Theory of estimation, minimum variance and unbiased estimators, maximum likelihood theory, Bayesian estimation, prior and posterior distributions, confidence intervals for general estimators, standard estimators and distributions such as the Student-t and F-distribution from a more advanced viewpoint, hypothesis testing, the Neymann-Pearson Lemma (about best possible tests), linear models, and other topics as time permits. Prereq: Math 3200 and 493, or permission of the instructor.
Course Attributes: FA NSMAR NSMAS NSM
Section 01
Mathematical Statistics
INSTRUCTOR: Syring
View Course Listing