1. The region in the first quadrant that is bounded above by \(y = 4x - x^2 \) and bounded below by \(y = x \) is rotated about the vertical line \(x = -1 \). What is the volume of the resulting solid of revolution?

a) \(\frac{15\pi}{2} \)

b) \(16\pi \)
c) \(18\pi \)
d) \(21\pi \)
e) \(\frac{45\pi}{2} \)
f) \(20\pi \)
g) \(\frac{27\pi}{2} \)
h) \(\frac{25\pi}{2} \)
i) \(14\pi \)
j) \(15\pi \)

Solution: e

First we plot the planar region that is to be rotated.

\[
> f := x \rightarrow 4x-x^2; \\
g := x \rightarrow x;
\]

\[
f := x \rightarrow 4x-x^2 \\
g := x \rightarrow x
\]

The planar region bounded by \(y = x \) and \(y = 4x - x^2 \) is shown below:
Problem 1, Figure 1

When this region is rotated about the specified axis, the following solid results.
Calculation of the Volume by the Method of Cylindrical Shells

The next figure shows a typical cylindrical shell.
Here is the calculation of the volume by means of the Method of Cylindrical Shells:

\[
\text{radius}_{\text{of shell}} := x \to x + 1; \\
\text{height}_{\text{of shell}} := x \to f(x) - g(x); \\
\text{Volume} = \int_{0}^{3} 2\pi x (x + 1) (3 x - x^2) \, dx \\
\text{Volume} = 2\pi \int_{0}^{3} 2 x^2 - x^3 + 3 x \, dx \\
\text{antiderivative} := \int (2x^2-x^3+3x, x); \\
\]
antiderivative := \frac{2 x^3}{3} - \frac{x^4}{4} + \frac{3 x^2}{2}

Volume = \frac{45}{4}

Calculation of the Volume by the Method of Washers

It is possible (but more difficult) to obtain the volume using washers. A glance at Figure 2 above indicates that we have to divide the integration into two pieces: one for $0 \leq y \leq 3$ and one for $3 \leq y \leq 4$. Figures 4 and 5 below show the two types of washer. For $y < 3$, the outer radius of the washer extends to the curve $y = x$. For $3 < y$, the outer radius of the washer extends to the curve $y = 4 - x^2$.

The Solid of Revolution with a Washer at Height $y < 3$

Problem 1, Figure 4
The Solid of Revolution with a Washer at Height \(y > 3 \)

Problem 1, Figure 5

\[\text{Volume} = \int_{0}^{3} \pi ((1+y)^2 - (1+2-\sqrt{4-y})^2) \, dy + \int_{3}^{4} \pi ((3+\sqrt{4-y})^2 - (3-\sqrt{4-y})^2) \, dy \]

\[= \frac{45\pi}{2} \]

2. The region in the first quadrant bounded above by \(y = x \) and below by \(y = x^2 \) for \(0 \leq x \leq 1 \) is rotated about the line \(y = 2 \). What is the volume of the solid of revolution that results?

a) \(\frac{8\pi}{15} \)
b) \(\frac{3\pi}{5} \)
c) \(\frac{2\pi}{3} \)
d) \(\frac{4\pi}{5} \)
e) \(\frac{14\pi}{15} \)
f) \(\frac{\pi}{2} \)
g) \(\frac{3\pi}{8} \)
h) \(\frac{5\pi}{8} \)
i) \(\frac{3\pi}{4} \)
j) \(\frac{7\pi}{8} \)
Solution: a

The region (shown with blue boundary) is rotated about $y = 2$.

In the next figure, we show the solid that results from the rotation. The inner boundary, in the shape of a conical frustum, is rendered with solid tan. The outer boundary, a paraboloid, is rendered using a brown wireframe. A washer is also shown.
Calculation of the Volume by the Method of Washers

The outer radius is the distance from $y = x^2$ to $y = 2$, namely $2 - x^2$. The inner radius is the distance from $y = x$ to $y = 2$, namely $2 - x$.

\[
> \text{volume} := \pi \int ((2-x^2)^2 - (2-x)^2, x = 0 .. 1);
\]

\[
\text{volume} := \frac{8\pi}{15}
\]

Calculation of the Volume by the Method of Cylindrical Shells
For a shell that has an edge at level y, the radius is $2 - y$ and the height of the shell is $\sqrt{y - y}$.

\[
\int 2\pi (2 - y) (\sqrt{y} - y), \quad y = 0..1;
\]

\[
\frac{8\pi}{15}
\]

3. Calculate the arc length of the graph of
\[y = \frac{x^3}{3} + \frac{1}{4x} \quad \text{for} \quad \frac{1}{2} \leq x \leq 1.\]

\begin{align*}
\text{a) } & \frac{5}{12} \\
\text{b) } & \frac{11}{24} \\
\text{c) } & \frac{1}{2} \\
\text{d) } & \frac{13}{24} \\
\text{e) } & \frac{7}{12} \\
\text{f) } & \frac{5}{8} \\
\text{g) } & \frac{2}{3} \\
\text{h) } & \frac{17}{24} \\
\text{i) } & \frac{3}{4} \\
\text{j) } & \frac{5}{6}
\end{align*}

Solution: d

\[
f := x \rightarrow x^{3/3} + 1/(4x);
\]

\[
f := x \rightarrow \frac{1}{3}x^3 + \frac{1}{4x}
\]

\[
diff(f(x), x)^2;
\]

\[
\left(x^2 - \frac{1}{4x^2}\right)^2
\]

\[
expand(1+diff(f(x), x)^2);
\]

\[
\frac{1}{2} + x^4 + \frac{1}{16x^4}
\]

\[
eqn := 1+diff(f(x), x)^2 = (x^2+1/(4*x^2))^2;
\]

\[
eqn := 1 + \left(x^2 - \frac{1}{4x^2}\right)^2 = \left(x^2 + \frac{1}{4x^2}\right)^2
\]

\[
testeq(eqn);
\]

true

\[
`\text{arc length} = \int((x^2+1/(4*x^2)), \; x=1/2..1) = \int((x^2+1/(4*x^2)), \; x=1/2..1);
\]
The line segment with end points (2,3) and (6,0) is rotated about the y-axis. What is the surface area of the resulting conical frustum?

a) 12π b) 16π c) 20π d) 24π e) 25π

f) 27π g) 28π h) 32π i) 36π j) 40π

Solution: j

The average circumference of the frustum is $2\pi \left(\frac{2 + 6}{2}\right)$, or 8π. The slant length is $\sqrt{3^2 + 4^2}$, or 5. The surface area is the product of the average circumference and the slant length: 40π.

The graph of $y = 3\sqrt{x}$ for $4 \leq x \leq 10$ is rotated about the x-axis. What is the surface area of the resulting figure?

a) 54π b) 60π c) 64π d) 72π e) 80π

f) 84π g) 94π h) 102π i) 109π j) 115π

Solution: i

> f := x -> 3*sqrt(x);
6. Let \(R \) be the trapezoidal region in the first quadrant that is bounded above by the graph of \(y = 2x \), below by the \(x \)-axis, on the left by the vertical line \(x = 1 \), and on the right by the vertical line \(x = 2 \). What is the moment of \(R \) about the vertical line \(x = -1 \)? (Assume that \(R \) has a constant density equal to 1.)

\[
\begin{array}{cccccc}
a) & \frac{20}{3} & b) & 7 & c) & \frac{23}{3} & d) & 8 & e) & \frac{25}{3} \\
f) & 9 & g) & \frac{32}{3} & h) & 11 & i) & \frac{35}{3} & j) & 12 \\
\end{array}
\]

Solution: \(c \)
7. Let \(R \) be the region in the first quadrant that is bounded above by the graph of \(y = 4 - x^2 \) and below by the x-axis. What is the x-coordinate of the center of mass of \(R \)?

\[
\begin{align*}
a) \frac{1}{3} & \quad b) \frac{3}{8} & \quad c) \frac{2}{5} & \quad d) \frac{1}{2} & \quad e) \frac{3}{5} \\
f) \frac{5}{8} & \quad g) \frac{2}{3} & \quad h) \frac{3}{4} & \quad i) \frac{5}{4} & \quad j) \frac{3}{2}
\end{align*}
\]

Solution: \(h \)

\[
> f := x -> 4 - x^2;
\]

\(f := x \rightarrow 4 - x^2 \)

\[
> M := \text{Int}(\text{delta}\cdot f(x), x = 0..2); \quad \# \text{The mass in terms of the mass density}
\]

\[
M := \int_0^2 \delta (4 - x^2) \, dx
\]

\[
> M := \text{value}(M);
\]

\[
M := \frac{16 \delta}{3}
\]

\[
> \text{Moment}[`x=0`] := \text{Int}(\text{delta}\cdot x\cdot f(x), x = 0..2); \quad \# \text{Moment about y-axis}
\]

\[
\text{Moment}_{x=0} := \int_0^2 \delta x (4 - x^2) \, dx
\]

\[
> \text{Moment}[`x=0`] := \text{value}(\text{Moment}[`x=0`]);
\]

\[
\text{Moment}_{x=0} := 4 \delta
\]

\[
> x_{\text{bar}} := \text{Moment}[`x=0`]/M; \quad \# x\text{-coordinate of center of mass}
\]

\[
x_{\text{bar}} := \frac{3}{4}
\]
8. What is the y-coordinate of the center of mass of the region \(R \) of the preceding question?

\[
\begin{align*}
a) & \quad \frac{5}{3} & b) & \quad \frac{6}{5} & c) & \quad \frac{11}{8} & d) & \quad \frac{4}{3} & e) & \quad \frac{7}{5} \\
f) & \quad \frac{13}{8} & g) & \quad \frac{8}{5} & h) & \quad \frac{7}{4} & i) & \quad \frac{9}{5} & j) & \quad \frac{15}{8}
\end{align*}
\]

Solution: g

\[> \text{Moment[`}y=0`\] := Int(delta*f(x)^2/2, x = 0 .. 2); \# Moment about x-axis\]
9. Suppose that \(f(x) = x^2 \). If \(f(7) \) is equal to the average value of \(f(x) \) over the interval \([2, b]\), then what is \(b \)?
Solution: g

```maple
> a := 2:
f := x -> x^2;
f := x ↦ x^2
> eqn := f(7) = simplify(int(f(x), x = a .. b)/(b-a));
eqn := 49 = \frac{b^2}{3} + \frac{2}{3} + \frac{4}{3}
> solve(eqn, b);
-13, 11
```

10. Suppose that \(f(x) = \frac{c}{1 + x^2} \) is the probability density function of a random variable that has values in the interval \([0, \sqrt{3}] \). What is \(c \)?

a) \(\frac{1}{\pi} \)
b) \(\frac{2}{\pi} \)
c) \(\frac{3}{\pi} \)
d) \(\frac{4}{\pi} \)
e) \(\frac{5}{\pi} \)

f) \(\pi \)
g) \(\frac{\pi}{2} \)
h) \(\frac{\pi}{3} \)
i) \(\frac{\pi}{4} \)
j) \(\frac{\pi}{5} \)

Solution: c

```maple
> f := x -> c/(1+x^2);
f := x ↦ \frac{c}{1 + x^2}
> eqn := Int(f(x), x = 0 .. sqrt(3)) = 1;
# A probability density integrates to 1
```
\[
\int_0^3 \frac{c}{1 + x^2} \, dx = 1
\]

\[\text{eqn} := \int_0^3 \frac{c}{1 + x^2} \, dx = 1\]

\[> \text{eqn} := \text{map}(\text{value}, \text{eqn});\]

\[\text{eqn} := \frac{\pi c}{3} = 1\]

\[> c = \text{solve}(\text{eqn}, c);\]

\[c = \frac{3}{\pi}\]

11. A random variable \(X\) that assumes values in the interval \([0, 1]\) has probability density function

\[
f(x) = \frac{8}{(\pi + 2)(1 + x^2)^2} \quad \text{for} \quad 0 \leq x \leq 1.
\]

If \(\mu_X\) is the mean of \(X\), what is \((\pi + 2)\mu_X\)?

\begin{align*}
&\text{a) 2} &\text{b) } \sqrt{2} &\text{c) 3} &\text{d) } \sqrt{3} &\text{e) 5} \\
&\text{f) } \sqrt{5} &\text{g) 6} &\text{h) } \sqrt{6} &\text{i) } 2\sqrt{2} &\text{j) } 2\sqrt{3}
\end{align*}

\textbf{Solution: a}

\[> \text{eqn} := \text{mu}[X] = \text{Int}(8x/(1+x^2)^2/(\pi+2), x = 0 .. 1);\]

\[\text{eqn} := \mu_X = \int_0^1 \frac{8x}{(1 + x^2)^2 (2 + \pi)} \, dx\]

\[> \text{eqn} := \text{map}(\text{value}, \text{eqn});\]

\[\text{eqn} := \mu_X = \frac{2}{2 + \pi}\]

12. A random real number \(X\) is chosen from the interval \([1, 9]\). If the p.d.f. of \(X\) is

\[
f(x) = \frac{3\sqrt{x}}{52},\]

then what is the probability that \(X\) is greater than 4?
Solution: f

\[P(X>4) = \int_{4}^{9} \frac{3\sqrt{x}}{52} \, dx = \frac{19}{26} \]

13. A random variable \(X \) has pdf given by \(f(x) = \frac{2x + 1}{108} \) for \(1 \leq x \leq 10 \).

What is the median \(m \) of \(X \)?

Solution: f

\[f := x \rightarrow \frac{(1+2x)}{108}; \]

\[f := x \rightarrow \frac{1}{108} + \frac{x}{54} \]

\[eqn := \int_{1}^{m} \frac{1}{108} + \frac{x}{54} \, dx = \frac{1}{2} \]

\[eqn := map(value, eqn); \]

\[eqn := \frac{m}{108} - \frac{1}{54} + \frac{m^2}{108} = \frac{1}{2} \]

\[m = solve(eqn, m); \]

\[m = (7, -8) \]

Of these two values, only 7 is in the interval.
By way of verification, we will check that P(X > 7) = 1/2

\[
> \text{testeq}(\int(f(x), x = 7 .. 10) = 1/2);
\]

\[
text{true}
\]

14. Starting from equilibrium, 60 J of work are expended when a spring is stretched 2 meters. How many meters beyond equilibrium can the spring be stretched with a force of 45 N?

a) \(\frac{1}{5}\) b) \(\frac{1}{2}\) c) 1 d) \(\frac{6}{5}\) e) \(\frac{3}{2}\)

f) \(\frac{8}{5}\) g) 2 h) \(\frac{12}{5}\) i) \(\frac{5}{2}\) j) 3

Solution: e

\[
> \text{HookesLaw} := F = k*x;
\]

\[
\text{HookesLaw} := F = k x
\]

\[
> \text{eqn} := 60 = \int(k*x, x = 0 .. 2);
\]

\[
eqn := 60 = \int_0^2 k x \, dx
\]

\[
> \text{eqn} := \text{map(value, eqn)};
\]

\[
eqn := 60 = 2 k
\]

\[
> \text{eqn2} := k = \text{solve(eqn, k)};
\]

\[
eqn2 := k = 30
\]

\[
> \text{eqn3} := \text{subs({eqn2, F = 45}, HookesLaw)};
\]

\[
eqn3 := 45 = 30 x
\]

\[
> \text{solve(eqn3)};
\]

\[
\frac{3}{2}
\]

15. The vertical cross-sections of a tank have the shape \(y = |x| - 12\) for \(-12 \leq x \leq 12\). Horizontal cross-sections of the tank are rectangles that are 5 m long. The widths of these rectangles vary, but can be deduced from the description of the vertical cross-sections. The tank is filled to the top with a fluid that has weight density equal to \(\frac{3}{10} \frac{N}{m^3}\). If after pumping the fluid to the top of the tank, the remaining fluid is 10 m deep, how many Joules of work
have been done?

a) 24 b) 32 c) 36 d) 48 e) 52
f) 56 g) 64 h) 72 i) 80 j) 84

Solution: g

\[
\text{Work} = \int_{0}^{2} \left(\frac{3}{10} w \cdot 5 \cdot 2 \cdot (12-w) \right) \, dw = 64
\]

16. Forty feet of a uniform cable hang over the side of a building. The cable weighs 2 lbs/ft. A 48 pound hook is attached to the dangling end of the cable. The cable is pulled up 30 feet before the hook snags on a balcony rail. How many foot-pounds of work have been done?

a) 2480 b) 2540 c) 2580 d) 2640 e) 2680
f) 2740 g) 2800 h) 2840 i) 2880 j) 2940

Solution: j

\[
\text{Work} = 48 \cdot 30 + (10 \cdot 2) \cdot 30 + \int_{0}^{30} 2 \cdot y \, dy = 2940
\]

17. Calculate

\[
\int_{7}^{8} \frac{1}{(8-x)^{1/3}} \, dx
\]

a) 4/3 b) 3/2 c) 5/3 d) 2 e) 7/3
f) 5/2 g) 8/3 h) 3 i) 10/3 j) 7/2

Solution: b

\[
\int \frac{1}{(8-x)^{1/3}}, x = 7 \ldots 8 = \text{Limit} \left(\int \frac{1}{(8-x)^{1/3}}, x = 7 \right)
\]
.. 8-epsilon), epsilon=0, right);
\[\int_{7}^{8-\epsilon} \frac{1}{(8-x)^{1/3}} \, dx = \lim_{\epsilon \to 0^+} \int_{7}^{8-\epsilon} \frac{1}{(8-x)^{1/3}} \, dx \]

> \text{Int}(1/(8-x)^{(1/3)}, x = 7 .. 8) = \text{Limit}(\text{Int}(1/(8-x)^{(1/3)}, x = 7 .. 8-\epsilon), \epsilon=0, \text{right});

\[\int_{7}^{\infty} \frac{1}{(8-x)^{1/3}} \, dx = \lim_{\epsilon \to 0^+} \left(\int_{7}^{8-\epsilon} \frac{1}{(8-x)^{1/3}} \, dx - \frac{3 \epsilon^{2/3}}{2} + \frac{3}{2} \right) \]

> \text{Int}(1/(8-x)^{(1/3)}, x = 7 .. 8) = \text{lim}(\text{Int}(1/(8-x)^{(1/3)}, x = 7 .. 8-\epsilon), \epsilon=0, \text{right});

\[\int_{7}^{8} \frac{1}{(8-x)^{1/3}} \, dx = \frac{3}{2} \]

- 18. Calculate \(\int_{1}^{\infty} \frac{x^2}{(2+x^3)^2} \, dx \).

a) 1 b) \(\frac{1}{2} \) c) \(\frac{1}{3} \) d) \(\frac{1}{4} \) e) \(\frac{1}{5} \)
f) \(\frac{1}{6} \) g) \(\frac{1}{7} \) h) \(\frac{1}{8} \) i) \(\frac{1}{9} \) j) \(\frac{1}{10} \)

Solution: i

> \text{Int}(x^2/((2+x^3)^2), x = 1 .. \infty) = \text{Limit}(\text{Int}(x^2/((2+x^3)^2), x = 1 .. N), N = \infty);

\[\int_{1}^{\infty} \frac{x^2}{(2+x^3)^2} \, dx = \lim_{N \to \infty} \int_{1}^{N} \frac{x^2}{(2+x^3)^2} \, dx \]

> \text{Int}(x^2/((2+x^3)^2), x = 1 .. \infty) = \text{Limit}(\text{student[changevar]}(u = 2+x^3, \text{Int}(x^2/((2+x^3)^2), x = 1} \]
\[\int_{1}^{\infty} \frac{x^2}{(2 + x^3)^2} \, dx = \lim_{N \to \infty} \int_{3}^{2 + N^3} \frac{1}{3u^2} \, du \]

\[\int_{1}^{\infty} \frac{x^2}{(2 + x^3)^2} \, dx = \lim_{N \to \infty} \frac{-1 + N^3}{9 (2 + N^3)} \]

19. Calculate the 100\(^{th}\) partial sum of \[\sum_{n=1}^{\infty} \frac{1}{(n + 1) \cdot n} \].

 a) 1 b) \(\frac{99}{100} \) c) \(\frac{100}{99} \) d) \(\frac{100}{101} \) e) \(\frac{101}{100} \)
 f) \(\frac{49}{50} \) g) \(\frac{50}{49} \) h) \(\frac{98}{101} \) i) \(\frac{101}{98} \) j) \(\frac{1}{10100} \)

Solution: d

\[\text{answer} := \text{sum}(1/((n+1)*n), n = 1..100); \]

\[\text{answer} := \frac{100}{101} \]

\[1/1-1/101; \]

\[\frac{100}{101} \]

20. Consider the series

\[\ldots N), u), N = \text{infinity}); \]

\# The change of variable \(u = 2 + x^3 \), \(du = 3x^2 \, dx \)

\[\int_{1}^{\infty} \frac{x^2}{(2 + x^3)^2} \, dx = \lim_{N \to \infty} \int_{3}^{2 + N^3} \frac{1}{3u^2} \, du \]

\[\int_{1}^{\infty} \frac{x^2}{(2 + x^3)^2} \, dx = \lim_{N \to \infty} \frac{-1 + N^3}{9 (2 + N^3)} \]
I) $\sum_{n=1}^{\infty} \frac{2^n}{n}$ II) $\sum_{n=1}^{\infty} \tan\left(\frac{1}{n}\right)$ III) $\sum_{n=1}^{\infty} \sec\left(\frac{1}{n}\right)$ IV) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$

List all given series for which the Divergence Test yields a conclusion.

a) I b) II c) III d) IV e) I, II
f) I, III g) I, IV h) II, III i) II, IV j) III, IV

Solution: f

```plaintext
> a := n -> 2^n/n;
  b := n -> tan(1/n);
  c := n -> sec(1/n);
  d := n -> 1/sqrt(n);
```

```plaintext
> testeq( limit(a(n), n = infinity) = 0 ); #Divergence Test applies
false
> testeq( limit(b(n), n = infinity) = 0 );
true
> testeq( limit(c(n), n = infinity) = 0 ); #Divergence Test applies
false
> testeq( limit(d(n), n = infinity) = 0 );
true
```

Code for Figures