• MWF 3:00-3:50 pm, Cupples I, Room 207.

  • Syllabus ( Updated version due to coronavirus outbreak)





  •   Date Topic Section Worksheet Problem Sets Solutions
    Lecture 1 Jan 13 Set Theory 1.1 Set Theory Problem Set 1 Problem Set 1 Solutions
    Lecture 2 Jan 15 Real Numbers and Euclidean Spaces 1.3, 1.4 NA
    Lecture 3 Jan 17 Euclidean Spaces 1.4 NA
    Lecture 4 Jan 22 Vector Spaces 1.5 NA Problem Set 2 Problem Set 2 Solutions
    Lecture 5 Jan 24 Vector Spaces 1.5 NA
    Lecture 6 Jan 27 Linear Transformations I 1.6 NA Problem Set 3 Problem Set 3 Solutions
    Lecture 7 Jan 29 Linear Transformations II 1.6 NA
    Lecture 8 Jan 31 Continuity of vector valued functions of vector variables 2.1 Continuous Functions
    Lecture 9 Feb 3 Differentiability of vector valued functions of vector variables 2.2 NA Problem Set 4 Problem Set 4 Solutions
    Lecture 10 Feb 5 Partial derivatives, the Jacobian matrix 2.3, 2.4 NA
    Lecture 11 Feb 7 A criterion for differentiability, properties of derivates 2.5, 2.6 NA
    Lecture 12 Feb 10 Chain Rule 2.7 NA Midterm I Midterm I Solutions
    Midterm I Feb 12 NA NA NA
    Lecture 13 Feb 14 Inverse Function Theorem I 3.1 NA Take-Home Exam I
    Lecture 14 Feb 17 Inverse Function Theorem II 3.1 Inverse Function Theorem Problem Set 5
    Lecture 15 Feb 19 Implicit Function Theorem I 3.2, 3.3 NA
    Lecture 16 Feb 21 Implicit Function Theorem II 3.2, 3.3 Implicit Function Theorem
    Lecture 17 Feb 24 Implicit Function Theorem III 3.3 Problem Set 6 Problem Set 6 Solutions
    Lecture 18 Feb 26 Taylor Polynomials I 3.5 Taylor Polynomials
    Lecture 28 Feb 21 Taylor Polynomials II 3.6
    Lecture 20 March 2 Quadratic Forms I 3.7 Quadratic Forms Problem Set 7
    Lecture 21 March 4 Quadratic Forms II 3.7
    Lecture 22 March 6 Second Derivative Test 3.7 NA
    Lecture 23 March 23 Smooth Manifolds I 4.1 NA Problem Set 8
    Lecture 24 March 25 Smooth Manifolds II 4.1 Smooth Manifolds
    Lecture 25 March 27 Tangent Spaces 4.3 NA
    Lecture 26 March 30 Tangent Spaces II 4.3 NA Take-Home Exam II
    Lecture 27 April 1 Volume 5.1 NA
    Lecture 28 April 3 Integration 5.1 NA
    Lecture 29 April 6 Change of variable I 5.2 NA Problem Set 9
    Lecture 30 April 8 Change of variable II 5.2 NA
    Lecture 31 April 10 Integrals over manifolds 5.3 NA
    Lecture 32 April 13 Alternating multi-liner forms I 6.1 NA Problem Set 10
    Lecture 33 April 15 Alternating multi-liner forms II 6.1 NA
    Lecture 34 April 17 Alternating multi-liner forms III 6.1 NA