Math 308 - Exam 2 - March 14, 2003
The test contains 8 questions, each of equal value. Whenever possible, answers should be written using exact numbers. For example: write $\frac{2}{3}$ instead of $0.67, \pi$ instead of $3.1415, e^{2}$ instead of 7.4 , etc.

1. Evaluate:

$$
\left|\frac{2-3 i}{2+3 i}\right|
$$

2. Express the following complex number in the $x+i y$ form.

$$
e^{(i \pi / 4)+(\ln 2) / 2}
$$

3. Solve the following set of equations:

$$
\begin{aligned}
14-x+5 y & =0 \\
7 z+2 x-15 & =0 \\
x-y+3 z & =9
\end{aligned}
$$

4. Find all values of a, b, c so that the following is an orthogonal matrix.

$$
\left(\begin{array}{ccc}
1 / 2 & 0 & a \\
0 & 1 & b \\
\sqrt{3} / 2 & 0 & c
\end{array}\right)
$$

5. Find the cosine of the angle between the two vectors in \mathbb{R}^{5} :

$$
(2,0,4,6,5),(-5,1,5,3,-2)
$$

6. Find the eigenvalues and the respective eigenvectors of

$$
\left(\begin{array}{rr}
2 & 2 \\
2 & -1
\end{array}\right)
$$

7. Rotate to principal axes the following conic:

$$
2 x^{2}+4 x y-y^{2}=24
$$

(Use your result for the previous problem.)
8. Show that the product $A B$ of two arbitrary $n \times n$ orthogonal matrices is also an orthogonal matrix. (Recall that a matrix C is said to be orthogonal if $C^{T}=C^{-1}$.)

