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Matlab listings for Markov chains

Renato Feres

1 Classification of States

Consider a Markov chain X0, X1, X2 . . . , with transition probability matrix P
and set of states S. A state j is said to be accessible from i if for some n ≥ 0 the
probability of going from i to j in n steps is positive, that is, p

(n)
ij ≥ 0. We write

i → j to represent this. If i → j and j → i, we say that i and j communicate
and denote it by i ↔ j.

The definition of communicating states introduces an equivalence relation
on the set of states. This means, by definition, that ↔ satisfies the following
properties:

1. The relation is reflexive: i ↔ i, for all i ∈ I;

2. it is symmetric: i ↔ j if and only if j ↔ i;

3. it is transitive: if i ↔ j and j ↔ k then i ↔ k.

An equivalence relation on a set S decomposes the set into equivalence
classes. If S is countable, this means that S can be partitioned into subsets
C1, C2, C3, . . . of S, such that two elements i, j of S satisfy i ↔ j if and only
if they belong to the same subset of the partition. If a state i belongs to Cu

for some u, we say that i is a representative of the equivalence class Cu. For
the specific equivalence relation we are considering here, we call each set Cu

a communicating class of P . Note, in particular, that any two communicating
classes are either equal or disjoint, and their union is the whole set of states.

1.1 Closed classes and irreducible chains

A communicating class is said to be closed if no states outside of the class can
be reached from any state inside it. Therefore, once the Markov chain reaches
a closed communicating class, it can no longer escape it. If the single point set
{i} comprises a closed communicating class, we say that i is an absorbing state.
The Markov chain, or the stochastic matrix, are called irreducible if S consists
of a single communicating class.
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As a simple example, consider the stochastic matrix

P =
(

1
2

1
2

0 1

)
.

The set of states is {1, 2}. The communicating class containing 1 is the single
point set {1}, and the communicating class containing 2 is {2}. The class {2}
is closed since 1 cannot be reached from 2, but {1} is not closed since there is a
positive probability of leaving it. Therefore, 2 is an absorbing state and P (or
any chain defined by it) is not irreducible.

We wish now to obtain an algorithm for finding the communicating classes
of a stochastic matrix P , and for determining whether not they are closed. It is
convenient to use the function notation C(i) to denote the communication class
containing i. It follows from the definition of C(i) that it is the intersection of
two sets:

1. T (i): the set of all states in S that are accessible from i, or the to-set;

2. F (i): the set of all states in S from which i can be reached, or the from-set.

In other words, j belongs to T (i) if and only if i → j; and j belongs to F (i) if
and only if j → i. Notice that the communicating class of i is the intersection
of the two:

C(i) = T (i) ∩ F (i).

Moreover, the class C(i) is closed exactly when C(i) = T (i), i.e. when any state
that can be arrived at from i already belongs to C(i).

1.2 Algorithm for finding C(i)

The following algorithm partitions a finite set of states S into communicating
classes. Let m denote the number of elements in S.

1. For each i in S, let T (i) = {i};

2. For each i in S, do the following: for each k in T (i), add to T (i) all states
j such that pkj > 0. Repeat this step until the number of elements in
T (i) stops growing. When there are no further elements to add, we have
obtained to-sets T (i) for all the states in S. A convenient way to express
the set T (i) is as a row vector of length m of 0s and 1s, where the jth
entry is 1 if j belongs to T (i) and 0 otherwise. Viewed this way, we have
just constructed an m-by-m matrix T of 0s and 1s such that T (i, j) = 1 if
i → j, and 0 otherwise.

3. To obtain F (i) for all i, first define the m-by-m matrix F equal to the
transpose of T . In other words, F (i, j) = T (j, i). Thus, the ith row of F
is a vector of 0s and 1s and an entry 1 at position j indicates that state i
can be reached from state j.
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4. Now defined C as the m-by-m matrix such that

C(i, j) = T (i, j)F (i, j).

Notice that C(i, j) is 1 if j is both in the to-set and in the from-set of i,
and it is 0 otherwise.

5. The class C(i) is now the set of indices j for which C(i, j) = 1. The class
is closed exactly when C(i) = T (i).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [C,v]=commclasses(P)
%Input - P is a stochastic matrix
%Output - C is a matrix of 0s and 1s.
% - C(i,j) is 1 if and only if j is in the
% - communicating class of i.
% - v is a row vector of 0s and 1s. v(i)=1 if
% - the class C(i) is closed, and 0 otherwise.
[m m]=size(P);
T=zeros(m,m);
i=1;
while i<=m

a=[i];
b=zeros(1,m);
b(1,i)=1;
old=1;
new=0;
while old ~= new

old=sum(find(b>0));
[ignore,n]=size(a);
c=sum(P(a,:),1);
d=find(c>0);
[ignore,n]=size(d);
b(1,d)=ones(1,n);
new=sum(find(b>0));
a=d;

end
T(i,:)=b;
i=i+1;

end
F=T’;
C=T&F;
v=(sum(C’==T’)==m);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Once the matrix C has been obtained using the above program, one can use
the command
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
find(C(i,:)==1)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

to obtain the set of states in the communicating class of i.

2 Canonical form of P

Suppose that we have found the communicating classes of P and know which
ones are closed. We can now use this information to rewrite P by re-indexing
the set of states in a way that makes the general structure of the matrix more
apparent. First, let E1, . . . , En be the closed communicating classes. All the
other classes are lumped together into a set T (for transient). Now re-index S
so that the elements of E1 come first, followed by the elements of E2, etc. The
elements of T are listed last. In particular, 1 now represents a state in E1 and
m (the size of S) represents a state in T . We still denote the resulting stochastic
matrix by P . Notice that pij = 0 if i and j belong to different closed classes;
it is also zero if i is in a closed class and j is in the transient set T . Thus the
matrix P takes the block form

P =



P1 0 0 · · · 0 0
0 P2 0 · · · 0 0
0 0 P3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Pn 0

R1 R2 R3 · · · Rn V


The square block Pi defines a stochastic matrix on the set Ei.

The following program gives the canonical form of P . It uses the program
commclasses(P).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Q p]=canform(P)
%Obtain the canonical form Q of a stochastic matrix P.
%The permutation of indices is p.
%Uses the function commclasses(P)
[m m]=size(P);
[C,v]=commclasses(P);
u=find(v==1); %indices in u comprise union of closed classes
w=find(v==0);
R=[];
while length(u)>0

R=[R u(1)];
v=v.*(C(u(1),:)==0);
u=find(v==1);

end
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%R is now the set of representatives of closed classes
%Each closed class has a unique representative in R.
p=[];
for i=1:length(R)

a=find(C(R(i),:));
p=[p a];

end
p=[p w];
%We have now a permutation p of indices, p, that
%gives the new stochastic matrix Q.
Q=P(p,p);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Example 2.1 Consider the stochastic matrix

P =



1
2 0 1

2 0 0 0 0 0 0 0
0 1

3 0 0 0 0 2
3 0 0 0

1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1

3
1
3 0 0 0 1

3 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1

4 0 3
4 0

0 0 1
4

1
4 0 0 0 1

4 0 1
4

0 1 0 0 0 0 0 0 0 0
0 1

3 0 0 1
3 0 0 0 0 1

3


We wish to find the communication classes, determine which ones are closed,
and put P in canonical form. First, let us write P in Matlab:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
P=zeros(10,10);
P(1,[1 3])=1/2;
P(2,2)=1/3; P(2,7)=2/3;
P(3,1)=1;
P(4,5)=1;
P(5,[4 5 9])=1/3;
P(6,6)=1;
P(7,7)=1/4; P(7,9)=3/4;
P(8,[3 4 8 10])=1/4;
P(9,2)=1;
P(10,[2 5 10])=1/3;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The command [C,v]=commclasses(P) gives:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C =
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1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 1 0
1 0 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1

v =

1 1 1 0 0 1 1 0 1 0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Thus we obtain the communication classes

C(1) = {1, 3}
C(2) = {2, 7, 9}
C(4) = {4, 5}
C(6) = {6}
C(8) = {8}

C(10) = {10}.

The classes C(1), C(2) and C(6) are closed, while C(4), C(8), and C(10) are
not. The permutation of indices that puts P in canonical form, as well as the
canonical form itself, are obtained using [Q p]=canform(P). The permutation
p is given by [1 3 2 7 9 6 4 5 8 10]. The matrix Q is

Q =



1
2

1
2 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0
0 0 1

3
2
3 0 0 0 0 0 0

0 0 0 1
4

3
4 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 1

3 0 1
3

1
3 0 0

0 1
4 0 0 0 0 1

4 0 1
4

1
4

0 0 1
3 0 0 0 0 1

3 0 1
3


Therefore, if we ignore the transient states (which the chain will leave, even-

tually, and never return to), the chain reduces to a simpler one having stochastic
matrix P1, P2, or P3, where

P1 =
(

1
2

1
2

1 0

)
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involves only the states 1 and 3,

P1 =

 1
3

2
3 0

0 1
4

3
4

1 0 0


involves the states 2, 7, 9 and P3 = (1) describes the constant process at state
6. The following diagram shows more clearly the classes.

1 23 8 10 7

9546

Figure 1: Digraph representing the communication properties of the stochastic
matrix P of the example. The closed classes are boxed.

3 Period of an irreducible Markov chain

Consider the graph on the left-hand side of figure 2, representing an irreducible
Markov chain. Bunching together the states as in the graph on the right-hand
side we note that the set of states decomposes into three subsets that are visited
in cyclic order. This type of cyclic structure (possibly consisting of a single
subset) is a general feature, as indicated in the next theorem.

1

2 37

5

46

1   2 3 5 6

4   7

Figure 2: Transition diagram of an irreducible Markov chain of period 3 with
cyclic classes S1 = {1, 2}, S2 = {4, 7}, and S3 = {3, 5, 6}.
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3.1 G.C.D. and period

We first need a few definitions. Recall that the positive integer d is said to be
a divisor of the positive integer n if n/d is an integer. If I is a nonempty set
of positive integers, the greatest common divisor, or g.c.d. of I, is defined to
be the largest integer d such that d is a divisor of every integer in I. It follows
immediately that the g.c.d. of I is an integer between 1 and the least among
n ∈ I. In particular, if 1 ∈ I, the g.c.d. of I is 1.

The following simple program can be used to obtain the g.c.d. of a set of
numbers.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y=gcd(a,b)
%Obtain the greatest common divisor
%of a and b by the Euclidean algorithm.
n=min(abs(a),abs(b));
N=max(abs(a),abs(b));
if n==0

y=N;
return

end
u=1;
while u~=0

u=rem(N,n);
if u==0

y=n;
return

end
N=n;
n=u;

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Let i ∈ S be a state of a Markov chain such that p
(n)
ii > 0 for some n ≥ 1.

We define the period di of i by

di = g.c.d{n ≥ 1 : p
(n)
ii > 0}.

Note that if pii > 0, the period of i is 1.

Proposition 3.1 If i, j are two states in the same communication class of a
possibly non-irreducible Markov chain, then di = dj.

Proof. Let n1 and n2 be positive integers such that p
(n1)
ij > 0 and p

(n2)
ji > 0.

Then
p
(n1+n2)
ii ≥ p

(n1)
ij p

(n2)
ji > 0,

so di divides n1 + n2. If p
(n)
jj > 0, then

p
(n1+n+n2)
ii ≥ p

(n1)
ij p

(n)
jj p

(n2)
ji > 0,
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so di also divides n1 + n + n2. Therefore, di divides n. This means that di

divides the period of j, so di ≤ dj . By symmetry the inequality holds in the
other direction and we have di = dj . �

The proposition shows that the states of an irreducible Markov chain all
have the same period, d, which is called the period of the Markov chain. The
chain is said to be aperiodic if its period is d = 1. For an irreducible Markov
chain to be aperiodic, it is sufficient (but not necessary) that pii > 0 for some
i. For example, the transition graph of the figure 3 defines an irreducible and
aperiodic Markov chain.

2

3

1 4

1

1

1

1/2

1/2

Figure 3: Transition diagram for an irreducible and aperiodic chain with pii = 0
for all i.

3.2 Cyclic decomposition

The sets S1, S2, . . . , Sd in the theorem below are called the cyclic classes of the
irreducible Markov chain with period d. The theorem says that the Markov
chain moves from one cyclic class to the next at each transition in the cyclic
order of the classes.

Theorem 3.1 (Cyclic decomposition) For any irreducible Markov chain,
the set of states S can be partitioned in a unique way into k subsets S1, S2, . . . , Sd

such that for each Sr and each i ∈ Sr,∑
j∈Sr+1

pij = 1,

where by convention Sd = S0, and where d is maximal. (That is, it is not
possible to find any other partition with a greater number of elements having the
same property.) Furthermore, Q = P d is a stochastic matrix such that qij 6= 0
only if i, j are in the same set Sk, for some k. Therefore, Q defines a Markov
chain on each Sk, which is irreducible and aperiodic.
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Proof. Starting with state 1, consider the set of all states that can be reached
from 1 in nd steps, where d is the period of the Markov chain and n is a positive
integer. Note that S1 contains 1. Then define Si the set of states that can be
reached from any state in S1 in i − 1 steps, for i = 1, 2, . . . , d. It is left as an
exercise (until I get around to writing the details here) that this decomposition
has the properties claimed. �

The following program calculates the period, d, of a Markov chain and the
cyclic classes, indexed by {0, 1, . . . , d− 1}, to which each state belongs.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [d v]=period(P)
%Obtain the period of an irreducible transition
%probability matrix P of size n-by-n.
%The cyclic classes are numbered 0, 1, ..., d-1
%and v=[a_1 ... a_n] is a vector with entries in
%{0, 1, ..., d-1} such that a_i is the cyclic class
%of state i. (Algorithm by Eric V. Denardo.)
%Uses the program gcd.
n=size(P,2);
v=zeros(1,n);
v(1,1)=1;
w=[];
d=0;
T=[1];
m=size(T,2);
while (m>0 & d~=1)

i=T(1,1);
T(:,1)=[];
w=[w i];
j=1;
while j<=n

if P(i,j)>0
r=[w T];
k=sum(r==j);
if k>0

b=v(1,i)+1-v(1,j);
d=gcd(d,b);

else
T=[T j];
v(1,j)=v(1,i)+1;

end
end
j=j+1;

end
m=size(T,2);
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end
v=rem(v,d);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 Passage and hitting times

Let X0, X1, . . . be a Markov chain with state space S, initial probability distri-
bution π, and transition probabilities matrix P . Define the first passage time
from state i to state j as the number Tij of steps taken by the chain until it
arrives for the first time at state j given that X0 = i. This is a random vari-
able with values in the set of non-negative integers. Its probability distribution
function is given by

h
(n)
ij = P (Tij = n) = P (Xn = j, Xn−1 6= j, . . . , X1 6= j|X0 = i).

The first passage times can be found recursively as follows: h
(1)
ij = pij and, for

n ≥ 2,
h

(n)
ij =

∑
k∈S−{j}

pikh
(n−1)
kj .

Let H(n) denote the matrix with entries h
(n)
ij and H

(n)
0 the same matrix except

that the diagonal entries are set equal to 0. Then H(1) = P and an easy
calculation gives

H(n) = PH
(n−1)
0 .

Let hij (without upper-script) be the reaching probability from state i to j, i.e.,
the probability that state j is ever reached from state i. Then

hij = P (Tij < ∞) =
∞∑

n=1

P (Tij = n) =
∞∑

n=1

h
(n)
ij .

The following program gives the first passage time matrix H(n). The (i, j)-
entry is the probability of arriving at j for the first time at time n given the
initial state i.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function H=firstpassage(P,i,n)
%For a transition probability matrix P
%obtain first passage probabilities from state
%i to all states in 1:n steps. The output is
%the matrix H with (k,j)-entry is hij(k), where
%k=1:n. In other words, the columns are indexed
%by the destination and the rows are indexed by
%the number of time steps till first passage.
G=P;
H=[P(i,:)];
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E=1-eye(size(P));
for m=2:n

G=P*(G.*E);
H=[H;G(i,:)];

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

More generally, we define the hitting time, TA, of a subset A ⊆ S as the first
time (possibly infinite) that Xn ∈ A. The probability starting from i that {Xn}
ever hits A is then

hiA = P (TA < ∞|X0 = i) = P (TiA).

If A = {j} consists of a single state, we are back to the previous definitions. If
A is a closed communicating class, then hiA is called the absorption probability
of A starting from i.

State i is called recurrent if hii = 1, so that starting at state i the chain
with probability 1 eventually returns to i. If hii < 1 state i is called transient,
so there is in this case a positive probability that starting at i, the chain never
again returns to i. For any i, define the recurrence time of state i as the random
variable Tii. Then if state i is recurrent we have P (Tii < ∞) = 1. Denote the
expected recurrence time to i by

µii = E[Tii].

The expected time for {Xn} to reach a set of states A from i is

µiA = E[TiA] =
∞∑

n=0

nP (TiA = n)

if with probability 1 A is eventually reached, and ∞ otherwise. Thus we have
the following quantities of interest:

hiA = P (hit A from i), µiA = E[time to hitting A from i].

4.1 Number of visits

Given X0 = i, we are now interested in counting the number of visits to state
j over a period of time. Define the function Iij(n) to be 1 if Xn = j given that
X0 = i, and 0 otherwise. The number of visits to state j, starting at state i, by
time n is defined as

Nij(n) =
n∑

k=1

Iij(k).

The initial passage time from i to j is distributed according to h
(n)
ij and all

the subsequent return times to j follow the distribution h
(n)
jj . If the chain is

presently in a given state, the first time it will visit state j is a stopping time.
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By the strong Markov property, we conclude that these interarrival times are
conditionally independent. Using these facts, the mean state-occupancy time,
defined as

Mij(n) = E[Nij(n)],

can be obtained as follows:

Mij(n) = E

[
n∑

k=1

Iij(k)

]

=
n∑

k=1

E[Iij(k)]

=
n∑

k=1

p
(k)
ij .

If M(n) denotes the matrix with entries Mij(n), then

M(n) =
n∑

k=1

P (k).

Recall that if state j is recurrent, then hjj = 1. This means that state j
will be visited infinitely often, that is, (Njj(∞) = ∞) = 1 or Mjj(∞) = ∞. On
the other hand, if state j is transient, then hjj < 1, and Njj(∞) is a geometric
random variable with probability distribution function

P (Njj(∞) = k) = (hjj)k(1− hjj)

for k = 0, 1, 2, . . . , with mean

Mjj(∞) = E[Njj(∞)] =
1

1− hjj
< ∞.

Therefore, state j is recurrent if and only if
∞∑

n=1

p
(n)
jj = ∞.

This gives another way to characterize a recurrent state.

5 Stationary distributions

Consider an irreducible Markov chain with state space S = {0, 1, 2, . . . } con-
sisting of a single closed communicating class. Let Nij(n) denote the number
of visits to state j in n transition steps given that X0 = i. Let Tij denote the
first passage time from state i to state j. Then the following holds:

lim
n→∞

Nij(n)
n

= lim
n→∞

1
n

n∑
k=1

p
(k)
ij =

1
µjj
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where µjj = E[Tjj ] is the expected recurrence time to state j.
If state j is aperiodic, then we have the stronger result:

lim
n→∞

p
(n)
ij =

1
µjj

,

independent of the initial state i. If the state has a period d, then

lim
n→∞

p
(nd)
jj =

d

µjj
,

where it is assumed here that X0 = j. Denote the limiting state probability by

πj = lim
n→∞

p
(n)
jj .

For an aperiodic chain, we have

πj =
1

µjj
.

Thus the limiting probability distribution is the reciprocal of the mean recur-
rence time. Recall that state j is said to be positive recurrent if µjj < ∞ and
null recurrent if µjj = ∞. Hence for the former case we have πj > 0 and for the
latter πj = 0.

A probability distribution πi, i ≥ 0, is a stationary distribution of a Markov
chain with transition matrix P if π = πP , that is,

πj =
∑
k∈S

πkpkj

for all j.
We say that a Markov chain is ergodic if it is irreducible, aperiodic, and

positive recurrent. The limiting distribution of an ergodic chain is the unique
nonnegative solution of the equation π = πP such that

∑
j πj = 1.

The ratio πj/πi for a stationary distribution π has the following useful in-
terpretation. Consider a discrete process in which each random time step cor-
responds to the return time to a state i. The interarrival time in this process is
the recurrence time Tii. Let Vj denote the number of visits to state j between
two successive visits to i. Then

πj = lim
n→∞

P (Xj = j) =
E[Vj ]
E[Tii]

= E[Vj ]πi.

In words, the ratio of the two limiting state probabilities represents the expected
number of visits to state j between two successive visits to i.

When a chain is irreducible, positive recurrent, and periodic of period d, we
call it a periodic Markov chain. The solution of π = πP can be interpreted as
the the long-run fraction of time that the process will be visiting state j. To
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show this is the case, let Ij(k) be the indicator function of state j and define
the time-average probability as

πj = lim
n→∞

1
n

E

[
n∑

k=1

Ij(k)

]
.

Conditioning on the possible states leading into state j in one step, we write:

πj = lim
n→∞

1
n

E

[
n∑

k=1

∞∑
i=0

Ii(k − 1)Ij(k)

]

= lim
n→∞

1
n

n∑
k=1

∞∑
i=0

E [Ii(k − 1)Ij(k)]

= lim
n→∞

1
n

n∑
k=1

∞∑
i=0

E [Ii(k − 1)pij ]

=
∞∑

i=0

pij lim
n→∞

1
n

n∑
k=1

E [Ii(k − 1)]

=
∞∑

i=0

πipij .

6 Censored Markov chain

Let X0, X1, X2, . . . be an ergodic Markov chain with state space S and transition
probability matrix P . Let A ⊆ S and B = Ac the complement of A. We form
a stochastic process Y0, Y1, Y2, . . . by stopping Xn at the random times T

(n)
A ,

where

T
(0)
A = min{m ≥ 0|Xm ∈ A} and T

(n+1)
A = min{m > T

(n)
A |Xm ∈ A}.

We also write TA = T
(1)
A for the first return time to A.

So Yn = X
T

(n)
A

for n ≥ 0. As the chain is ergodic, P (T (n)
A < ∞) = 1. By

the strong Markov property Y0, Y1, . . . is a Markov chain, called the censored
Markov chain. Thus the states of the censored Markov chain are elements of A,
and correspond to the states of the original chain at the return times to A.

We want to describe the transition probabilities matrix, Q, for the Yn. To
do so we first write P in block form:

P =
(

PAA PAB

PBA PBB

)
,

where PAA contains the probabilities of transitions from a state in A to another
in A, PAB contains the probabilities of transitions from a state in A to a state
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in B and so on. For i, j ∈ A,

Q(i, j) = P (i, j) +
∞∑

n=1

P (X0 = i,X1 ∈ B, . . . , Xn ∈ B,Xn+1 = j)

= P (i, j) +
∞∑

n=1

∑
i1∈B

· · ·
∑

in∈B

P (i, i1)P (i1, i2) . . . P (in, j)

= PAA(i, j) +
∞∑

n=1

(PABPn−1
BB PBA)(i, j),

Therefore,

Q = PAA + PAB

( ∞∑
n=0

Pn
BB

)
PBA.

Notice that the matrix PBB has the property that the sum of the entries in each
row is strictly less than 1. Call this number a. If we define the norm ‖R‖ of a
matrix R to be the maximum of |R(i, j)| over all the entries, then ‖Pn

BB‖ ≤ Can

for some constant C > 0. This remark can be used to show that the matrix
series in the expression of Q is convergent, I − PBB is invertible, and

∞∑
n=0

Pn
BB = (I − PBB)−1.

Therefore,
Q = PAA + PAB(I − PBB)−1PBA.

It is not difficult to show, using ergodicity, that Q is a stochastic matrix.
We now wish to find the stationary probability distribution for Q. Let

π = (π1, . . . , πN ) be the stationary distribution for P , and η = (η1, . . . , ηK) the
stationary distribution for Q, where we use {1, . . . ,K} to designate the elements
of A. We claim that

ηi =
πi∑

j∈A πj
.

This can be seen as follows. Write π = (πA, πB), where πA and πB are the
restrictions of π to indices in A and B, respectively. The chain Yk is also ergodic,
so it has a unique stationary distribution η. If we shown that πAQ = πA, it will
follow that η = cπA, where c > 0 is the normalization constant

∑
i∈A πi. From

πP = π we obtain

πA = πAPAA + πBPBA

πB = πAPAB + πBPBB .

Recursively replacing πB , as given in the second equation, into the first gives

πA = πA

(
PAA +

n∑
k=0

PABP k
BBPBA

)
+ πBPn+1

BB PBA.
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Now Pn
BB converges to the zero matrix as n →∞, so we obtain

πA = πAQ.

This proves the claim.

7 Computation of the stationary probabilities

The ideas of the previous section can be used to derive a numerically stable
algorithm for computing the stationary distribution of an ergodic Markov chain,
called the method of state space reduction. Throughout this section, we indicate
vector and matrix components using function notation rather than indices. Thus
the (i, j)-entry of a matrix P will be written P (i, j).

Consider such a chain with state space S = {1, . . . , N} and transition proba-
bilities matrix P . The method of state space reduction consists of first deriving
from P , inductively, the stochastic matrices: PN , PN−1, . . . P1, where PN = P
and Pn is the transition probabilities matrix for the return process to the subset
{1, . . . , n} of S. For each n, write the matrix Pn in block form as

Pn =
(

Tn un

rn λn

)
As we saw in the previous section, Pn is obtained from Pn+1 as follows:

Pn = Tn+1 + (1− λn+1)−1un+1rn+1

where un+1rn+1 denotes matrix multiplication of a row and a column vector.
At each step, from N − 1 to 1, we store the value of the vector

an = un+1/(1− λn+1) = un+1/(rn+1(1) + · · ·+ rn+1(n)).

Denote by πn the stationary distribution of Pn. Then πn satisfies the equa-
tion πn = πnPn. In particular,

πn(n) = πn(1)Pn(1, n) + · · ·+ πn(n)Pn(n, n).

Using the definition of an and isolating πn(n) on the left-hand side, this equation
can be written as

πn(n) = πn(1)an(1) + · · ·+ πn(n− 1)an(n− 1).

Therefore, using this equation with the stored values of the vectors an, n =
N, . . . , 2, obtained from the backward recursion, we can obtain πn+1 from πn.
In fact, recall from the previous section that πn+1(j) = cπn(j) for a constant
independent of j = 1, . . . , n. The last component, πn+1(n + 1) is then obtained
as described above. The arbitrary constant c is then obtained by normalizing
the vector. This algorithm is implemented by the following program.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function p=limitdist(P)
%Obtain the stationary probability distribution
%vector p of an irreducible, recurrent Markov
%chain by state reduction. P is the transition
%probabilities matrix of a discrete-time Markov
%chain or the generator matrix Q.
[ns ms]=size(P);
n=ns;
while n>1

n1=n-1;
s=sum(P(n,1:n1));
P(1:n1,n)=P(1:n1,n)/s;
n2=n1;
while n2>0

P(1:n1,n2)=P(1:n1,n2)+P(1:n1,n)*P(n,n2);
n2=n2-1;

end
n=n-1;

end
%backtracking
p(1)=1;
j=2;
while j<=ns

j1=j-1;
p(j)=sum(p(1:j1).*(P(1:j1,j))’);
j=j+1;

end
p=p/(sum(p));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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