TWISTOR AND GAUSS LIFTS OF SURFACES IN FOUR-MANIFOLDS

*
Gary R. Jensen & Marco Rigoli

§1 Introduction. Let M be a Riemann surface, (N,h) a Riemannian 4—manifold and let
f:M -+ N be a conformal immersion with induced metric (i.e., first fundamental form)

*
g = [ h. The area functional has a critical point at f (i.e., f is minimal) if and only if the
mean curvature vector H of f vanishes. As a classical reference point, recall that if N is

Euclidean 3—space, then f is minimal if and ouly if its Gauss map 7f:M - SZC!R3 is
anti—holomorphic. If N is Euclidean n—space, then Chern [Ch] generalized this result to

the Gauss map 7¢M - Gz({Rn) into the Grassmannian of oriented 2—dimensional
subspaces of R". This latter space can be identified with the complex hyperquadric

Qn__QCCPn“I, by a biholomorphic isometry.
In the special case when N is Euclidean 4—space, the hyperquadric Q2 splits
biholomorphically and isometrically into a product of 2—spheres,

(1.1) Q,= 52,52

and projection on each factor splits the Gauss map into factors, | T = (7}”,7%). Blaschke
[BI] and Hoffman—Osserman [HO1] proved that

K = J(»ff*) +J(7), K= J('x}') = J(7),

where J(.) denotes the Jacobian of the map, and K and K* are the Gaussian and
normal curvatures, respectively, of f. Integrating these equations, assuming M compact,
and using the Chern—Gauss—Bonnet Theorem, they [HO1] generalized a result of
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Chern~Spanier [CS]

X(M) = deg(v) + deg(7) , x(TM*) = deg( 7§) — deg(7p),

where y is the Euler characteristic and deg denotes the. degree.

In this paper we allow N to be an arbitrary oriented Riemannian 4—manifold. The
Gauss map is replaced by the Gauss lift into the Grassmann bundle GZ(TN ) of oriented
tangent 2—planes of N. Although the splitting (1.1) holds in the fibers, this space does not
in general split. However, the Penrose twistor spaces Z 4 Dbrovide fibrations
GQ(TN) = Z_ and consequent factorizations, called the twistor lifts of f. For many
generalizations the most interesting results occur when N is a #self—dual Einstein space.
In particular, a special case of our final result, Theorem 8.1, parametrizes a class of

harmonic maps from compact Riemann surfaces into CPS by compact oriented surfaces

immersed in S4 with parallel mean curvature.

This paper began as an attempt to understand the results of the paper by Eells and
Salamon [ES]. Many of the results here were announced in [JR3] where this paper is
referred to by the preliminary title "Surfaces in 4—manifolds". Throughout the paper we
assume M and N are both connected. We use the Einstein summation convention (sum
all repeated indices in a product), and the index conventions 1 < a,b,c<4; 1<i,jk<2;
3<a,B8,76<4; 1<p,q<6. The paper is organized into eight sections:

Introduction

Isotropic surfaces in a Riemannian manifold
Four—dimensional Riemannian geometry

Metric structure on the twistor bundle

Almost complex structures on the twistor bundle
Hermitian structures on the twistor bundle

The Grassmann bundle

Twistor and Gauss lifts

O ~T OO QD B

§2 Isotropic surfaces in a Riemannian manifold. Let N be a connected n——dirhensional
Riemannian manifold. Let O(N) denote its principal O(n)-bundle of orthonormal frames.

The R"-valued canonical form on O(N) is denoted = (6%, and the o(n)—valued
Levi—Civita connection and curvature forms on O(N) are denoted w = (wg’) and

Q= (Qg’) , respectively. Then

O = Rapeatnd’
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where Rabed are functions on O(N) defining the Riemann curvature tensor of N . The
structure equations of N are

dé? = —upnd, def = -—w?/\wg + Q.

A local orthonormal frame field in N is a local section e = (e,) of O(N). Its

dual coframe field is (e*¢?) , for which we will always omit the e* . Similarly, the
connection and curvature forms and components of the curvature tensor with respect to e

will be denoted by wg“ , Qﬁ and Rabed , respectively, without explicit indication of e* .
If N is non—orientable, then O(N) is connected. Otherwise, O(N) has two
connected components, O 4(N), and each of O 4(N) = N is a principal SO(n)-bundle.
Let M be an m—dimensional manifold, let f:M -+ N be an immersion, and let g
denote the induced Riemannian metricon M. A local Darboux frame ficld along f isa
local orthonormal frame field e in N such that eiof is an oriented orthonormal frame

* .
fieldin M and ea0f are normal to M ; or, equivalently, f ¢ is an oriented
orthonormal coframe in M and

fo%=¢.

E
We will almost always suppress the writing of the f 's in this context. Exterior
differentiation of this equation implies that on M

o L
wi-_hijéﬂ,

where h?. are locally defined functions on M | synnnétric in i and j. The second
fundamental tensor of f is

il
Ilﬁhnfﬂ&b,

a symmetric bilinear form on M with values in the normal bundle TM* .
We let

g0 _ 1,0 o
H —2(1111 +1122)

denote the components of the mean curvature vector, H = H% o of f. The Levi—Civita
connection of N induces the Levi—Civita connection of g on M given by



4 GARY R. JENSEN & MARCO RIGOLI

Ve, = w’®e and V¢ = —ulof ;
i i j
and a connection on TM* given by
= Pee .
Ve = w e 3
* *
and thus in the standard way on T M®T M@TM* . Then

i
VIl = Dhij®{}10]®ea,
where
o _ g a k o k 8 o ,a«
Dhij"_dhijohkjwi —hikwj +hijwﬁ""hijk9k‘

From the symmetry of I1I we have

[ I ¢ 1
b =Dy

while by the Codazzi equations we have

a a
(2.1) ik~ Bk = Raij -

It is easily verified that the covariant differential of H ,
o B «a o,
= I‘ — I .
VH = (dH" + Hwgiee, 1 ¢,

is given by

o _la

We say that f is minimal if H = 0, and that f has parallel mean curvature vector if
VH=0.

To construct global invariants from this local analysis, we must determine the
transformation rules for changes of Darboux frame. For this purpose it is convenient to use
the isomorphism
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(2.3) p:S0(2) - U(1)
cos t —sin ¢ it
sint cost|wre
We define the Hopf transform from the space of real 2x2 symmetric matrices h = (hij)
onto € by
1 .
(2.4) L(h) = 5(hyy — 1122) —ihyy .

The kernel of L consists of all scalar matrices, and L has the equivariance property

(2.5) L("AhA) = p(A)*L(h),

for any A € SO(2) .

We restrict our attention now to the case m = 2, and we suppose that both M
and N are oriented. A + oriented Darboux frame along f will mean a Darboux frame
{e,} such that {e;} is an oriented frame on M and {e,} is a & oriented frame in

FITM . Thus {e,} isazx oriented frame of TM* which is oriented in the way
compatible with the orientations of TM and TN, and the decompostion

TN = TM @ TM* .
An arbitrary change of oriented Darboux frame is given by

(2.6) e=eG,
where G is a locally defined function in M with values in

A0
(2.7) SO(2)xS0(n-2) = { [ 0 B] : A€SO(2), BeSO(n-2)} ..

Under such a change the matrices h® = (h?j) of II transform by

(2.8) he = (*B)§ “ana
where tilded quantities are with respect to @ . Writing LY for L(h®) , we have
(2.9 L= p(A)%('B) 317,

and

(2.10) HY = (‘B)§ Ho
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It is important to use the complex structure of M induced by g. If e isan

oriented Darboux frame field along f, then its dual coframe (#*) defines a type (1,0) form

(2.11) o= 0" +if*

which under a change (2.6) of oriented Darboux frame transforms to

(2.12) p=p(A) Ty,

Using the complex structure of M to decompose the second fundamental tensor by

type,we have w? + iwg = Ha<p + Lago, and thus
1 — l—or
I = §¢¢®Laea + pEeH + 7W®L"‘ea ,

where bars denote complex conjugation. The coefficients L% o and L% o Are local
sections of the complexified normal bundle TM& = TM"® . The Riemannian metric on
N induces a fibre metric on TM* , which we extend to be complex linear and symmetric

on TMg , and denote by (.,.) .

(2.13)Definition The isometric immersion f is isotropic at a point p of M if the
complex normal vector L% a(p) is isotropic; that is, if

(Laea,Lﬂeﬂ) =L%%=0
at p. Wesay that f isisotropic if it is isotropic at every point of M .

It is evident that the symmetric quartic form

(2.14) A= 1oLt

is globally defined on M and vanishes at a point if and only if f is isotropic at that point.
The function

(2.15) u=3[L%>?
&

is globally defined and C® on M, and vanishes precisely at the umbilic points of f.
We specialize now to the case where dim N = 4 when, as we shall see, the
non-simplicity of SO(4) is reflected in the meaning of isotropicity. With respect to a
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local oriented Darboux frame e along f we define the complex valued functions

34 3t

(2.16) b= -t s, =13t | s =1

This strange convention is adopted to match that of the twistor lifts in §4. Under a change
of oriented Darboux frame (2.6), these functions transform by

t o 251
(2.17) b=p("B)b, S, =p(A"B )5S, .
The absolute values of these functions,
(2.18) Ibl = JIHIl, s =[S |/v2,

are globally defined on M and their squares are of class C%.

ProrosiTioN 2.1 With respect to any oriented Darboux frame we have

(2.19) A=5.8 ¢' u=s 44
and
09 i”*‘sg:“HlF — K + Ry
(2:20) 2 2 .

sy —s_=-K" + Ri234 ,

where K* is the curvature of the induced connection in the normal bundle; that is, Kl‘
is given by

dé’z = K*o'A¢% .
Proor These equations follow from the Gauss equation

(2.21) K = Rjg9 + Xdet h¢ ,
o

the Ricci equation

(2.22) K* = Rizge + by bty —hond

and the easily derived formulas
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) LY 2= (Y2 -det(h%)

4

(2.23)
i) 030t 1314 =i(hy hly ~ 3.0l ). o

Definition At a point p in M the isometric immersion f is isotropic with positive
(respectively, negative) spin if S+(p) =0 (respectively, s_(p) = 0). It is isotropic with
positive (negative) spin if it has the respective property at every point of M .

Remarks 1) This definition follows that of Bryant [B] for minimal surfaces in st m
[Ca] Calabi observed that A is holomorphic when f is minimal and N = S*. Thus when
M is homeomorphic to 52 , A must vanish identically for minimal f. He called isotropic

minimal surfaces in S4 pseudo—holomorphic curves. Our notion of isotropy corresponds
to real isotropy of Eells=Wood [EW] and Chern [Ch2]. An isotropic { need not be

minimal, even in s*. we discuss this further in §5 below.
2) If the orientation of N is reversed, thus reversing the orientation of

TM*, then s " and s_ are interchanged. Thus the notions of positive and negative spin
are reversed by a reversal of orientation of N .

Isotropy can be defined geometrically in terms of the ellipse of curvature of the
immersion (cf. [EGT] and [JR1]). Fix pe M and in TpM consider the parametrized unit
circle

X::X(t)::costelJrsinte2 0<t<2r

where e is an oriented Darboux frame field along f. The ellipse of curvature at p is
defined to be the curve in TMS given parametrically by

_ . Lo2it L -t
M(X,X) = H + et + g2t

where L = L% o This curve is a circle (with center H and radius [LIZ/ 2) if and only if
L is isotropic. It degenerates to a line segment (possibly of zero length) if and only if

LAL = 0 at p, which occurs if and only if Rypss = K" at p, by (2.22) and (2.23)ii).
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THEOREM 2.1 Let f:M - N be an isometric immersion of a compact surface. Then

(2.24) ]/I HH“QdA > QNX(M) + IQ?&’X(TM'L) *—I\{I R1234dAI *-I\fd lesz ,
J\"

where y(M) and x(TM®) are the Euler characteristics of M and its normal bundle.
Equality holds if and only if f is isotropic with positive, or negative, spin.

ProoF Adding and subtracting the two equations in (2.20), we have

(2.25) HHII2 > K + |K* — Rioz4| — Riasa -

Integrating and using the Gauss—Bonnet theorem we obtain (2.24). Suppose f is isotropic

with negative spin. Then from (2.20), K — Rya34 < 0, and equality holds in (2.25), and
hence also in (2.24). Similarly, equality holds in (2.24) if f is isotropic with positive spin.
Conversely, suppose that

{ JIH|PdA = 2my(M) + 27x(TM*) — | RizsedA — | RipiadA |
M M M
(The same argument works if 27x(TM™") — [ Riss4 < 0.) From (2.20) we have
M '

”H“2 = 233_ + K + K* — Ryazs — Rygp -

Integrating and subtracting from the preceding equation we have | QSidA =0, that
M

is, f is isotropic with positive spin. n

Remark Inequality (2.24) generalizes a result of Friedrich [F] (Theorem 1, p.272), and of
Wintgen [W] obtained for N = R: Indeed, in this case Ry212 = Rys34 = 0 and
x(TM?') = 2q , where q is the self—intersection number of the compact oriented surface

f(M) in RY . Thus, if g is the genus of M, then (2.24) reduces to Wintgen's inequality
2
hfl IH|["dA 2 47(1 + |q] —g) .

Equality in this case was first considered by Weiner [We].
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PRrOPOSITION 2.2 Let f:M - N be an isometric immersion of a compact surface. If f is

isotropic with positive (respectively, negative) spin, with Y(TM™) =0 and Rjg3 > 0
(respectively, Riaz4 < 0), then f is totally umbilical.

Proor Suppose s L =0 (the case s_ = 0 is similar). From (2.20), the hypothesis
x(TM™*) = 0, and the Chern—Gauss—Bonnet theorem we have

j s_%dA = — [ Ry234dA <0,
M M

and thus s_ =0 also. Hence u=10 ,and f is totally umbilical. o

Observe that in case f is totally umbilical and M is compact, then
2rx(TM™) = | Ryg34dA by (2.20). In particular, if N is the constant curvature
M

4—sphere 84 , we have

PROPOSITION 2.3 Let {:M - S* be a minimal surface where M % S, Then f is totally
geodesic if and only if x(TM*) =0. If f is not totally geodesic, then

X(TM') = —4 —m , where m is the total number of umbilical points counted with
multiplicities (see Remark 1 below).

Proor The first part follows from Proposition 2.2. Suppose f is not totally geodesic, or
equivalently, that { is full in S4 - Then we apply Theorem 1 of [JR4] to obtain the

desired estimates of y(TM%) (there f is isotropic with positive spin). o

Remarks 1. If a minimal immersion f is not totally umbilical then the umbilical
points are isolated and have well defined multiplicities [JR4].

2. The above estimates of x(TM™) improve a result of Salamon [S2].

Now let £:M -+ N be a minimal immersion of a compact surface. Then from (2.20)
and the Chern—Gauss—Bonnet theorem we have

%{X(I\/I) + X(TM-L)} == ”?1—}1\[/1 SidA + 4%1\]/[ (R1212 -+ R1234)dA
(2.26)

1 -

7{)((M) - X(TM'L)} = 717%\[/[ S__Q_dA -+ 4:-%1\]4 (R1212 _ R1234)dA
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The left hand sides of (2.26) are the twistor degrees d, introduced by Eells—Salamon
([ES], §8), and thus (2.26) gives integral Iepresentatlons of the twistor degrees.

If N is Einstein and anti-self—dual (respectively, self~dual; see §3) with scalar
curvature s, then (reading the + , respectively the —) Riygrs + Ryggs = s/12 , and
therefore

-~ -1

TdA+ SAM),
M

respectively, where A(M) is the area of M . Furthermore, f is then isotropic with
positive (respectively, negative) spin if and only if

¢ S

(2.28) dy = 75-AM) . |

The necessity of this last statement for d . was first proved by Friedrich [F] and Poon [P
independently. (See also Salamon [S2].)

§3 Four—dimensional Riemannian geometry. The material of this section is well known
(see, for example, [Be] or [S] for excellent expositons). We summarize here the essential
points that we need and establish our notation and point of view. In this section we use
the index conventions 1 <i,jkl<3, 1¢ a,bc,d <4.

The standard action of SO(4) on r* (as column vectors) induces a representation
of SO(4) on A2fR4 (a(uAv) = auAav), which is reducible into irreducible factors
A2IR4 = A 4 ®A_, where the 3—dimensional subspaces A 4+ are the =1 eigenspaces of the

Hodge *—operator on R’ with the orientation of the standard basis €156 - Standard
bases of A 4+ are given by

(3.1) ET =

where

+ .
Ig]» = (cl/\(2 + 63/\64)/\/2, h (61/\63 + ¢ Ae )/f E = (6 ﬂ: 52A63)/ﬂ

(e et pt

=2 3)

The standard metric on R? induces an SO(4)—invariant inner product on A ﬂ{
and the restriction of the SO(4)—action to A 4+ thus gives a 2:1 surjective homomorp]nsm

1:50(4) - SO(3)xSO(3)
a-(a,.a)

ET

: ¥ — . N +
where for a € SO(4) , ay = a!A:i: with respect to the bases (3.1) (a BT = a ik

etc.)
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There is an isomorphism o(4) A2fR4 given by: the skew—symmetric matrix
1 - .
X=(X)e X, b6y, - If a € 50(4) , then the adjoint action of a on o(4)
corresponds to the above action of SO(4) on A2R4 ; namely,

Ad(a)X = aXa 1w a(%—X ab® a/\cb) . The above decomposition of AZ{R4' thus gives the Lie
algebra isomorphism o(4) ¥ o(3)+ ®0(3) , where o(3) oA,

Let N be a connected oriented Riemannian 4—manifold. Let 6= (6*) and

Q= (Qg) denote the canonical form and the curvature form of the Levi—Civita
connection, respectively, on O(N) . For any a € O(4),

*
(3.2) R,0=2"'0,

where R, denotes right multiplication on O(N) by a. If we define R3—valued 2—forms
on O(N) by
1

ol glad? + Padt
(3.3) a, = ai = o' + YA V2,
L3l 16 £ g
+
then
* —1
(3.4) Roog =a, 0.

The curvature forms Qg’ are the components of the o(4)—valued 2—form Q with

respect to the standard basis of gi(4;R) , with the linear relations QF = —Qg, because on
O(N), @ takes valuesin o(4). A fundamental property of the curvature form is that it is
given by

(3.5) 0% = IRapcatnd?
where the Rapeq are functions on O(N) satisfying the symmetries of the Riemann

curvature tensor: Raped = —Rabde = ~Rbacd = Redab -
If we express Q0 in terms of the basis (3.1) of o(4) and the 2—forms (3.3), then

(3.6) Q= Aij}‘f:@oz_fL + BijEi—g’OKi + BjiEé‘@a{ + CijE;®a*j ,
where if A = (Ajj), B = (Bjj) ,and C = (Cij) , then

(3.7) A=A , tc=c , trace A = trace C .
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In matrix notation (3.6) becomes
_ ot - + gt -
(3.8) Q=E ®Aa++E ®B&++E ®Ba_ +E ©Ca_
For any a € O(4), we have
* -1
(3.9) RaQ =a Qa,

from which it follows that for any a € SO(4) ,

RA=a'Aa,, RB=a"'Ba,, R.C=alC
(3.10) A =a, Aa,, R, —a_“_aﬂl_, L=2a_ Ca,

(explicitly, for any ¢ ¢ O(N), A(ea) = azl(e)A(e)a+(e) , etc.).
It will be handy to have explicit formulas relating Rapeg to A, B,and C.
These are found by substituting (3.1) and (3.3) into (3.5). We have

(3.11)
Ay =3(Rig1y + 2Ry + Rypar), Ay = 1= 3(Ryg10 + Rygg4 = Roy1p —Ryyny)
Agt = 5(Rpgpg + Ryggy + Rogpo + R2334) Agy = 5(Ry315 2R 30, + Ry )
Agy=g5(Ryg13— Rygpq + Rogis —Rogag) Agg = 5(Rygpy + 2R 400 + Ro393)
(3.12) Byy = (R~ Ryga,) = 1(Ry) + Ry — Ry Ryy)
Byy = 5(R ;g0 + Ryggy + Ryypp + Rogze) = 5(Rgy — Ry )
Byy = 3(Ry410 + Ryygq - Rogio = Roggy) = 5{Ryq + Ry)
Blo = 3(Rjg15~ R gy - Raq13 + Rageq) = 3(Rog + Ry,)
Byy = 5(Ryg5 ~ Rogy) = 1(Ry) —Rgy + R33 ~Ryy)
Bys = 5(R 413~ Ry o - Rogig + Rogpg) = 5(Ryg ~ Ryp)
Big =3R4 + Ryggs —Rayps Rago5) = 3(Roy = Ry3)
Byy = Ry 14 + Riga3+ R2414 + Roypg) = (Ray + Ry )
Byy = 3Ry 414 — Rogpg) = 1(Ry) —Roy —Ryg + Ryq)

where Rap = Ry, are the components of the Ricci tensor: Rap = ¥ Reach -
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(3.13)
1 1
C11 = 2(Ryg1p = 2Ryggy + Rayay)s Cop = 3(Ryg19 ~ Ryggy + Royyo =~ Royay)
| 1
Cs; 2(R1412 Rig34 —Ro3q9 + R2334)’ Cog = 3(Ryg13 + 2R 304 + Royoy)
C

o 1 ~
L32 = 2(Ryq13 + Rygpg —Rogi3 —Rogoq)s Ca3 =Ry 4 = 2Ry 109 + Rogon)

From (3.12) we see that

(3.14) N is Einstein if and only if B=0.

The Weyl curvature form is the o(4)—valued 2—form ¥ =(‘Ilg) on O(N) defined
by
wg = Qg —%(Racac/\ob + RpcPr6°) + g—of’“/\ab ,

where s = ¥ Raa is the scalar curvature. In terms of the bases (3.1) and (3.3) we have

+ .
(3.15) U=E"®A -5 Do, +EeC -5 Da_,

where I is the 3x3 identity matrix.
Let eUCN-O (N ) be alocal oriented orthonormal frame field in N . For each
point pe U, e(p) = (e e ,e4)(p) is an oriented orthonormal frame of T N (which we

interpret as an isomorphism e(p )[R - T N given by e(p)x = x% 2(P) where x = (x%))
with dual coframe e*#(p). Thus e(p)Ei are bases of A T N, the =+1 eigenspaces of

the Hodge 4« operator on TN (e(p)E+ V-(e +e3/\e4)(p) etc.) with dual bases
:,:(p)

The curvature operator at p is R(p) € 62(1\ T N) CA T NeA T N given in
terms of the basis {e JAep(p) 1 a < b} by

1
R(p) = 3R, cq(e(p)eyhey (p)eer(dsh) (p) |
and in terms of the basis e(p)Ei by (e and e* evaluated at p throughout)

(3.16)R(p) = eE+®A(e)e*a  +eE @B(e)e*a Lt eE+®tB.(e)e*a__ + eE eC(e)e*a

The Weyl curvature operator at p preserves the 1 eigenspaces of 4 , and thus

W(p) = WF(p) + W(p), where WE(p):A LT,NALT N are given by
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(3.17) W+(p) = eET®(A (A( —-S—iml)e*
W (p) = eE7®(C(e) —(Bll)e*

If e:U~ O_(N) is a local negatively oriented orthonormal frame field in N , then
for any point pe U, e} )E+ is a basis of A T N and e(p)E  is a basis of A, T N.

Thus the expressions for W (p) in (3.17) are reversed In summary

(3.18) If e is positively oriented, then the matrix of W (W) with respect to
eE™T (eE7) is A(e) -1§2 I (C(e) -1% I); whileif e is negatively oriented, then the
matrix of W+ (W) with respect to eE~ (eE+) is C(e) —-1% I (A(e) ~1§2 I).

The oriented Riemannian manifold N is self—dual (respectively anti—sclf-dual) if

at every point of N we have W™ =0 (respectively W™ = 0 ) [AHS], [Be]. By (3.18)
the following are equivalent:

a) N is self—dual (anti—self—dual)
(3.19) b) C—51=0 on O +(N) (A=51=0 on 0,(N))
c) A—I—QIr—O on O (N) (C 121--0 on O (N))

§4 Metric structure of the Twistor bundle. In this section n = 2m , and we return to the
convention of index ranges given in §1. Let N be a connected 2m—dimensional
Riemannian manifold. The twistor space Z of N is defined to be the set of all pairs
(p,J) , where pe N and J isan orthogonal complex structure on TpN ; l.e., J isan

orthogonal transformation of TpN satisfying 32 = —identity. The twistor projection
(4.1) T:Z-+N

is defined by T(p,J) = p. As the set of orthogonal complex structures on TpN depends
only on the conformal class of the inner product on T N, it follows that Z depends only
on the conformal structure of N .

The projection (4.1) is a fiber bundle over N with standard fiber O(2m)/U(m) .
We associate Z to O(N), the principal O(2m)—bundle of orthonormal frames on N . To
do this we must first consider the representation of U(m) in O(2m) .

Let
0-1 J1 0
le 1 0),and J . .
0 ‘Jl

m=
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. X N Y. A . 2 — Thao
Obscrve that J mE SO(2m) and that J, = Iy - Then

(4.2) U(m) 2 {A € SO(2m): "AJ_A =1 }.

At the Lie algebra level,

(4.3) u(m) ¥ {A € o(2m) : tAJm +J A=0}.

It will be useful for us to see this explicitly when m = 2 as (see §3)

0 a bec
-a 0—c b
-b ¢ 0d "
(4.4) u2) 2 {{ —c~b—d 0] :a,b,cdeR} =span{o(3)_, El}

Let V' be any oriented 2m—dimensional inner product space. For any orthonormal
frame e = (el,...,eQm) of V , define an orthogonal complex structure J e 00V by

_ : 2
(4.5) Jeezj_1 = er , 1<j<m, Je = —identity.
Thus, the matrix of J o With respect to e is J, - It is easily verified that any orthogonal
complex structure on V is equal to J R for some orthonormal frame e, and that J 0= Jré

if and only if € = eA for some A € U(m) C SO(2m) . The set of all orthogonal complex
structures on V is O(2m)/U(m) which has two connected components, corresponding to
the two connected components of O(2m) . A component is selected by choosing an
orientation on 'V, in which case SO(2m)/U(m) = {J o - €18 an oriented orthonormal basis
of V}.

From these pointwise considerations we see then that the twistor bundle is

(4.6) Z= O(N)XO(Qm)O(Qm)/U(m) = O(N)/U(m) .

It is connected if N is non—orientable, while if N is oriented then 7 has two connected
components

(4.7) Z, = 0_(N)/U(m),

where O, (N) are defined in §2. Let 0:O(N)-Z be the projection, and if N is oriented,
let

(4.9) 0,:0,(N)- Zy
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be the separate projections. By (4.6) these are principal U(m)-bundles. In much of the
literature (cf. Salamon [S]) Z_ is called the twistor space of N .

Up to constant positive factor, there is a unique O(2m)-invariant Riemannian
metric on O(2m)/U(m) . This metric, combined with the parallelism on O(N) defined
by the canonical and Levi—Civita forms 6 and w, defines a natural 1—parameter family of
metrics on Z which we now describe. This is a special case of a general construction
defined in [JR2].

The unique, up to positive factor, Ad(O(2m))—invariant inner product on o(2m) is

(4.10) <X,Y> = trace 5'e's ,

Welet m denote the orthogonal complement of u(m) in o(2m) .

for X,Y € o(2m) .
= u(m) ® m decomposes w into w= p + v, where

Then o(2m)

1, 1
(4.11) p=glw=J wl ) and v= 5w + J @) s
which in terms of components is

2kt =1k = (4 + B2

Hoj—1 = Hok =
2j—1 _ _2j _,92j-1_ 2]
Hoj =M1 = (Wi ~ —whi_1)/2

(4.12)
2j-1 __2j . 2j-1 _ 2j
Vok—1 = Voi = (whj_1 — whi)/2
2j~1_ 2§ _, 2j-1 2]
Yok = Voj—y = (whi ~ +uhi 4)/2.

When m = 2 these are the skew—symmetric matrices

1,2 1 2, 1 2 1, 25
2,1 2,1 2 1
2 0 203 2 0 0
0 | | 0 |

The fibers of ¢ are the integral submanifolds of the completely integrable system
=0, v=0. ‘
We define a symmetric bilinear form Q; on O(N), for any t > 0, by

(4.14) Q=00+ t2<u >,
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By (4.10) and (4.12) this is

(4.15) Q=13 (2 + 4:—?)_ gk[(ugll;j)z + (Y.

It is easily checked that R 2Qt = Qq for any a € U(m) , where R, denotes right
multiplication by a on O( ) ; and that Qq is horizontal, meaning that it vanishes on
any pair of vectors for which either of them is vertical with respect to o . Thus there
exists a unique Riemannian metric g¢ on Z such that o*g, = Q¢. With the Riemannian
metric Q¢+ <pp> on O(N) and gy on Z, o is a Riemannian submersion with
totally geodesic fibers, as we shall see.

Let U CZ be an open subset on which there is a local section u:U - O(N) of
0:0(N) = Z . By (4.15) an orthonormal coframe for g, on U is given by applying u* to
the 1-forms on O(N)

21 .
(4.16) @ 22 S 1, Q%ﬂ L i<k.
For a uniform notation for this coframe we let
(4.17) R A
ik kit 2j-1
R AT

which, when m = 2, becomes (letting 12— =5 and 12+ = 6)

(4.18) P =3wy~ud), O=Lul+ W) .

The Levi—Civita connection forms for g, with respect to this orthonormal coframe
are given by (where j <k and 1<m)

5 _ .
6’% = wf; — t“(Raj 2krba — Rajty2k-toba) X + t2(R2j~1,2k,ba + P»zj',zk-l,ba)édkJr

Hgk" = %(szﬂk,ab — Roj1,2k-1,ab)

0{)k+ 2(R2J -1,2ksab + Rzmk 1,ab)49a

&l,rlr\l:k— 6 ] ”gllx 1 &ljﬂgll? 1 '5111“21 1 + 51”2111 1
gjk'{- P jk—

Im+ ~ "Im—
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and of course Og = —Hg for 1 <p,g<m(m+1).
In the case m = 2 these are (letting 12— =5 and 12+ = 6):

0% = Wﬁ + tZ(RIBba“ R24ba 05 + t2 R14ba + RZSba)HG
P
(4.19) By = 5(Rasab — Rigan) P = ~0, 60 = —H(Rugap, + Rogap)0? = —4)
_1,..3__ 8
ﬂg =y + Wy = 95

These last equations show that the fibers of ¢ are totally geodesic for the metric
Q, + <wyw,> on O(N).
With respect to the frame field (4.16) the components of the curvature tensor are

Tabed = Rabed =5 5(Ragen ~ Rigea) Rogqp — R13db) +
(Rigea + Rogea) Rygap TRogqp) — (R24da 13da)(R24cb Rigen) =
(R1gda + Rozdqa) Rigen + Rogep)] + (Rogpy = Rygpa)(Rogqe = Ryzge) +
(R14ba 23ba)(I 14dc + R23dc)}
(

_t
R - R24b::x,c)’ Tabes = ~2'(R14ba.c 1 R23ba,c)

13ba,c
2

i
abc5 2
¢
Tabse =7 1(Ry30a = Rogea) Rygpe + Rogpe) —

, (R13be ~ Rogne) Rigea + Rogea)} —Rgpa ~Riops
(4:20) T5ba5 = § (Rygp, - R24ba)(R2§da ~Ri34a)
Tyhde = l(zlzdb + Rygan) + 1 (Rygpa + Rogpa) Rogqy = Rysg,)
Tobes = 1 Rigna + Rogna) Ryges + Rogey) |

1

5056 = 0= Topser Trps6 = 2

rI\

The remaining components are determined by the symmetries of the curvature tensor, and
Rabedse are the components of the covariant derivative of the curvature tensor of N .
Contracting Tpqrs on the first and third index, we obtain the components Tpq of the
Ricci tensor of gy on 7 : |

9
_ t
Thg = RBpg =3 {(Rygp, + Rogp ) Ry, + Rogq,) +
(R13pa = Rogbha) (Ri34a — Rogqa)}

T R

b5 = 3R13pa,a ~ Roapa o)

_t

2
T, . = SR +R )
b6 — 2V 14ba,a 23ba,a

and
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1 2 9

Ter = et % (Rygpa ~ Rogpa) ™
a,b.
2
¢

Ts6 =7 (Rigpa + Rogpa) Rogpa — Rigpa)

1 2 9
Tgg = 2t agb(RMba + Roapa)

FrOm the RiCCl identltly Rabcd,d = Rca,b - Rcb,a s Where Rab,c are the
components of the covariant derivative of the Ricci tensor Rap of N, we find that

¢ ~ — t' - -
(4.22) Tps = 3(Ry1 3= Ry 1~ Ry g + Rpy o)
_t _
Tpe =3(Rp1 4 ~Rpg 1 + Rpg g —Rygq) -

These calculations are used to establish the following theorem which was first
proved by Friedrich and Grunewald [FG] (the version Theorem 2.1 in [JR3] is incorrect).

THeoREM 4.1 Let N be a four dimensional oriented Riemannian manifold. Then the
metric g, on Z_ (respectively Z + ) is Einstein if and only if N is self—dual

(respectively anti—self—dual) Einstein with positive scalar curvature s = 6/ t2 or

s = 12/t2.

§5 Almost complex structures on the twistor bundle We consider now two natural almost
complex structures J 4 on the twistor space Z of a 2m—dimensional oriented Riemannian
manifold N . We do this by defining locally the type (1,0) forms on Z . As usual, this we
do by defining complex forms on O(N) and pulling them back to 7 with local sections.
We continue with the index conventions of §1.

It is convenient to begin with a more detailed description of the representation
U(m) ¢ SO(2m) introduced in (4.2). If {¢} and {€),¢9} denote the standard bases of

R™ and lR2 , respectively, then we take as the standard basis of [R2m = iRm®!R2 the set of
vectors {ei®el, €i®€2} ordered lexicographically. Thus x € R given by x =

K-l €8¢, + x4 €8¢, . We define a real isomorphism R ¢ by

(5.1) ofx) = (x2j«1 + ixzj)fj .
If we let p:U(m) - SO(2m) denote the faithful representation (4.2), then

(5.2) p(A + iB) = Ael, + BeJ, .
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The induced representation on the Lie algebra we denote by py . It is easily verified that

for any a € U(m) and any x € 2 , we have
(5.3) aa(x) = ofp(a)x) .

The same formula holds for a € u(m) and p4 in place of p.
Using (4.11) and (4.12), one can see that the orthogonal complement m of u(m)
in o(2m) has the simple description

(5.4) - m = {X@[(l)—(” + Y®“)(1)J : XY €o(m)} .

If we define the real isomorphism f:m - o(m;C) by

10 01
(5.5) ﬂ(X®[0—1]+Y®[10J):X+iY,
then for any a € U(m) and any z € m,
(5.6) A(Ad(p(a))z) = afi(z)ta
and for any u € u(m)

(5.7) Blad(pxu)z) = uf(z) + f(z)tu

On the bundle of orthonormal frames O(N) we have the canonical form # and the
Levi—Civita connection form w, which decomposes by (4.11) into w= p+ v. We define

a (M—valued 1form ¢ and an o(m;€)—valued 1-form & on O(N) by

(5.8) p=0o(0), (thus fpi = A1 +i02j)
& =f(v), (thus oIk = gk~ 4 jgkt (cf (4.17).

Then, letting Ry denote right multiplication by b € SO(2m) ,we have for any a € U(m)

¥ .
(5.9) R _,¢=ap R _ ®=ad.
pla ™) pla )

It follows immediately that an almost complex structure J is defined on Z by
defining the type (1,0) vectors to be spanned by the pull back to Z by local sections u +
of O (N)-7Z 4 respectively, of the complex 1—forms
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(5.10) o, K <k,

In fact, by (5.9) this span over € does not depend on the choice of u 4 and it is easily
verified that

x i ik
u, (A A7) 40
5 7 <k

at every point. Another almost complex structure J_ is defined in the same way, but

with @jk replaced by their complex conjugates @Jk .

(5.11) Remarks 1. O(2m)/U(m) is a Hermitian symmetric space whose
O(2m)—invariant complex structure is defined by the left—invariant (1,0)—forms B(v) .

2. The almost complex structure J 4 was introduced by Atiyah,
Hitchin and Singer [AIS] in their study of self~dual Yang—Mills equations in Euclidean
4-space, while J_ has been studied by Eells and Salamon [ES] for its relation to
harmonic maps from Riemann surfaces into N .

When m = 2 we can use the notation of (4.18) to write

(5.12) P =0l2= P i

If we let 2, denote the m—component of the curvature form 0 (cf. (4.11), and if
we let jt denote the u(m)—valued 1—form such that pxit = p (thus
[LIJ( = ;133{1 + iﬂ;j{—l ), then from the structure equations of N we obtain
(5.13) dp = —jihg— BAG, dD = B, ) — IAD — G .

By the Newlander—Nirenberg theorem, an almost complex structure is integrable if
and only if the algebraic ideal generated by the (1,0)—forms is closed under exterior
differentiation. Thus we conclude from the first equation in (5.13) a result proved in [ES]:

(5.14) J__ is never integrable.

From the second equation in (5.13) and the fact that the curvature form on O(N) is
horizontal, we conclude that

(5.15) J is integrable if and only if A(22) =0 modulo {¢} .
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When m =2 the 2x2 skew—symmetric matrices ® and A(f m) are determined

by their entries

12 3 _ 1,1 2 i, 1 2

(5.16) O = ¢ = 5w~ W) + 5wy + @)
and

_ 12 _ Lol o2y, dral o o2

(5.17) )" =30k —a?) +5(0 +93).

By (4.4), and using the notation of §3, we have m = span{E+, E+} Thus from (3.6) we

have

3 . . 3 . .
(5.18) Q,=Ele §(A2jai + Bjpa)) + E;,)L@iVJ(Agjai + Bjsa)) .

01 ' 01
Hence, as ﬁ(E;) = ~—[ -10 J/\/? and ﬂ(E?;) = i[ -10 ]/\/’Z , we have
(5.19) Q)" = BlAned + Biad +i(Asjal + Bjed)]

To express this in terms of ¢ and P, we use

1,1 92 92

i = i(p'Ap! + so %)/202, ol =i(plap! - g )/242
| _ 1,-2\ 10 7

(5.20) az = (p'A% + 2'APD) /242, o = (BN + olp )/242

3

_1, - -1, 200 1,.2
a_?_::—-]((p /\cp - /\(p )/2\/?, o '—”—‘1((/91/\90 — @ ApT)[2/2

which, when substituted into (5.19), gives

(5:21) A" = Polac® + Qp'ag? + Rolap! + S2g? + Tp! A + Up'AG,

where
P =(Ayp + As3)/4, Q= (Ags — Asz + 2iA93)/4
(5.22) R = (—As; — B3 + i(Agl + B12))/4 , S= (~A31 + Big + i(Am —_— B12))/4
T = (Byg + Bsz + i(Bzg — B32))/4 , U= (B22 —Bss + i(B23 + B32))/4 .

From these calculations we can conclude the result of [AHS]:
THEOREM (5.23) Let N be an oriented Riemannian 4—manifold. Then J, on Z_ is
integrable if and only if N is self—dual (and J on Z is integrable if and only if N is

anti—self—dual).

ProoF From (5.15) and (5.21) we have that J 4 on 7, isintegrable if and only if
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Q=0 on Oi(N) , respectively; which, by (5.22), occurs if and only if
(5.24) Ax3 =0 and Agy = Ags

on O(N) 4 » respectively.
By (3.10) and the fact that the homomorphism SO(4) = SO(3) given by a» a, s
surjective, it follows that A has the form (5.24) on O (N) if and only if A is a scalar

matrix. As trace A = s/4, it follows that (5.24) holds on O (N) ifand only if A = —2
on O (N). Hence (5.23) follows from (3.18). o

We remarked above that the twistor space Z depends only on the conformal class
of the metric h on N . To see how the almost complex structures J 4 on Z, depend on

. the choice of metric, consider a conformally related metric h = )\2h , where A isa
nowhere zero C* functionon N . Let #:0(N)- N denote the bundle of h—orthonormal
frameson N, and let @, & denote the canonical and Levi—Civita forms, respectively on

O(N) . Then
(5.25) F:O(N) » O(N)
(p,€)» (p, A(p)?)

is a bundle isomorphism such that

* 1 ..
(5.26) s X
- * a anb )\b
where we have written )\ instead of o7, and where d(Xo7) = Xal?, Aa€ C®(O(N)).

Thus, using the notation of (4.18) with t = 1/2 , we have

F*HS =21/\ (/\&)% + /\13’3 -—/\3@—— )\G)i - )\2@4 + /\4?)
(5.27) .
F =g ol + not -t + A&+ AaB® - 237%)

and consequently, using the notation of (5.12), we have

F*i__ 1 ~i .;1
QO"X(B)('O’]_ y2

= (:0 +2_1X (/\1 + i/\g)gjoz —-—2-1} (/\3 -+ i/\4)<:91 .

(5.28)

*
F<p3
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We have U(2)~bundles 0:O(N)-+Z and &:O(N)-Z (see (4.8)) for which it is
easily verified that ¢oF = & . Thus by definition of J 4 and J 4+ on Z, defined by h

-~

and I, respectively, it follows from (5.28) that J =J 4 for any conformal factor A ;

while J_=J ifandonlyif A is constant. Thus J i is conformally invariant, while J _
is invariant only under change of scale.

86 Ilcrmitian structurcs on the twistor bundle. Consider the twistor space Z with
metrics gy of §4 and almost complex structures J, . By (4.16) and (5.10), (Z, Jy,8t) is
Hermitian and

(6.1) <pi , 213K ,j <k (resp., ¢, 2t<f>Jk)

is a unitary coframe field for (Z,J +,gt) (resp., (Z,J_,gt)) when pulled back to Z by any
section u of 0:O(N)~Z. The associated (1,1)—form, i.e., Kaehler form, is then

(6.2) Ky (t) = %[}_3 (,ai/\{bi + 4t?z olkpgik ]

i i<k
pulled back to Z by u*. Taking the exterior derivative of 4 (t) , using the structure
equations of N in the form (5.13), we find

(63) dry(t) =i 3 {@Aplagh — Jagkaal + ai2pp0_)ralk - Y (o)
j<k
Suppose now that m = 2. Substituting (5.21) into (6.3) we find

(6.4) dey (t) =
~ig (-1 £202P)p Ap? £ 202 Qe ae? + Rpag! + S22 + TolAG? + O¢1A¢2)]

+ 1[(—1 £ 2t2P) ¢ /\<,-92 + 2t2(Qop /\g"oz + ch’ /\go + Sy Ago2 + TgolAgo + Utp Ap )]

(6.5) Definition Recall that an almost Hermitian manifold (Z,g,J) is symplectic if its
associated (1,1) form & is closed; it is (1,2)—symplectic if the (1,2) part of dk is ZEero;
and it is Kaehler if it is symplectic and J is integrable.

TueorEM 6.1 Let N be an oriented Riemannian 4—manifold. The followmg are
equivalent:
a) (Z_, g, +) is (1,2)—symplectic;
b) N is self—dual Einstein with positive scalar curvature s and t? = 12/s;
c) (Z_,g,J ) is Kaehler Einstein.
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Proor Recall that the type (1,0) forms of J 4 on Z_ aregiven by the pull back of

cpl, <p2, <p3 to Z_ by any local frame u in Z_. Furthermore, the twelve decomposable
3—forms giving dx +(t) in (6.4) are linearly independent at each point when pulled back to
Z_ . Thus, reading off the type (1,2) part from (6.4), we see that a) holds if and only if
(6.6) P=1/2t2 and R=S=T=U=0

on O_(N), which, by (5.22), holds if and only if

(6.7) Agy + Azz = 2/t2
and
All 0 0 B11 00
0 A Ay By 00
_(6.8) A=10 Az Azz| , B= B3100

on O_(N). By the transformation laws (3.10), and the fact that each of the
homomorphisms SO(4) - SO(3), aw~ a, , is surjective, it follows easily that A and B
can have the form (6.8) at each point of O_(N) if and only if A is a scalar matrix and

B=0. If A isscalar, then A =1—S§ I, since trace A =s/4. Thus s/6 = 2/t2 by (6.7),
from which it follows that s > 0 and t2=12/s. Hence a) is equivalent to b) by (3.14)
and (5.23).

Suppose b) holds. Then J, on O_(N) is integrable by (5.23), and g is Einstein
by (4.23). As remarked in the proof of (5.23), J 4 on O_(N) is integrable if and only if
Q=0 on O_(N). This, combined with (6.6) and (6.4), shows that (Z_,g,Jd,) is
symplectic. Hence b) implies c).

A fortiori, ¢) implies a). o

)

Remarks (6.9) A similar result, with evident modifications, holds for (Z+, gt J+) .
(6.10) This theorem and the next generalize Theorem 9.1 in [ES] where N
was assumed to be S4 with its canonical metric.
(6.11) By (4.23),if N is self—dual Einstein with positive scalar curvature
s, then gy on Z_ is Einstein when t2 = 6/s. By our theorem, in this case (Z_, g, J
is not even (1,2)-symplectic. (Cf. [FQG]).

N

TuEOREM 6.2 Let N be an oriented Riemannian 4—~manifold. Then (Z_, 81, ) is
(1,2)-symplectic if and only if N is self—dual Einstein (for any value of t > 0 ), while
(Z_, g1, J_) is symplectic if and only if N is self—dual Einstein with negative scalar
curvature s and t? = —12/s.

PrOOF The proof is similar to that of theorem 6.1 except that now the type (1,0) forms are
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the pull backs of gol, @2, 593 to Z_ by local sections u. Thus, by (6.4), (Z_, g, J ) is

(1,2)—symplectic if and only if R=8=T = U= Q =0. As in the above proof, this is
equivalent to N being self—dual Einstein. In this case dx_(t) =

2
i1+ _ti_?ﬁ)( 903/\@1/\@2 - @1/\(,02/\@3), which can be zero if and only if s < 0 and

t2=-12/s. o

Remarks (6.12) By results of Friedrich and Kurke [FK] and Hitchin [H],if N isa
compact 4—dimensional self—dual Einstein space with positive scalar curvature, then it is
isometric to either S* or (P2 with their canonical metrics. In these cases Z is CP3 or
the flag manifold [(1,2), respectively. There is no known classification of 4—dimensional
self—dual Einstein spaces with negative scalar curvature [V]. Examples are hyperbolic
space and Hermitian hyperbolic space with their canonical metrics.

(6.13) The relevance to us of (1,2)—symplectic spaces comes from the result
of Lichnerowicz [L]: If £M - N is a holomorphic map from a Riemann surface to an
almost Hermitian (1,2)—symplectic manifold, then f is harmonic.

§7 The Grassmann bundle. We briefly describe the geometry of the Grassmann bundle of
oriented 2—planes tangent to N, G : GQ(TN) -+ N . An element of G2(TN) is a pair
(p,€) where p e N and ¢ is a two—dimensional oriented subspace of TpN . The
Grassmann projection

(7.1) G : Gy(TN)» N

is defined by G(p,£) = p. The projection (7.1) presents G,(TN) as a fiber bundle over

N with standard fiber the Grassmann manifold é2(4) = 50(4)/S0(2)xS0(2) . We define
a map

(7.2) ft: O(N) =~ Go(TN) .

by we) = {el,eg} , where e = (el,...,e4) is an orthonormal frame at a point p € N and
{e €} is the oriented plane in TpN spanned by e;,e, with the orientation ejhey .
Thus '

Go(TN) 2 O(N)/SO(2)x0(2) .

Notice that u restricted to 0 (N) (which we denote fy ) is a principal SO(2)xSO(2)
bundle. The fibers of g are the integral submanifolds of the completely integrable system

0w
=0, (=0, where g:[w?oa}.
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For t>0 the Riemannian metric h, on Gy(TN) is characterized by
* —

(7.3) phy =P,
where P, is the O(2)xO(2) invariant symmetric bilinear form on O(N) given by
(7.4) P =t00+ 1t

’ t 27 )
In terms of components, we have
(7.5) P, =5 ()% + 13 (>

An orthonormal frame for P, is given by

(7.6) 4% =

If u:U-O(N) is alocal section of (7.2), then an orthonormal coframe for h, on U is
given by

(7.7) Tt/ Al u g |

From the structure equations of O(N) we find that the pull-back by u* of the

forms
a t
"b““’b + 3 RY,pwh
_ t a _ b
(7.8) (?b =—5 'aba = 0.

i

O = Sagej + 0; 05

gives the Levi—Civita connection forms of hy with respect to the orthonormal frame (7. 7).

From (7.8) one can compute the Rlemann curvature tensor of h and its Ricci
tensor. In contrast to the twistor bundle case of §4, there is no value of t for which h is
Einstein. ‘

We consider now two natural almost complex structures JG on the Grassmann
bundle G o(TN) . Using the coframe field (7.6) on O (N) we let

(7.9) + 102, Y = I + 16’4, <pg = ¢ + 1922 =w?+ iwg,
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complex valued 1—forms on O +(N ). Then J_(ﬁ (respectively, JE ) is defined by the
condition that its type (1,0) forms are locally spanned by the pull-back of 0, (pg

(respectively, ¢i, Eéy ) by any local section u of by of (7.2).
Using the structure equations of O(N) we find

4y, 2 13 4, =2
=%—(¢é = ipg) A" + 5leg + dpg)Ap

2 1 1

(7.10)
dp” = (D5 + iBe)Aw

1 4y, —1
—§(90(3; +ipg)he
T11) dp® = -ip2Awk — weP + 0% 4 in®
(1) dpg = —pghe, — wghei + Q) 2

From (7.10) and (7.11) if follows that .]__(_;_ is never integrable, while JE is integrable if

and only if
(7.12) 0% +i03=0 mod (¢!, @) .

PRroPOSITION 7.1 Let N be an oriented Riemannian 4—manifold. Then J G on G (TN)
is integrable if and only if N is anti—self—dual Einstein.

Proor We need to see that (7.12) holds if and only if N is anti—self—dual Einstein. By
(3.6) and (5.20) :

Q§+IQ§ Z(AQQ“‘ A3z + Bag + Bis +1(2A23+B23“‘B32))(ﬂ A‘Pz

(113) 3 9
Q,+ IQ (2A23 + B3z — Bas + i(Azz- Agy + Bos + B33))‘P Ay

1 2
mod (¢, ¢).
Hence (7.12) holds if and only if

A2z — Az + By + B3z = 0 = 2A,3 + Bys — By
2A23 + B2 — Ba3 = 0 = Ag3 — Agy + Byg + Bag

which holds if and only if Ay3 =0, Ay = Ass, Bog = B3g, and Bag + B3z = 0.

By (3.10) this holds if and only if A = D 51,and B=0 on O (N) , which by (3.19)
and (3.14) holds if and only if N is antl——self-dual Einstein. o
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Remark Two other almost complex structures, 3 G , can be defined on G (TN) by
1

pulling back with any positively oriented frame field the forms 7 ,goz,cpg or g ,(,92,r,0G

respectively. It is easily seen that this is equivalent to the structures obtained by pulling

back c,al,gpQ,ch (respectively, (,o ,go ,ch ) by negatively oriented frame fields

e:UCGo(TN) = O_(N) . Infact, if K = diag(1,1,1,-1), then RKO (N)-0 ( )
Ryce:U- 0 (N), and Rkw = @1, RKg02 = go , Rché goé, RK('OG = -ch It follows

that }_(_}_ is never integrable, while Jg is integrable if and only if N is self—dual
Einstein.

§8 Twistor and Gauss lifts. Let f:M - N be an isometric immersion of an oriented surface
into an oriented Riemannian 4—manifold. We define projections

(8.1) 71 :Go(TN) - Zy

of the Grassmann bundle of oriented tangent 2—planes of N onto the respective twistor
spaces as follows. If (c TpN is an oriented 2—dimensional subspace, then 7 (p ¢) is the
almost complex structure on TpN given by the positive twist (i.e., rotation through

+7/2 ) in each of ¢ and its orthogonal complement ¢* (with induced orientation from ¢

and TpN ); while 7_(p,¢) is the positive twist in ¢ but the negative twist in ¢* .
Observe that u of (7.2) and o, of (4.9) are related to T, by o = L0 .
The twistor lifts of f,

(8.2) o M7y,

are defined by: go+(p) is the positive twist in f*T M and in f*T M*, while ¢ (p) is

the positive twist in f,T pM but the negative twist in f*T M. Thus Yy =T Lo
where

is the Gauss lift: 1(p) = f*T M (with its orientation from M ). These maps are
illustrated by the commutatlve diagram
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O_(N)p_  ny O (N)

(8.3) o_| 7_Gy(TN) « o
/ T’Yf \\+ *
Z " Z+
T\ fl >

Recall the almost complex structures J 4 defined on Z in §5. The following result
was first proved in [ES], Theorem 5.3.

ProposITION 8.1 a) ¢ L I8 J n holomorphic if and only if f is isotropic with + spin,
respectively. b) ¢ 4 is J_ holomorphic if and only if { is minimal.

PRrOOF Let e = (ep-- -€4):UCM - O ( ) be a local oriented Darboux frame along f (see
§2), and let e = (81’99’ 3¢y ) = RKoe, where K = diag(1,1,1,—1). We may assume the
existence of local sections uyZy - Oi(N) such that e, = uyop,, respectively. Thus
(see (2.17) and (5.16))

1_ o, 1 _ % 2
(8.4) piuje =e*p =9,  ylu +so =e"yp" =0,
' 3_ 3 _ lr 1
piuie’ = e*yt = —bp— 55 p;
while
sk
prurg = erpl = e*RKso1=so prurg® =0,
88 o3 3 -1 1e-
pulg® =eRpp” = Fbp—55p

. *1_ 1 o%2 9 * 3 11 i 2
since Rp g™ = ¢, R o = ¢, and RK<,03 = a{wg + wZ) + %—(wg - wi) Thus a) follows

from (8.4) and (8.5), respectively, while b) follows from (8:4) and (8.5) with <p3 replaced
by @3 o
Recall from §6 that a unitary coframe for (Z, J i gt) is given (in O(N) ) by

(pl, 992, 2t<,93. By (8.4), using (2.17) and (2.18), we have

2 2.2 __
prg, =(1+t ) + 2% )W+t bS+<p¢+t bS, o

(8.6) 5 o
prg = (1+t HHH + 2t% )gmp+t bS_pp + t°bS__pp.

These calculations prove the following,
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ProprosiTioN 8.2 Let f:M - N be an isometric immersion of an oriented surface into an
oriented Riemannian 4—manifold. Let ¢ M-+ Z, beits twistor lifts. Let g be the
Hermitian metric on Z 4 of §6. Then _

(i) ¢ 15 conformal if and only if either f is minimal or f is isotropic with =+ spin,
respectively,

(i) ¢ 4 is an isometry if and only if f is minimal and isotropic with = spin, respectively.

Let , be the Kaehler forms (6.2) of (Z, J4» 8), respectively. From (8.4)
and (8.5) we have

pir, = (1 +t2(H|% —2s2))dA

(8.7) :
eir_=(1—*(HI? —2s2))dA .
lConsequently
p¥(k, + k) =2dA
88) Tt

2
oi(r, — k) =262 (JH|? - 252)dA .

Combining this with (2.20), we have

A * * _ - * * -9
(K — Ryg)dA = 5;22.(¢+n+ + 9 k,) — A = 5%-2(@+m_+g0_n~)+t dA
i * * -1 * *
([ﬂl — Ryazq)dA = 5%7( Yok, = ga_n+) = 5;2-(90_*_&_ ~-Y_K ).

The basic contact invariants ||H|| and s 4 introduced in (2.18) can be interpreted
in terms of the (1.0) and (0,1) energy densities of py. If Z hasthe (J+,gt) structure
(respectively the (J_, g,) structure), then from (8.4) and (8.5), we have

Sl 2 ey 2 , 2.2
ei(py) = 14+ ¢7|H]| Celleg) = 1+ 2%
., 9 9 , respectively . 9 9
e "(vy) =2t%5 e/ (py) = t7[H|" .

We conclude this section by computing the tension field of ¢_. An analogous result
holds for ¢ " As already remarked in §6, (Z, J 1) in general is not (1,2)—symplectic
(cf. Theorems 6.1 and 6.2). Nevertheless, we know examples (cf. [G] and [ES]) in which a
suitable holomorphic map of a Riemann surface into a Hermitian, not (1,2)-symplectic,
manifold is still harmonic. It is therefore instructive to face the problem directly and
compute the tension of ¢ . One benefit of this is that it does allow us to discover a new
feature for ¢ _, even in a case for which (Z, J 40 8;) 18 (1,2)-symplectic.
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Let w:UCZ_- O_(N) be a local section of o_:0 (N)-7Z . Recall from §4 that
the Riemannian metric g, on Z_ has alocal orthonormal coframe field given by applying

u* to
1 1 2 1 2
(8.12) g ...o* oy — o), twy + o)
on O_(N). For our present calculation it is convenient to modify (4.18) slightly and define

1 2 6 1 | 2
(8.13) P = tlog —wy), 0 = t(wy + wy) -

We may choose u and a negatively oriented Darboux frame e along f such that
e = uoyp , which means that cp_“iu*@p =e*fP  p= 1,...,6. Let & =e*@, an oriented
orthonormal coframe in M, and let e*dP = BIJ.) 0j, where the BIJ.) are locally defined

functions in M. If {Ep} is the orthonormal frame field in Z_ dual to {u*Op}, then
= BPleE
dy BJ ¢ b
Thus Vdp = ij?kw'ok@]sp, where

8.14 Bp Pyl + BYgP = BP
(8.14) dBY — Biuy + Bj0y = B,

Here 6P are the Levi—Civita connection forms of 8 listed in (4.19), appropriately
modified as required by replacing (4.18) with (8.13). The tension field of ¢__ is then given
by

ly_) = ByE,.

We proceed to make these calculations.
From §2 we have g = ¢ , e¥0%=0, et = t(h J h3 )(}’ and

exgd = (h}iJ + h2j)0] , from which it follows that

j_ 5
(8.15) B 6k , k =0, Bk = t(h ok —h k) , t(h1k + hzk)

Carrying out the calculations of (8.14) and using the notation of §3, we find (summing
on k)
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4 4 3
By, = t* (Aot + Buz)(hgy — h3y) + (An +Big)(h, + b3,))
: 4 3
Byy = 2{(Au + Bi)(hd, —13)) - (Ay + Bys)(hy, + b))}
4 3
B = by + t7{(Azz + B)(hg) ~b3)) + (Agz — Bag)(h, — 13,)
~(A2 + Bua)(h; + b3}) — (Ass ~ Bag)(hdy + b))
4 2 4 3 4 3
ik = B + 07 ((An2 + Baa)(0d —13)) + (B — Agn)(hiyy — 13,)
4 3 4 3
"(A33 + BSB)(hll + hgl) - (B23 - A32)(h12 + h22)}
: 4 3
By, = t{2(H) — H) — Agy — Byg}
6 4 3

B

Recall (3.14), that N is Einstein if and only if B =0 on O(N), and (3.19), that

N is self—dual if and only if A :l% I on O_(N), where s is the scalar curvature of N.
Thus if N is self—dual Einstein, then

; 2
Bﬂk =0 ng = 2H%(1 - t%/12)
5 4 3 6 4, .3

These calculations and their analogs for ¢ " yield the following results.

TueoreM 8.1 Let f:M - N be an isometric immersion of a Riemann surface into a
4—dimensional self—dual (respectively, anti—self-dual) Einstein manifold with scalar
curvature s, twistor space (Z, gt) and twistor lifts ¢ L M-Z,

a) If st2 # 12, then f is minimal if and only if @_ (respectively, o " ) is harmonic;
b) If st? = 12, then ¢_ (respectively, ¢ n ) is harmonic if and only if H4-— —~H3 and

3
H2 Hl’ ie., VH(p) TpM - TpM is complex

Remarks

(8.16) Suppose N is self—dual Einstein. Then by Theorem 6.2, (Z_, gt, J ) is
(1,2)—symplectic for any t > 0. Thus, by (6.13) and Proposition 8.1, if f is minimal, then
@_ is J_—holomorphic, thus harmonic.

(8.17) If N is compact self—dual Einstein with s > 0, then it must be S4 or (P2 with
their canonical metrics (cf. Remark (6.12)). The twistor space Z_ of st is €P3, and its

metric g, with t2 = 12/s is the Fubini~Study metric on CPS. Thus part b) of
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. . 3 . .
our theorem parametrizes a class of harmonic maps @ M= (P" by immersed surfaces

3

M = 84 whose mean curvature vector H satisfies H;l = —Hg’ and H% = Hl‘ Asa

. . 3 .
consequence, there is a large class of harmonic maps ¢ M- CP" which are not

J_~holomorphic.
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