Problem 1. Given S, N, and $d < R < u$, suppose we take the CRR prices $S(N, j) = Su^j d^{N-j}$ and probabilities $Q_j = Q'_j = \binom{N}{j} \pi^j (1 - \pi)^{N-j}$, where $\pi = \frac{R-d}{u-d}$. Prove that the implied binomial tree computed using the “Simple as One, Two, Three” algorithm is precisely the same as the CRR tree. That is, show that $S(n, j) = Su^j d^{n-j}$ for all $n = 0, \ldots, N$ and $j = 0, \ldots, n$.

Hint: Use induction on N.

Problem 2. Assume that $Q_j > 0$ for $j = 0, \ldots, N$ and $\sum_{j=0}^{N} Q_j = 1$. Prove that the probabilities $Q(n, j) = \binom{n}{j} q(n, j)$ obtained using the “Simple as One, Two, Three” algorithm also satisfy $Q(n, j) > 0$ for $j = 0, \ldots, n$ and $\sum_{j=0}^{n} Q(n, j) = 1$ for all $n = 0, \ldots, N$. (In other words, this shows that we always obtain “valid” probabilities, and we never run into the sort of problems we can encounter with implied volatility trees.)

Hint: Use induction on N, along with the identity $\binom{n}{j-1} + \binom{n}{j} = \binom{n+1}{j}$.

Correction: There are a few typos in this problem. First, $q(2, 2)$ and $Q(2, 2)$ are equal to 0.3, not 0.33333... as stated. Moreover, the formulas for $Q(2, j)$ are wrong: they should be $Q(2, 0) = 1 \cdot q(2, 0)$, $Q(2, 1) = 2 \cdot q(2, 1)$, and $Q(2, 2) = 1 \cdot q(2, 2)$.