supported by ∂Gi
i−3;

• we need to determine the induced map of ∂Gi
i−3.
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Because there are three families Gi
i−3 and each family contains five boundary strata, this involves

a great deal of case analysis. The following four lemmas in our case analysis follow exactly as in
the previous section, and we omit their proofs.

The first lemma asserts that there are no small-index reducibles on the interior of the family.
This lemma follow from Lemma 5.4.

Lemma 5.11. Suppose A is a broken instanton with irreducible outer limits on (W i
i−3, ĉ

i
i−3) or

(W i
i−3, č

i
i−3) with respect to one of the metrics g ∈ int(Gi

i−3). Then i(A) ≥ −2 with equality if and
only if A is unbroken and hence fully irreducible.

The second lemma asserts that there are no small-index reducibles on the boundary faces broken
along S3 (and, in fact, no small-index instantons whatsoever).

Lemma 5.12. Suppose A is a broken instanton with irreducible outer limits on (W i
i−3, ĉ

i
i−3) or

(W i
i−3, č

i
i−3) with respect to one of the metrics g ∈ Gi

i−3 broken along S3. Then i(A) ≥ 1.

The third lemma asserts that there are no small-index reducibles on the boundary faces broken
along the various Zj , and that counting instantons on these boundary faces gives precisely the
composite of the relevant instanton-counting maps.

Lemma 5.13. Suppose A is a broken instanton with irreducible outer limits on (W i
i−3, ĉ

i
i−3) or

(W i
i−3, č

i
i−3) with respect to one of the metrics g ∈ Gi

i−3 broken along Zi−1 or Zi−2. Then i(A) ≥ −1
with equality if and only if A is a broken instanton with exactly two irreducible pieces.

Stating the fourth lemma requires some preparation. For i = 1,−1, the family Gi
i−3 contains an

interval of metrics IiRP3 broken along RP3; it restricts to a single metric on N , but an interval of

metrics IiW on W i
i−3 \ N = W̄ i

i−3. The following lemma asserts that the chain-level map induced

by (W i
i−3, I

i
RP3) is equal to the chain-level map induced by (W̄ i

i−3, I
i
W ).

Lemma 5.14. Suppose i ̸≡ 0 mod 3, and that A is a broken instanton with irreducible outer limits
on (W i

i−3, ĉ
i
i−3) or (W

i
i−3, č

i
i−3) with respect to one of the metrics g ∈ Gi

i−3 broken along RP3. Then
i(A) ≥ −1, with equality if and only if A is a broken instanton with exactly two pieces, the piece
on W̄ i

i−3 being an unbroken irreducible of index −1 and the piece on N being the unique index −1
abelian connection.

For the final face, consisting of metrics broken along S2×S1, the argument is somewhat different.
We follow the argument of [CDX20, Section 6.3].

Recall that M i
i−3

∼= S2 × S1 divides W i
i−3 into two pieces, one diffeomorphic to Vi given by the

complement of a regular neighborhood of {0}×Ki in [−1, 1]×Zi and the other diffeomorphic to the
complement N ′ of a neighborhood of an S1 fiber in N . The corresponding one-parameter family
of metrics is constant on Vi, and restricts to a family of metrics on N ′ denoted by IiS2×S1).

The character variety of flat SU(2)-connections on S2 × S1 may be identified as

X(S2 × S1) ∼= Hom
(
π1(S

2 × S1), SU(2)
)
/conj ∼= SU(2)/conj ∼= [−1, 1],

with the overall map given by sending [A] to tr(HolA({∗}×S1))/2. The endpoint 1 corresponds
to the trivial connection, the endpoint −1 corresponds to the non-trivial central connection whose
holonomy along {∗} × S1 is −I, while the interior points of the interval correspond to abelian
connections.

Given a 4-manifold W whose boundary is not necessarily a union of rational homology spheres,
we define the index of an ASD connection over W to be the index of the operator defined using
weighted Sobolev spaces with a positive weight δ > 0. For us, W will have S2 × S1 as its only
component which is not a rational homology sphere. Restriction gives a map M(W ) → X(S2×S1),
and the index of an ASD connection computes the expected dimension of the fiber of this map.
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The following statement can be proved similarly to those above, and is discussed for general
SU(N) following [CDX20, Remark 6.33].

Lemma 5.15. Suppose that A is a broken instanton with irreducible outer limits on (W i
i−3, ĉ

i
i−3)

or (W i
i−3, č

i
i−3) with respect to one of the metrics g ∈ Gi

i−3 broken along S2×S1. Then i(A) ≥ −1,
with equality if and only if A is a broken instanton with exactly two pieces, the piece on Vi being
an unbroken irreducible of index −1 and the piece on N ′ being a reducible instanton of index −2.

That is, we may identify the moduli space of index −1 instantons M(W i
i−3, ĉ

i
i−3, I

i
S2×S1 ;α, α

′)0
with the fiber product

M(Vi, ĉ
i
i−3;α, α

′)0 ×X(S2×S1) M(N ′, ĉii−3, I
i
S2×S1)

red
1 ,

and similarly with čii−3. (The subscripts indicate the dimensions of the relevant spaces, not the
indices of their consitutient instantons.) It follows that there is a well-defined map defined by
counting instantons supported by the family of metrics (W i

i−3, ĉ
i
i−3, I

i
S2×S1) which have index equal

to −1. A similar claim holds for čii−3.
These put together, define the maps hi by the following formulae. We have

hi : C∗(Zi) → C∗(Zi), hi =

{
(W i

i−3, G
i
i−3, ĉ

i
i−3)∗ + (W i

i−3, G
i
i−3, č

i
i−3)∗ i ∈ {1,−1}

(W i
i−3, G

i
i−3, ĉ

i
i−3)∗ ⊕ (W i

i−3, G
i
i−3, č

i
i−3)∗ i = 0.

It will be convenient to write qi : C∗(Zi) → C∗(Zi) for the map defined by the same formula as
above, but using the family of metrics IiS2×S1 in place of Gi

i−3.

Proposition 5.16. The maps hi written above are well-defined, and satisfy the relation

di−3hi + fi−2gi + gi−1fi + hidi = qi.

Proof. The combination of Lemmas 5.11-5.15 imply that the relevant moduli spaces for the def-
inition of hi support only irreducible instantons of index −2 and no instantons of index ≤ −3,
so the Uhlenbeck compactness theorem implies the relevant counts are finite. To investigate the
relation, observe that Lemmas 5.11-5.15 imply that the interior of the moduli space of index −1
instantons is a smooth manifold of dimension 1, and that these lemmas identify the boundaries
of these moduli spaces. The boundary face in Gi

i−3 which breaks along Zi−1 contributes gi−1fi;
the boundary face which breaks along Zi−2 contributes fi−2gi. The boundary faces which break
along S3 contribute the zero map. When i = 0, this leaves us only the map q0 coming from the
S2 × S1 breakings. When i ∈ {1,−1}, both families (W i

i−3, G
i
i−3, ĉ

i
i−3) and (W i

i−3, G
i
i−3, č

i
i−3) also

have a face corresponding to breaking along RP3. By Lemma 5.14, these two faces induce the same
map, so these terms cancel out upon adding the maps for čii−3 and ĉii−3. This leaves only the qi
terms. □

It remains to us to compute the maps qi.

Proposition 5.17. The map qi determined above is homotopic to the identity.

Proof. Again we follow the N = 2 case of [CDX20, Section 6.3]. As depicted in Figure 3, the case
i = 0 is simpler, as both boundary components of IiS2×S1 correspond to breakings along spheres. In

this case [CDX20, Proposition 5.54] identifies the moduli space M(N ′, c, I0S2×S1)
red
1

∼= [−1, 1]. For

i ∈ {1,−1}, one needs to take a little extra care in dealing with the RP3-broken metrics, and here
it becomes essential that we work with both choices of geometric representative.

One can still identify

M(N ′, ĉii−3, I
i
S2×S1)

red
1

∼= [−1, 0], M(N ′, čii−3, I
i
S2×S1)

red
1

∼= [0, 1]
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with 0 corresponding to the metric broken along RP3 in both cases. These two metrics coincide.
Furthermore, on the part of N ′ bounded by RP3 and S2 × S1, the two choices of bundle data
coincide. It follows that on this piece of N ′, the instantons associated to 0 ∈ [−1, 0] and 0 ∈ [0, 1]
coincide, and in particular so do their restrictions to S2 × S1. It follows that these two moduli
spaces [−1, 0] and [0, 1] can be pasted together along the broken metric to obtain a single moduli
space homeomorphic to [−1, 1], equipped with a continuous map to X(S2 × S1) ∼= [−1, 1].

Now the argument proceeds the same for all i. That this map sends ∂[−1, 1] to ∂X(S2 × S1)
identically — and thus the map from [−1, 1] has degree 1 in an appropriate sense — is theN = 2 case
of [CDX20, Proposition 5.53]. This is established by an explicit computation [CDX20, Proposition
5.40] for the broken metrics in ∂[−1, 1], ultimately because the restriction to X(S2 × S1) can be
determined by a curvature integral.

Thus, the map qi coincides with the map induced by the broken metric on Vi ⊔D3 × S1, as the
natural map M(D3×S1)red1 → X(S2×S1) also has degree 1. Choosing a homotopy from the broken
metric on Vi ⊔D3 × S1 to the product metric on I × Zi gives rise to a homotopy from the map qi
to the identity map. □

Proof of Proposition 3.8. Using the triangle detection lemma, we have constructed an exact triangle
whose vertices are of the expected form. We need to discuss the degree of the relevant maps and
verify the given description of f1 and f0 as cobordism maps. The degree computation follows from
the index formula (8) and our understanding of the topology of the manifolds W i

i−1. The map f1
is by definition

(W 1
0 , ĉ

1
0)∗ ⊕ (W 1

0 , č
1
0)∗ = (W,∅)∗ ⊕ (W, c+)∗,

where c+ is the cocore, as stated in Proposition 3.8. The map f0 is by definition

(W 0
−1, č

1
0)∗ ⊕−(W 0

−1, č
0
−1)∗ = (W ′, c−)∗ ⊕−(W ′, c− ⊔ c+)∗,

with c− the core and c+ the cocore. Now observe that the induced map (W ′, c)∗ depends only on
the relative homology class of c. Because W ′ has intersection form (−1) and c− ∩ c+ is a single
positively-oriented point, we see that c− = −c+ in H2(W ′;Z). Thus, (W ′, c− ⊔ c+)∗ coincides with
(W ′,∅)∗. This completes the proof of Proposition 3.8. □

5.5. Proof of Proposition 3.9. In the case Y = Z0 = S3, the chain complex CI∗(S
3) is identically

zero, and the maps f0 and f1 are trivial. This implies that the map g1 : C(Z1) → C(Z−1) is a chain
map because the composite f0f1 factors through the trivial group, and we have

d−1g1 + g1d1 = f0f1 = 0.

Similarly, because f0g2 and g0f1 are trivial, the relations for h1 and h−1 imply that f−1 and g1 are
chain homotopy inverse maps. In particular, g1 induces an isomorphism on homology.

It suffices to explain why g1 extends to an IP -morphism of degree 3 and level 1
4 − η(K). The

map g1 is obtained by summing over two maps, both of which are obtained by counting instantons
on W 1

−1 with respect to an appropriate family of metrics G and U(2)-bundle. These U(2)-bundles

correspond to geometric representatives ĉ1−1, č
1
−1 ⊂ W 1

−1 for which c2 = −1. Because W 1
−1 has

rational homology sphere ends and b1(W ) = b+(W ) = 0, the degree and level of such a map is
given by

D = dimG− 2c2 = 1 + 2 = 3, L = −c2/4− η(K) = 1/4− η(K)

by a slight generalization of Proposition 3.4 to the case thatW is equipped with a family of metrics.

6. Alexander polynomial constraints

In this section, we give a proof of the following result.

Theorem 6.1. Suppose that K is a knot in S3 and ±2 is a cosmetic pair. Then ∆K = 1.
28



Let K be a knot in a homology sphere Y . Let X±(K) denote the unique 2-sheeted cover of
Y±2(K). If ±2 is a cosmetic pair for K, then X+(K) is orientation-preserving diffeomorphic to
X−(K). We will use the following well-known surgery description of X±(K). Writing Σ2(K) for

the branched double cover of K, the preimage K̃ ⊂ Σ2(K) remains null-homologous, so ±1 surgery

on K̃ makes sense.

Lemma 6.2. The manifold X±(K) is obtained from Σ2(K) by ±1 surgery on K̃.

Proof. Since Y±2(K) is obtained from Dehn filling the exterior of K, the double cover is described
by a suitable Dehn filling of a double cover of Y −K. Since H1(Y −K) surjects onto H1(Y±2(K)),
we are Dehn filling the non-trivial double cover. The slope is simply the lift of the slope downstairs,
which is ±2µK+λK . The preimage of µK is µ

K̃
and the preimage of λK is two copies of λ

K̃
. Hence,

the preimage of ±2µK + λK is two copies of ±µ
K̃
+ λ

K̃
and the result follows. □

Proof of Theorem 6.1. Let K be a non-trivial knot in S3 for which ±2 is a cosmetic pair. We have
g(K) = 2 by [Han23, Theorem 2(ii)], so the Alexander polynomial takes the form

∆K(t) = at2 + bt+ c+ bt−1 + at−2,

with a, b possibly zero. We will also use that the preimage K̃ has Alexander polynomial

∆
K̃
(t) = ∆K(t1/2)∆K(−t1/2) = a2t2 + (2ac− b2)t+ (2a2 − 2b2 + c2) + (2ac− b2)t−1 + a2t−2;

see e.g. [HKL10, Corollary 4.2]. Now [BL90, p182, Consequence 2] states that whenever a knot
J ⊂ Y admits cosmetic surgeries, its Alexander polynomial has ∆′′

J(1) = 0. Applying this to K
gives 8a+ 2b = 0 and so b = −4a. Since |∆K(1)| = 1, we also have c = 6a± 1.

Next, we study the Casson–Walker invariants of X±(K). Appealing to Lemma 6.2 and [BL90,
p182, Consequence 2] once more, we see that ∆′′

K̃
(1) = 0 as well. As

∆′′
K̃
(1) = 2a2 + 2(2ac− b2) + 6a2 = 8a2 + 4a(6a± 1)− 2(−4a)2 = ±4a,

so combining these means a = 0 and hence ∆K = 1. □
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