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Abstract. Up to now the only known constantly curved sextic curve, i.e., holomorphic
2-sphere of degree 6, in the complex G(2, 5) has been the first associated curve of the
Veronese curve of degree 4, which indicates that such curves are rare to find. Exploring the
rich interplay between the ramification of harmonic sequences in differential geometry and
algebro-geometric properties of projectively equivalent Fano 3-folds of index 2 and degree
5, we invoke the moduli space structure of sextic curves in the Fano 3-fold often referred
to as V5 to confirm the rarity of constancy of curvature, by establishing that the harmonic
sequence of a generic sextic curve in G(2, 5) is totally unramified. This paper proposes to
investigate from the Galois viewpoint the way ramification can appear in relation to the
constancy of curvature among nongeneric sextic curves in G(2, 5).

To this end, we break it into two cases. The first is when the sextic curve is GL(5,C)-
equivalent to a curve γ ⊂ V5 not living in the PSL2-invariant tangent developable surface
S of V5, where we may lift γ to a Galois cover in the CP 3 containing PSL2. By studying
the branch points of the Galois covering in connection with the intersection of γ and S
in V5, we categorize such γ further into two sub-families, namely, the family consisting
of those γ ramified at the singular locus of S somewhere, to be labeled as the generally
ramified family, and the family complementary to it. In the second case when the 2-sphere
is GL(5,C)-equivalent to a γ living in S, we show by the PSL2-invariant theory that it
necessarily belongs to the generally ramified family.

We prove through elaborate PSL2-transvectant and engaged unitary analyses that, up
to the ambient unitary equivalence, the moduli space of constantly curved sextic curves
in G(2, 5) that are GL(5,C)-equivalent to those in the generally ramified family, is semi-
algebraic of dimension 2, all members of which barring the above Veronese curve are
nonhomogeneous. Many explicit examples can be constructed.

We also outline in general the structure of the Galois covers of the sextic curves in the
family complementary to the generally ramified family. It appears to suggest, through all
classes of rational Galois covers we have completely classified, each dependent on a single
parameter, that the constantly curved sextic curves in G(2, 5) that are GL(5,C)-equivalent
to the ones in this family, be nongeneric among all constantly curved ones in G(2, 5).
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1. Introduction

Minimal surfaces constitute one of the most enduring topics in Differential Geometry
that not only enjoys its deep links with partial differential equations, complex analysis, and
algebraic curves, but also finds intriguing connections to the physical world. In 1980, Din and
Zakrzewski [16] classified complex projective σ-models, or, mathematically, harmonic maps
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from the 2-sphere to the ambient projective space, to be the (projectivized) basis elements
of a Frenet frame of a holomorphic CP 1 into the ambient space. Subsequently, Burstall and
Wood [6], Chern and Wolfson [10], and Uhlenbeck [40] independently generalized it to other
ambient spaces by different methods.

Of all minimal surfaces, those of constant curvature in different ambient spaces form a
model class that have continually drawn attention, such as Calabi [8], Wallach [41], Do
Carmo-Wallach [18], Chen [9], Barbosa [2], Kenmotsu [26], and Bryant [5] in the real space
forms, Kenmotsu [27], Bando-Ohnita [1], Bolton-Jensen-Rigoli-Wood [3], Chi-Jensen-Liao
[11], and Kenmotsu [28] in the complex projective spaces, and Yau [43] in Kähler manifolds
of nonnegative constant holomorphic sectional curvature. In particular, constantly curved
minimal 2-spheres in the real space forms are Bor̊uvka spheres [4], up to rigid motion.
Similarly, constantly curved minimal 2-spheres in the complex projective spaces are, up to
rigid motion, the (projectivized) basis elements of the Frenet frame of the Veronese curve of
constant curvature, where the proof followed from Calabi’s rigidity principle [7] that states
that if the isometric embedding from one complex manifold into the complex projective
space exists, then it is unique up to rigid motion.

The rigidity principle of Calabi no longer holds for general ambient spaces. Motivated by
the Grassmannian σ-models introduced by Din and Zakrzewski [17] and the rigidity prin-
ciple, the first named author and Zheng [13] classified the noncongruent, constantly curved
holomorphic 2-spheres of degree 2 in G(2, 4) into two 1-parameter families, by exploring the
method of moving frames and Cartan’s theory of higher order invariants [22]. Later on, Li
and Yu [31] classified all constantly curved minimal 2-spheres in G(2, 4), using the Plücker
embedding and the theory of harmonic sequences.

The next simplest ambient space is the complex Grassmannian G(2, 5). By analyzing
a 2 × 5 matrix representation of a holomorphic CP 1, constantly curved holomorphic 2-
spheres in G(2, 5) are divided into two classes by Jiao and Peng, the singular and the
nonsingular ones (a technical condition different from the usual geometric meaning, see
Section 2.2 for definition). They classified nonsingular constantly curved holomorphic 2-
spheres of degree less than or equal to 5 in G(2, 5), and proved the nonexistence of such
spheres with degree 6 ≤ d ≤ 9 [23, 24]. For the singular category, however, as the degree
increases the computational complexity involved in their method rises dramatically. It is
thus technically difficult to apply the method to construct singular 2-spheres in general.
Subsequently, there have emerged several partial classifications (e.g. under the condition of
total unramification or homogeneity) of constantly curved holomorphic (minimal) 2-spheres
in G(2, 5) or G(2, n) in general; see [?, 34] and the references therein.

Constantly curved holomorphic 2-spheres in G(2, 4) and G(2, 5) have also been studied by
Delisle, Hussin and Zakrzewski in [15] from the viewpoint of Grassmannian σ-models, where
the classification results they obtained coincide with those mentioned above. Moreover, they
posed a conjecture about the upper bound of the degrees of constantly curved holomorphic
2-spheres in the Grassmannians. This conjecture was affirmed by them in the case of G(2, 5),
for which the upper bound equals 6 (see also a recent paper [21] with more detailed proof
by He).

At the critical degree d = 6, however, there does exist a singular (in the above sense)
constantly curved holomorphic 2-sphere of degree 6 in G(2, 5), namely,(

1 2z
√
6z2 2z3 z4

0 1
√
6z 3z2 2z3

)
, (1.1)
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referred to in this paper as the standard Veronese curve in G(2, 5). To the authors’ knowl-
edge, it has been the only known example in the literature. Surprisingly, we will show in
this paper that the moduli space of constantly curved holomorphic 2-spheres in G(2, 5) has
a 2-dimensional semialgebraic component, modulo rigid motion, out of which many explicit
examples can be constructed.

Different from all existing methods, to see whether there are constantly curved holomor-
phic examples of degree 6 other than the standard Veronese curve in G(2, 5), let us return
to our paper [12] for motivation, where we investigated constantly curved holomorphic (and
minimal) 2-spheres of degree d in the complex hyperquadric. Such a holomorphic 2-sphere
is a rational normal curve of degree d sitting in a projective d-plane, so that the 2-sphere
lies in the intersection of the d-plane and the hyperquadric called a linear section of the
hyperquadric, which is itself a quadric (may be singular). Thus, the moduli space of such
2-spheres is essentially a fibered space over the base space that is a semialgebraic subset of
the variety of linear sections of the hyperquadric.

In the same vein, albeit more sophisticated, via the Plücker embedding, a holomorphic
2-sphere of degree 6 contained in G(2, 5) ⊂ CP 9 is a rational normal curve (a sextic curve)
sitting in a projective 6-plane L in CP 9; thus, the curve lies in the linear section L∩G(2, 5).
Castelnuovo [14] showed that generic (see Section 3.1 for definition) such linear sections
constitute the intriguing class of Fano 3-folds of index 2 and degree 5 all of which are
projectively equivalent (see also [36] for a detailed modern account and Section 3.1 for a
quick overview).

Employing PSL(2,C)-representations, Mukai and Umemura [33] constructed a beautiful
Fano 3-fold of index 2 and degree 5, to be denoted by H3

0 henceforth (often denoted by
V5 in the literature), which can be identified naturally with the linear section of G(2, 5)
cut out by the 6-plane L0 containing the above standard Veronese curve, whose tangent
developable surface S ⊂ H3

0 plays a crucial role in the sequel, where L0 turns out to be
precisely the projectivization P(V6) of the irreducible PSL(2,C)-module V6 of dimension 7.
This fits ideally in our differential-geometric framework for computation when the condition
of constant curvature is engaged.

Recall a holomorphic curve F : M → G(2, 5) ⊂ CP 9 is unramified at p if the tangent
line to F at p does not lie entirely in G(2, 5), in which case F is totally unramified at p if
the curve [dF ∧ dF ] ⊂ CP 4 is unramified as a projective curve at p. Now, transforming
by GL(5,C), we can use the sextic curves in H3

0 to parameterize holomorphic 2-spheres of
degree 6 in G(2, 5). Takagi and Zucconi’s work on the Moduli space (Hilbert scheme) [38, 39]
of sextic curves in H3

0, in which the intersection properties between a general sextic curve in
H3

0 and lines and conics were investigated, turns out to characterize the total unramification
of harmonic sequences (see Theorem 4.1), from which we obtain that generic holomorphic
2-spheres of degree 6 in G(2, 5) are not of constant curvature (see Theorem 4.2).

To find constantly curved nongeneric holomorphic 2-spheres of degree 6 in G(2, 5), we
explore the way ramification occurs from the standpoint of Galois covers. We approach
this by separating the analysis into two distinct cases. When a sextic curve γ ⊂ H3

0 does
not live in S, by exploring Mukai and Umemura’s orbit decomposition structure of H3

0, we
may lift γ to a Galois cover in the natural CP 3 containing PSL(2,C) (see Section 5.2).
Studying the Galois covering at its branch points that cover the points of intersection of S
and the sextic curve, enables us to categorize all sextic curves not contained in S into two
classes, namely, the more flexible one labeled as the generally ramified family, consisting
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of those sextic curves ramified at the singular locus of S somewhere, and the more rigid
complementary one labeled as the exceptional transversal family.

In contrast, when a sextic curve γ lives in S but not in its singular locus, through the
PSL2-invariant theory, we may explicitly lift γ to a line in the same CP 3, so that in
particular γ also falls in the generally ramified family.

It turns out that a constantly curved holomorphic 2-sphere of degree 6, GL(5,C)-equivalent
to a sextic curve lying in the generally ramified family, spans a 6-plane L differing from L0

by a diagonal transformation of GL(5,C). This is done through elaborate PSL2-invariant
transvectant and engaged unitary analyses (see Section 6) to yield the following.

Theorem. The moduli space M of constantly curved holomorphic 2-spheres of degree 6
in G(2, 5), which are GL(5,C)-equivalent to sextic curves living in the generally ramified
family, is a 2-dimensional semialgebraic set, up to the ambient U(5)-equivalence.

The moduli space structure facilitates the computation to verify that the second funda-
mental form of all members of M are not of constant norm, and thus all but the standard
Veronese curve are nonhomogeneous.

Of particular interest are three points in the moduli space M, for each of which the
corresponding Fano 3-fold contains a unique constantly curved holomorphic 2-sphere of
degree 6, whereas the Fano 3-fold corresponding to a point other than the three in M
contains exactly two distinct constantly curved holomorphic 2-spheres conjugated to each
other in an appropriate sense (see Sections 7 and 8).

Our approach facilitates the explicit construction of many new examples, through algebro-
geometric means, of constantly curved 2-spheres of degree 6.

Based on Felix Klein’s work [29], we have completely classified all Galois covers of genus
zero and their corresponding sextic curves in H3

0 for the exceptional transversal family (see
Table 2, Section 5.4), which consists of a few 1-parameter examples and hence at most
finitely many such of constant curvature in H3

0 by considering total unramification. (Since
the classification is long, we only indicate a couple of examples in the current paper. See
Section 5.4.) It is tempting to suggest, up to U(5)-equivalence, that there would be at
most finitely many 1-parameter examples of constantly curved 2-spheres in the transversal
exceptional family.

The paper is organized as follows. Section 2 is devoted to recalling the representation
theory of PSL(2,C), as well as Jiao and Peng’s classification of nonsingular (in their sense)
constantly curved holomorphic 2-spheres in G(2, 5). In Section 3, we introduce briefly the
theory of generic linear sections of G(2, 5) and the Fano 3-fold H3

0 constructed by Mukai and
Umemura. In Section 4, we show that generic holomorphic 2-spheres of degree 6 in GL(2, 5)
are not constantly curved. In Section 5, when a sextic curve γ ⊂ H3

0 is not in S, we introduce
its Galois lift in CP 3, where Galois analyses lead to the generally ramified family that also
includes the case when γ ⊂ S is not in the singular locus of S, as outlined above. Starting
from Section 6, we explore PSL2-transvectant and engaged unitary analyses in preparation
for the existence and uniqueness (Theorem 7.1) of constantly curved holomorphic 2-spheres
of degree 6 in the generally ramified family in Section 7, and for the moduli space structure
of the aforementioned Theorem (Theorem 8.1) and related results in Section 8, from which
interesting individual as well as 1-parameter families of new examples are exhibited.
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2. Priliminaries
2.1. Irreducible representations of SL2(C).

Let Vn be the the space of binary forms of degree n in two variables u and v, on which
SL2(C) (to be denoted by SL2) acts by

SL2 × Vn → Vn, (g, f) 7→ (g · f)(u, v) ≜ f(g−1 · (u, v)t). (2.1)

It is well-known that Vn, n ∈ Z≥0, are the only finite-dimensional irreducible representations
of SL2.

Choose the following basis of Vn,

el ≜
(
n
l

) 1
2un−lvl, l = 0, . . . , n. (2.2)

Under this basis, write

(e0, . . . , en) ρ
n(g) ≜ (g · e0, g · e1, . . . , g · en). (2.3)

The representation ρn(g) : SL2 → GL(n+ 1;C) induces the wedge-product representation

SL2 × Vn ∧ Vn → Vn ∧ Vn, (g, ek ∧ el) 7→ (g · ek) ∧ (g · el), 0 ≤ k, l ≤ n. (2.4)

For the sake of clarity, we view Vn ∧ Vn as the space of anti-symmetric matrices ∧2Cn+1,
by identifying ek ∧ el with the anti-symmetric matrix Ekl − Elk ∈ Mn+1(C), where the
only nonvanishing entry of Ekl is 1 at the (k, l) position, 0 ≤ k < l ≤ n. With the basis
{ek ∧ el | 0 ≤ k < l ≤ n} (see (2.2)), it is not difficult to obtain the wedge-product
representation in matrix form,

ρn ∧ ρn : SL2 × ∧2Cn+1 → ∧2Cn+1, (g,A) 7→ (ρn(g)) ·A · (ρn(g))t.
The Clebsch-Gordan formula states that (assume m ≥ n)

Vm ⊗ Vn ∼= Vm+n ⊕ Vm+n−2 ⊕ · · · ⊕ Vm−n.

Moreover, for any given number p ∈ [0, n], the projection Vm ⊗ Vn → Vm+n−2p can be
formulated by

(f, h) 7→ (f, h)p ≜
(m− p)!(n− p)!

m!n!

p∑
i=0

(−1)i
(
p

i

)
∂pf

∂up−i∂vi
∂ph

∂ui∂vp−i
, (2.5)

which is PSL2-equivariant and is called the p-th transvectant [37, Eq (2.1), p. 16]. Moreover,

Vn ∧ Vn ∼= V2n−2 ⊕ V2n−6 ⊕ . . .⊕ Vr, (2.6)

where r is the remainder of 2n− 2 divided by 4, and the projections are the same as (2.5).
Gordan proved that the binary sextic V6 has 5 invariants and 26 covariants given by a

finite number of iterated transvectants [37, Table 1.1, p. 12; Theorem 2.1.3, p. 18], among
which (f, f)2, (f, f)4, (f, f)6 [37, Sections 4.5, 5.6] appear in geometry in an unexpected
way (see Proposition 3.1).

2.2. Holomorphic 2-spheres in G(2, 5).
We briefly review some basic facts of constantly curved holomorphic 2-spheres in the

complex Grassmannian G(2, 5), and along the way introduce those nonsingular ones that
Jiao and Peng [23] defined and classified.

Throughout, we equip G(2, 5) with the standard Kähler metric induced from the Fubini-
Study metric of CP 9 when G(2, 5) is realized as a subvariety of CP 9 by the Plücker embed-
ding,

i : G(2, 5) → P(∧2C5) ∼= CP 9, span{u, v} 7→ [u ∧ v].
5



Explicitly, let {ϵ0, ϵ1, . . . , ϵ4} be a basis of C5. Then {ϵi ∧ ϵj | 0 ≤ i < j ≤ 4} forms a basis
of ∧2C5 so that p = [

∑
i,j pij ϵi ∧ ϵj ] belongs to G(2, 5) if and only if p ∧ p = 0, which is

equivalent to
p01p23 − p02p13 + p03p12 = 0, p01p24 − p02p14 + p04p12 = 0,

p01p34 − p03p14 + p04p13 = 0, p02p34 − p03p24 + p04p23 = 0,

p12p34 − p13p24 + p14p23 = 0.

(2.7)

Remark 2.1. It follows from the definition that G(2, 5) is PSL2-invariant under the wedge-
product action ρ4 ∧ ρ4 given in (2.4).

Let φ : CP 1 → G(2, 5) be a holomorphic 2-sphere. It follows from the Normal Form
Lemma [35] that there exist two holomorphic curves f, g : CP 1 → CP 4, such that φ =
span{f, g}. Explicitly, choosing an affine coordinate z on CP 1, we can write f(z) =
(f0(z), . . . , f4(z)) and g(z) = (g0(z), . . . , g4(z)) as row vectors with polynomial entries except
at some isolated points.

In view of Remark 2.1, we obtain that φ is of constant curvature K if and only if i ◦ φ
is of constant curvature K under the Plücker embedding. This guarantees that the rigidity
principle of Calabi can be employed to study constantly curved holomorphic 2-spheres in
G(2, 5), which we rephrase as follows for reference.

Lemma 2.1. Let f : CP 1 → CPn be a holomorphic 2-sphere of degree d. The following are
equivalent.

(1) The Gauss curvature K of f is 4
d . Furthermore, up to the action of U(n + 1) and

Möbius reparametrization, f is given by the Veronese sphere

Zd(z) ≜ [1 :
√
dz : · · · :

√(
d
k

)
zk : · · · : zd]t. (2.8)

(2) There is an affine chart z ∈ C over which |f |2 = (1 + |z|2)d.
(3) There is an affine chart z ∈ C over which f =

∑d
k=0

√(
d
k

)
Akz

k, and {A0, A1, · · · , A6}
forms an orthonormal basis of the d-plane spanned by f .

For a constantly curved holomorphic 2-sphere φ : CP 1 → G(2, 5), it is known [23, 31]

that φ can be parameterized as φ =
(
φ1(z)

t, φ2(z)
t
)t

with

φ1(z)=
(
1, 0, φ12(z), φ13(z), φ14(z)

)
, φ2(z)=

(
0, 1, φ22(z), φ23(z), φ24(z)

)
, (2.9)

where φ1i(z) and φ2i(z) (2 ≤ i ≤ 4) are polynomials vanishing at z = 0. In the sequel,
(2.9) will be called a standard parameterization of φ. We point out that this kind of pa-
rameterization is not unique. In fact, if {φ1, φ2} is a standard parameterization of φ, then
{αφ1+βφ2,−β̄φ1+ ᾱφ2} is also a standard parameterization after rotating ϵ0 and ϵ1 while
maintaining |α|2 + |β|2 = 1.

In [23], a holomorphic 2-sphere φ : CP 1 → G(2, 5) is called nonsingular if there exists a
standard parameterization {φ1, φ2} of φ, such that [φ1(∞)] ̸= [φ2(∞)] in CP 4. Otherwise,
φ is called singular. It is easy to verify that φ is nonsingular if and only if there exists a
standard parameterization {φ1, φ2} of φ, such that

degφ = degφ1 + degφ2. (2.10)

Using a standard parameterization, one can construct explicitly nonsingular examples as
was done by Jiao and Peng in [23]. Indeed, under the nonsingular assumption, Jiao and
Peng in the paper proved the following nonexistence result.
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Theorem 2.1. There does not exist nonsingular holomorphic constantly curved 2-spheres
of degree 6 in G(2, 5).

The idea goes as follows. By contradiction, otherwise, it would follow from (2.10) that
we had only three possibilities that (degφ1,degφ2) = (5, 1), (4, 2), (3, 3). In each case, we

obtained vectors Ak, 0 ≤ k ≤ 6, where i ◦ φ = φ1 ∧ φ2 ≜
∑6

k=0

√(
d
k

)
Akz

k, in terms of

undetermined coefficients of φ1 and φ2 to violate item (3) of Lemma 2.1.
As the degree of φ increases, however, the number of undetermined coefficients rises

dramatically, so that it is technically difficult to apply the method to construct singular
2-spheres.

It is readily verified that the Veronese curve (1.1) given in the introduction is singular in
terms of Jiao and Peng’s definition, where a standard parameterization in the sense of (2.9)
can be chosen to be (

1 0 −
√
6z2 −4z3 −3z4

0 1
√
6z 3z2 2z3

)
. (2.11)

We point out that this example is smooth (nonsingular) in the usual algebro-geometric
sense, which is indeed what we are after.

2.3. Reducible and Irreducible holomorphic curves in G(2, 5).
For later purposes, we develop the extrinsic geometry of holomorphic curves in G(2, 5)

from the viewpoint of developable surfaces.
Let f :M → G(2, 5) be a holomorphic map from a Riemann surface M . Composed with

the Plücker embedding, F ≜ i ◦ f is a holomorphic curve in CP 9 = P(∧2C5). Since F lies
in G(2, 5), we have F ∧ F ≡ 0, whose derivative with respect to a local complex coordinate
z yields that F ∧ ∂F/∂z = 0. Consider the tangent developable surface D of F in CP 9,
spanned by F and its tangent line ∂F/∂z,

D ≜ {[uF + v ∂F/∂z] | [u : v] ∈ CP 1}.

Lemma 2.2. The following are equivalent.

(1) The tangent developable surface D of F lies in G(2, 5).
(2) ∂F/∂z ∧ ∂F/∂z ≡ 0.

The lemma follows by differentiating (uF + v ∂F/∂z) ∧ (uF + v ∂F/∂z) = 0 while em-
ploying F ∧ ∂F/∂z = 0.

Inspired by the first item in Lemma 2.2, we call a holomorphic curve f : M → G(2, 5)
reducible, if the tangent developable surface D of F = i ◦ f also lies in G(2, 5); otherwise,
we call f irreducible. If f : M → G(2, 5) is irreducible, then ∂F/∂z ∧ ∂F/∂z has isolated
zeroes, which we call ramified points (with multiplicity) and f is said to be ramified at these
points.

Remark 2.2. In the theory of harmonic sequences, a holomorphic curve f :M → G(2, 5) is
called reducible if the rank of the next term f1 is strictly less than 2; see [25]. This definition
coincides with the above definition. We thank Professor L. He for helpful discussions about
it.

It was proven in [19] that a constantly curved reducible holomorphic 2-sphere of degree
6 is rigid, which is unitarily equivalent to the standard Veronese curve (1.1) in G(2, 5). As
a result, we need only consider irreducible holomorphic 2-spheres in G(2, 5) in the sequel.

7



3. Algebro-geometric preparation

3.1. Generic linear sections of G(2, 5) and Fano 3-folds of index 2 and degree 5.
To motivate, a holomorphic 2-sphere of degree 6 in G(2, 5) lies in a 6-plane L in P(∧2C5) ∼=

CP 9, and so it lives in the intersection L ∩ G(2, 5) called a linear section of G(2, 5). The
dual 2-plane of L in (∧2C5)∗ is given by a linear system

[λA+ µB + τC], [λ : µ : τ ] ∈ CP 2, (3.1)

where A,B,C are fixed skew-symmetric matrices of size 5 × 5 identified with elements in
(∧2C5)∗. Following [36], we say that L is generic if all matrices in the linear system are of
rank 4, and the associated cut L ∩G(2, 5) is referred to as a generic linear section. Let us
look at a concrete example next.

By the Clebesch-Gordan formula (2.6), we obtain that ∧2C5 ∼= V6⊕V2. Here, we identify
V6 with a SL2-invariant subspace of 5× 5 anti-symmetric matrices by

6∑
i=0

√(
6
i

)
aiu

6−ivi 7→


0 a0 a1

√
3
5a2

1√
5
a3

−a0 0
√

2
5a2

2√
5
a3

√
3
5a4

−a1 −
√

2
5a2 0

√
2
5a4 a5

−
√

3
5a2 − 2√

5
a3 −

√
2
5a4 0 a6

− 1√
5
a3 −

√
3
5a4 −a5 −a6 0

 . (3.2)

Let {ei} be an orthonormal basis of C5. An orthonormal basis of V6 is given by

E0 ≜e0 ∧ e1, E1 ≜ e0 ∧ e2, E2 ≜
√
3/5 e0 ∧ e3 +

√
2/5 e1 ∧ e2,

E3 ≜1/
√
5 e0 ∧ e4 + 2/

√
5 e1 ∧ e3, E4 ≜

√
3/5 e1 ∧ e4 +

√
2/5 e2 ∧ e3,

E5 ≜e2 ∧ e4, E6 ≜ e3 ∧ e4.

(3.3)

It is readily checked that uv(u4−v4) (respectively, u6) in V6 corresponds to (E1−E5)/
√
6

(respectively, E0). Note that, the dual plane to V6 is given by a linear system of the form
in (3.1), where

A ≜
√
6p03 − 3p12 = 0, B ≜ 2p04 − p13 = 0, C ≜

√
6p14 − 3p23 = 0. (3.4)

It is also readily checked that the rank of [λA + µB + τC] is 4 for every [λ : µ : τ ] ∈ CP 2.
Therefore, as a linear section,

H3
0 ≜ P(V6) ∩G(2, 5),

is generic.
Note also that the space P(V6) is the 6-plane spanned by the standard Veronese curve in

(1.1), which is precisely the orbit PSL2 ·u6 confirmed by a computation with (E0, · · · , E6) ·
Z6(z), where Z6 is given in (2.8), to see that they are agreeable.

We include a short outline of the following well-known fact for the reader’s convenience.
Our reference is [36].

Theorem 3.1. All generic linear sections L ∩G(2, 5) are PGL(5,C)-equivalent to H3
0.

To begin, the Pfaffian of a (2n) × (2n) skew-symmetric matrix M with entries aij is
defined to be

pf(M) ≜
∑
σ

sgn(σ) ai1 j1ai2 j2 · · · ain jn ,

where σ : {1, 2, · · · , 2n} → {i1, j1, i2, j2, · · · , in, jn}, in order, runs over permutations of
{1, 2, · · · , 2n} satisfying is < js, 1 ≤ s ≤ n, and i1 < i2 < · · · < in. The Pfaffian enjoys

8



the property that if N is a (2n+ 1)× (2n+ 1) skew-symmetric matrix of rank 2n, then the
1-dimensional kernel of N is spanned by the vector (v1, · · · , v2n+1), where vi is the diagonal
Pfaffian of the (2n) × (2n) skew-symmetric matrix obtained by deleting the ith row and
column.

Now, since the dual 2-plane of a generic 6-plane L in P(∧2(C5)) is a linear system [λA+
µB + τC], [λ : µ : τ ] ∈ CP 2, all of whose 5 × 5 skew-symmetric matrices are of rank 4, we
can use the associated diagonal Phaffians to define the center map

c : [λ : µ : τ ] ∈ CP 2 → projectivized center of [λA+ µB + τC] ∈ CP 4.

It is then verified that the center map is an embedding of CP 2 into CP 4 of degree 2, and
thus the image of c, called the projected Veronese surface, is a generic projection from
the standard Veronese surface in CP 5 to CP 4. Consequently, any two such 2-plane linear
systems are PGL(5,C)-equivalent, and so are the corresponding linear sections. In fact,
L ∩G(2, 5) is the closure of all lines in CP 4 intersecting the associated projected Veronese
surface in three distinct points.

Exploring the center map c, the authors in [36] also obtained the automorphism group of
a generic linear section L ∩G(2, 5).
Theorem 3.2. The automorphism group of a generic linear section L ∩G(2, 5) is PSL2.

Generic linear sections L ∩ G(2, 5) constitute all Fano 3-folds of index 2 and degree 5,
first classified by Castelnuovo [14], a typical one of which is to be denoted by H3 henceforth;
here, the degree is that of the Fano 3-fold as a subvariety of CP 9, and the index is the
difference between its degree and codimension in G(2, 5), so that its anti-canonical bundle
is ≃ O(2). To reference, we call H3

0 = P(V6) ∩G(2, 5) introduced earlier the standard Fano
3-fold.

We point out that the automorphism group of a Fano 3-fold of index 2 and degree 5 has
also been studied by Mukai and Umemura in [33] from the viewpoint of algebraic group
actions. By considering the action of PSL2 on P(V6), they proved that the closure of
PSL2 · uv(u4 − v4) is precisely H3

0. In the same paper, they also obtained the following
beautiful orbit decomposition structure on H3

0.

Theorem 3.3.

H3
0 = PSL2 · uv(u4 − v4) = PSL2 · uv(u4 − v4) ⊔ PSL2 · u5v ⊔ PSL2 · u6.

Remark 3.1. In the above orbit decomposition, PSL2 ·uv(u4−v4) is of dimension 3, which
is parameterized as

f1 : PSL2 7→ P(V6), [

(
a b
c d

)
] 7→ [

(
a b
c d

)
· uv(u4 − v4)] = [a0 : a1 : · · · : a6],

a0 ≜ −
√
6d5c+

√
6dc5, a1 ≜ d4 (ad+ 5 bc)− c4(5 ad+ bc),

a2 ≜ −bd3 (ad+ 2 bc)
√
10 + ac3 (2 ad+ bc)

√
10,

a3 ≜ b2d2 (ad+ bc)
√
30− a2c2 (ad+ bc)

√
30,

a4 ≜ −b3d (2 ad+ bc)
√
10 + a3c (ad+ 2 bc)

√
10,

a5 ≜ b4(5 ad+ bc)− a4 (ad+ 5 bc) , a6 ≜ −
√
6b5a+

√
6ba5.

(3.5)

Similarly, the orbit PSL2 · u6 is parameterized as

[

(
a b
c d

)
] 7→ [d6 : −

√
6bd5 :

√
15b2d4 : −

√
20b3d3 :

√
15b4d2 : −

√
6b5d : b6]. (3.6)
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It is precisely the Veronese curve Z6 in (2.8). Its tangent developable surface constitutes
the closure of the 2-dimensional orbit (see [33]),

PSL2 · u5v = PSL2 · u5v ⊔ PSL2 · u6,

where PSL2 · u5v has the following parameterization

f2 : PSL2 7→ P(V6), [

(
a b
c d

)
] 7→ [

(
a b
c d

)
· u5v] = [b0 : b1 : · · · : b6],

b0 ≜ −
√
6d5c, b1 ≜ d4 (ad+ 5 bc) , b2 ≜ −bd3 (ad+ 2 bc)

√
10,

b3 ≜ b2d2 (ad+ bc)
√
30, b4 ≜ −b3d (2 ad+ bc)

√
10,

b5 ≜ b4 (5ad+ bc), b6 ≜ −
√
6b5a.

(3.7)

Meanwhile, using the invariants and covariants of the binary sextic (see (2.5)), we remark
that the above orbits have another SL2-invariant characterization.

Proposition 3.1. Given f =
∑6

i=0

√(
6
i

)
aiu

6−ivi defining [f ] ∈ P(V6), we have

(1) [f ] lies in H3
0 = P(V6)∩G(2, 5) = PSL2 · uv(u4 − v4) if and only if the 4-th transvec-

tant (f, f)4 = 0,

(2) [f ] lies in the closed 2-dim orbit PSL2 · u5v if and only if the 4-th and 6-th transvec-
tants (f, f)4 and (f, f)6 vanish, and

(3) [f ] lies in the 1-dimensional orbit PSL2 · u6 if and only if the 2nd transvectant
(f, f)2 = 0.

For later purposes, we quote the following well known calculations: (f, f)2 = Hess(f)/450.

(f, f)6 = 2a0a6 − 2a1a5 + 2a2a4 − a23. (3.8)

(f, f)4 =
4∑

i=0

√(
4
i

)
tiu

4−ivi, where

t0 ≜
2

15
(
√
15a0a4 −

√
30a1a3 + 3a22), t1 ≜

√
6

15
(5a0a5 −

√
15a1a4 +

√
2a2a3),

t2 ≜

√
6

15
(5a0a6 − 3a2a4 + 2a23), t3 ≜

√
6

15
(5a1a6 −

√
15a2a5 +

√
2a3a4),

t4 ≜
2

15
(
√
15a2a6 −

√
30a3a5 + 3a24).

(3.9)

We point out that 1√
6
f ∧ f =

4∑
i=0

t4−ie0 ∧ · · · ∧ êi ∧ · · · ∧ e4 ∈ P(∧4(C5)), where the notation

êi means that we omit the term ei.
Meanwhile, since H3

0 and the 5-quadric Q5 defined by

Q5 ≜ {[f ] ∈ P(V6) : (f, f)6 = 0} (3.10)

are both PSL2-invariant in P(V6), the closed 2-dimensional PSL2-orbit is precisely Q5∩H3
0.

Note also that (f, f)2 vanishes if and only if f is the 6-th power of a linear form; see [30,
Prop 5.3, p. 71] for an algebraic reason.
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Remark 3.2. The isotropy groups of the two orbits of H3
0 of dimension ≥ 2 are given below.

(1)The open orbit PSL2 · uv(u4 − v4) : Its isotropy group at uv(u4 − v4) is the projective
binary octahedral group of order 24, isomorphic to S4, consisting of the following elements

(ξ ≜ e2kπ
√
−1/8, k = 0, 1, . . . , 3):(

ξ 0
0 1/ξ

)
,

(
0 ξ

−1/ξ 0

)
, 1/

√
2 ·
(
1/ξ −1/ξ
ξ ξ

)
,

1/
√
2 ·
(√

−1/ξ −1/ξ
ξ −

√
−1ξ

)
, 1/

√
2 ·
(
−1/ξ −1/ξ
ξ −ξ

)
, 1/

√
2 ·
(
−
√
−1/ξ −1/ξ
ξ

√
−1ξ

)
.

(2)The 2-dimensional orbit PSL2 · u5v : Its isotropy group at u5v is

{
(
a 0
0 1/a

)
| a ∈ C∗} mod ± I2.

For later computational purposes, we prove the following.

Lemma 3.1. Let A be a matrix in SL2. Then

ρ4(A) · (E0, E1, . . . , E6) = (E0, E1, . . . , E6) ρ
6(A), (3.11)

where the left-hand side with a dot is the ∧2-action of ρ4(A) on V6 ⊂ ∧2(C5) and the
right-hand side without a dot is a matrix multiplication.

Proof. Since the Clebsch-Gordon transvectant π ≜ f∧g → (f, g)1 in (2.5) is SL2-equivariant,
we obtain from the commutativity of the diagram

V4 ∧ V4 V4 ∧ V4

V6 V6

ρ4(A)

π π

ρ6(A)

(3.12)

that ρ6(A) : V6 → V6 is induced from the ∧2-action of ρ4(A) (see (2.4)). □

4. Generic holomorphic 2-spheres of degree 6 in G(2, 5)

In this section, we prove that generic holomorphic 2-spheres of degree 6 in G(2, 5) are not
of constant curvature. Here, a holomorphic 2-sphere of degree 6 is called generic if it differs
from a general (in the sense given in [39, Condition 3.20]) rational normal curve of degree 6
(a sextic curve) in the standard Fano 3-fold H3

0 by a transformation in GL(5,C).
Firstly, we review some results of general sextic curves in H3

0 referred to as the quintic
del Pezzo 3-fold and denoted by V5 in [38, 39]. In these two papers, Takagi and Zucconi
investigated the moduli space (Hilbert scheme) of sextic curves in H3

0. (Their results are
more general; we only invoke the special case when the curve degree is 6.) Let H6 be the
Hilbert scheme whose general points parameterize sextic curves in H3

0. The following results
(see Corollary 3.10 in [38], Proposition 2.3.1, Proposition 2.3.3 and Proposition 2.3.4 in [39])
were proved.

Proposition 4.1. The closure of H6 is an irreducible variety of dimension 12. Moreover,
for a general sextic curve C6 in H3

0,

(1) C6 intersects the closure of the 2-dimensional orbit PSL2 · u5v simply,
(2) there exist at most finitely many bi-secant lines of C6 in H3

0, and any one of them
11



intersects C6 simply, and
(3) Q|C6 has no point of multiplicity greater than 2 for any multi-secant conic Q.

It turns out the above proposition can be used to prove that general sextic curves in H3
0

are totally unramified in the sense of harmonic sequences [10], from which we can derive that
generic holomorphic 2-spheres of degree 6 in G(2, 5) are not of constant curvature. Recall
(below Lemma 2.2) that a holomorphic 2-sphere F : CP 1 → G(2, 5) is unramified if F ′ ∧F ′

is nowhere vanishing, in which case it is called totally unramified if, furthermore, the curve
[F ′ ∧ F ′] : CP 1 → P(Λ4C5) ∼= CP 4 is unramified as a projective curve, which is equivalent
to saying that F ′′ ∧ F ′ is nowhere parallel to F ′ ∧ F ′. Our key observation is the following
interesting algebro-geometric characterization of total unramification.

Theorem 4.1. Let F : CP 1 → G(2, 5) be a holomorphic 2-sphere of degree 6.
(1) F ′ ∧ F ′ is zero at a point p if and only if the tangent line of F at p lies in G(2, 5).
(2) Assume F ′ ∧ F ′ is nonzero at p. If [F ′ ∧ F ′] is ramified at p, then there exists a conic
Q tangent to F at p such that Q|F has multiplicity no less than 3 at p.

Proof. The conclusion in (1) follows from F ∧ F ′ = 0 so that

(F + tF ′) ∧ (F + tF ′) = t2F ′ ∧ F ′, t ∈ C.
For the conclusion in (2), we assume that F = f ∧ g. Since F ′ ∧ F ′ does not vanish at p,

we can choose a basis {e1, e2, · · · , e5} of C5 such that

F (p) = e1 ∧ e2, F ′(p) = e1 ∧ e3 − e2 ∧ e4, (4.1)

and
F ′′(p) = f ′′(p) ∧ e2 − 2e3 ∧ e4 + e1 ∧ g′′(p). (4.2)

If [F ′ ∧ F ′] is ramified at p, then there exist two complex number α and β such that

(αF ′(p) + βF ′′(p)) ∧ F ′(p) = 0.

It follows that
f ′′(p), g′′(p) ∈ {e1, e2, e3, e4}. (4.3)

Consider the 2-plane P2 spanned by {F (p), F ′(p), F ′′(p)} and its intersection with G(2, 5).
Using (4.1)∼(4.3), it is easy to verify that [F (p) + xF ′(p) + yF ′′(p)] lies in G(2, 5) if and
only if

−4y + 2x2 + λy2 + µxy = 0 (4.4)

for two constants λ and µ, which means that the intersection P2∩G(2, 5) is exactly a conic.
We denote this conic by Q.

We choose a local coordinate z near p such that z(p) = 0. It follows from the Taylor

expansion of F at z = 0 that, near p, F can be parameterized as [1 : z : z2

2 : z3

3! : · · · : zd

d! ],

with respect to the frame {F (p), F ′(p), F ′′(p), · · · , F (d)(p)} on the d-plane containing F .

Substituting x = z and y = z2

2 into the left-hand side of (4.4), we have

−4y + 2x2 + λy2 + µxy = z3(
µ

2
+
λ

4
z),

which implies Q|F has multiplicity no less than 3 at p. □

Proposition 4.1, Theorem 4.1, and an easy construction of a totally unramified sextic
curve in G(2, 5) whose curvature is not constant, imply that a generic holomorphic 2-sphere
of degree 6 is totally unramified, and so we obtain the main result of this section.
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Theorem 4.2. Generic holomorphic 2-spheres of degree 6 in G(2, 5) are not of constant
curvature.

5. Galois covering of the holomorphic 2-spheres of degree 6 in G(2, 5)

We see from the preceding section that holomorphic 2-spheres of degree 6 with constant
curvature in G(2, 5) are nongeneric. To understand better how and when the ramification
in the sense of harmonic sequences can appear, we look at it from the Galois point of view.
We divide the discussion according to whether the curve lies in the closed 2-dimensional
PSL2-orbit as follows.
5.1. The case when the curve lies in the closed 2-dimensional orbit.

Part of the following theorem is known to algebraists [42]. We give a straightforward
proof pertaining to our geometric situation here.

Theorem 5.1. Let F : CP 1 → H3
0 be a rational normal curve of degree 6. Assume F lies

in the closed 2-dimensional orbit PSL2 · u5v but does not coincide with the 1-dimensional
orbit. Then F can be lifted to a projective line ϕ : CP 1 → CP 3 in the diagram

CP 3

CP 1 CP 6,

f2

F

ϕ (5.1)

where f2 is given in (3.7). Moreover, F intersects the 1-dimensional orbit.

Proof. We give a proof based on the PSL2-invariant theory.

Firstly, we show the existence of the lift ϕ. Assume that F =
6∑

i=0
ai(z)

√(
6
i

)
u6−ivi, where

ai(z) are polynomials of z with ai(z) ̸= 0 because F is linearly full. Then by (3.9), we obtain

a4 =

√
10a1a3 −

√
3a22√

5a0
, a5 =

√
30a21a3 − 3a1a

2
2 −

√
2a0a2a3

5a20
,

a6 =
3
√
10a1a2a3 − 3

√
3a32 − 2

√
5a0a

2
3

5
√
5a20

.

(5.2)

By (3.8) and (5.2), F lying in the closed 2-dimensional orbit PSL2 · u5v is equivalent to

0 = Q5 = −9

5
a23 −

2
√
2(
√
15a21 − 9a0a2)a1

5a20
a3 −

2(8
√
15a0a2 − 15a21)a

2
2

25a20
. (5.3)

We can directly write down the lift ϕ = [

(
a b
c d

)
] by assigning

a =

√
6a1
a0

+
−5

√
10a1a2 + 15

√
5a0a3

10a21 − 4
√
15a0a2

, b =
−
√
10a1a2 + 3

√
5a0a3

10a21 − 4
√
15a0a2

, (5.4)

c = −1, and d = 1. In fact, given ϕ · u5v = (u+ av)(u− bv)5, we derive that

6∑
i=0

gi(z)
√(

6
i

)
u6−ivi ≜ F − a0(u+ av)(u− bv)5 = 0 (5.5)
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in C(a0, a1, a2)[a3]/(Q5), viewing a0, . . . , a3 as independent variables. To see this, by direct
computations, g0 = g1 = 0, and gi = ri · Q5, 2 ≤ i ≤ 6, for some polynomials ri ∈
C(a0, a1, a2)[a3] with degree dega3(ri) = i−2, 2 ≤ i ≤ 6, which can be obtained by Euclid’s

division algorithm; for example, r2 =
coeff(g2,a3,2)
coeff(Q5,a3,2)

, etc. The only thing to remark is that

5a21 − 2
√
15a0a2 ̸≡ 0 (5.6)

in (5.4). Otherwise, a2 =
√
15a21
6a0

, and then by (5.3), 0 = Q5 = − (
√
30a31−18a20a3)

2

180a40
to yield a3 =

√
30a31
18a20

, so that by the graph structure (5.2) we obtain F = (
√
6a0u+a1v)6

216a50
, which contradicts

the assumption that F does not coincide with the 1-dimensional orbit. (In the following
Remark (5.1), we will motivate the choice of a and b given in the lift (5.4).) Moreover, F
intersects the 1-dimensional orbit PSL2 · u6 at the zeros of a+ b.

In conclusion, we have the above commutative diagram (5.1). Next, we show that ϕ(CP 1)
is a projective line. We may assume that a, b, c, d are polynomials of an affine coordinate
z, after factoring out the common denominator. Set α ≜ gcd(a, c), β ≜ gcd(b, d), and

A ≜

(
a/α b/β
c/α d/β

)
. Then

ϕ · u5v =

(
a b
c d

)
· u5v = (A

(
α 0
0 β

)
) · u5v = (β5α) A · u5v = A · u5v,

after projectivizing. We may thus assume that gcd(a, c) = gcd(b, d) = 1 and ϕ = A in the
following arguments.

By (3.7) and that F is nondegenerate in CP 6, none of a, b, c, d are identically zero, from
which there induces two non-constant holomorphic maps

ϕ1 : CP 1 → CP 1, z 7→ [a : c]; ϕ2 : CP 1 → CP 1, z 7→ [b : d].

Moreover, the coordinates b0, b1, · · · , b6 of F given in (3.7) cannot vanish simultaneously at
any point of C. Therefore,

deg(F ) = max
0≤i≤6

{deg(bi)} ≤ max{deg a,deg c}+ 5max{deg b,deg d} = deg(ϕ1) + 5 deg(ϕ2), (5.7)

where we have used the fact that bi are homogeneous of bidegree (1, 5) in (a, c) and (b, d),
respectively. We assert that the reverse inequality of (5.7) also holds. To this end, multiply-
ing a matrix from the left by interchanging the rows, we may assume that deg(a) ≥ deg(c).
If deg(b) ≥ deg(d), then

deg(F ) ≥ deg(b6) = deg(a) + 5 deg(b) = deg(ϕ1) + 5 deg(ϕ2);

otherwise, deg(F ) ≥ deg(b1) = deg(a)+5 deg(d) = deg(ϕ1)+5 deg(ϕ2). Hence, we have the
equality in (5.7). Lastly, since both ϕ1 and ϕ2 are non-constant, it follows from deg(F ) = 6
that deg(ϕ1) = deg(ϕ2) = 1. Therefore ϕ is a projective line in CP 3.

□

Remark 5.1. It follows from the PSL2-invariant theory that the curve F lying in the closed
2-dimensional orbit is equivalent to F and ∂F

∂u having a greatest common divisor G of positive

degree in u. Indeed, their resultant with respective to u is Resu(F,
∂F
∂u ) = 62208a0v

30Q5
5 = 0.

Moreover, G can be found by Eculid’s algorithm through F = (γu+ µv)∂F∂u +G, where

G =
(2
√
15a0a2 − 5a21)v

2

6a0
u4 − (a1a2

√
2− 3a0a3)

√
5v3

3a0
u3 + · · · ≜ c4u

4v2 + c3u
3v3 + · · · .

14



So, G is of degree 4 in u by (5.6). The proof that ∂F/∂u is divided by G, and G has a root
b of multiplicity 4 is similar to (5.5). Thus, by the relations between roots and coefficients
for G, we derive b = −c3

4c4
given in (5.4). Moreover, b is also the root of F with multiplicity

5, and the simple root −a of F can also be found through −(−a)− 5b = −
√
6a1
a0

.

5.2. The case when the curve does not lie in the closed 2-dimensional orbit.
We identify the projectivization of the space of 2 × 2 nonzero (complex) matrices with

CP 3 by

ι :

(
a b
c d

)
7→ [a : b : c : d].

Via ι, the subset of 2 × 2 matrices of zero determinant is the following PSL2-invariant
hyperquadric Q2 of dimension 2,

Q2 ≜ {[a : b : c : d] ∈ CP 3 | ad− bc = 0}. (5.8)

Note that we can identify PSL2 with CP 3 \Q2.

Theorem 5.2. Let F : CP 1 → H3
0 ⊂ G(2, 5) be a sextic curve. If F does not lie in the closed

2-dimensional orbit PSL2 · u5v, then there exists a compact Riemann surface g :M → CP 3

covering F as in the following commutative diagram

M CP 3

CP 1 CP 6

g

φ f1

F

(5.9)

Moreover, φ : M → CP 1 is a (branched) Galois covering, and the group of covering trans-

formations G ≜ {σ ∈ Aut(M) | φ ◦ σ = φ} is a subgroup of S4 isomorphic to the isotropy
group at uv(u4 − v4) given in item (1) of Remark (3.2).

Proof. Recall the invariant quadric Q5 defined in (3.8), which cuts the sextic curve F in a
divisor of degree 12 with support points q1, · · · , ql by Bezout’s theorem.

In the following, we abuse the notation to denote by q either a point of the curve F (CP 1)
or its preimage on CP 1, whenever there is no possibility of confusion.

Consider the complementary set V ≜ CP 1 \ {q1, . . . , ql}; F (V ) lies in the open 3-

dimensional orbit Y ≜ PSL2 · uv(u4 − v4). Let U be a connected component of the fibered
product

U ⊂ V ×Y PSL2 ≜ {(p,B) ∈ V × PSL2 : F (p) = f1(B)}, (5.10)

with the two standard projections π1 and π2 onto V and PSL2 ⊂ CP 3, respectively. Then
U is an unramified covering space of V , by item (1) of Remark 3.2. We extend π1 : U → V
to a ramified covering φ : M → CP 1 by the monodromy representation [20, Theorem 8.4,
p. 51], where M is a compact Riemann surface. Hence, we obtain the commutative diagram
(5.9), where g extends π2, φ extends π1, and M is the desingularization of the closure of
π2(U) in CP 3.

Furthermore, the group of covering transformations G = {σ ∈ Aut(M) | φ ◦ σ = φ} is
isomorphic to the group

G̃ = {C ∈ S4 | ∀ (q,B) ∈ U ⊂ V × PSL2, s.t. (q,BC) ∈ U}.
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It is easy to see that the elements of the group G̃ permutes the points on a regular fiber of
φ; thus, we obtain the isomorphism

G̃→ G, C 7→ σC ≜ [(q,B) ∈ U 7→ (q,BC−1)],

whose inverse is given by

G→ G̃ ⊂ S4, σ 7→ Cσ ≜ g(σ(q))−1g(q), ∀q ∈ U,

where Cσ is well-defined due to that U is connected and the isotropy group S4 is finite.

Furthermore, the order of G̃ equals d ≜ degφ, the number of points on a regular fiber.
Indeed, given a point (q0, B0) ∈ U , the fiber over q0 is

{(q0, B0Ci), | Ci ∈ S4, 1 ≤ i ≤ d}.

By definition, we have G̃ ⊂ {C1, . . . , Cd}. On the other hand, for a given 1 ≤ j ≤ d,

since U and U · Cj ≜ {(q,BCj) | ∀ (q,B) ∈ U} are two connected components of the fiber
product V ×Y PSL2 through the same point (q0, B0Cj) and so are identical, we conclude

that Cj ∈ G̃.
To show the Galoisness of φ, given the data in (3.5) and (5.9), consider the polynomial

equation

p(z, x) ≜
6∑

i=0

√(
6
i

)
ai(z)x

i = 0, (5.11)

where the entries of F (z) = [a0(z) : · · · : a6(z)] belong to the polynomial ring C[z] such that
the coefficients are relatively prime with the maximum degree 6. Then the splitting field of
p(φ, x) ≜ φ∗(p(z, x)) over C(φ), where φ is given in (5.9), is exactly the function field C(M)
of the covering M .

To see this, the splitting field belongs to C(M) due to that the six roots of p(φ, x) are
linear fractions of the coordinate functions a, b, c, d of g(M). In fact, the map g over M in
(5.9) splits f1 ◦ g = u6 · p(φ, vu) (see (5.11)) into

f1 ◦ g =

(
a b
c d

)
· uv(u4 − v4) = (du− bv)(av − cu)

(
(du− bv)− (av − cu)

)
×(

(du− bv) + (av − cu)
)(
(du− bv) +

√
−1(av − cu)

)(
(du− bv)−

√
−1(av − cu)

)
,

where the six distinct roots are

σ1 ≜
d

b
, σ2 ≜

c

a
, σ3 ≜

c+ d

a+ b
,
c− d

a− b
,
c+

√
−1 d

a+
√
−1 b

,
c−

√
−1 d

a−
√
−1 b

. (5.12)

Note that the denominators of the six roots can never be identically zero, since either of
them being identically zero would imply a6 = ab(a4 − b4) = 0 (the last coordinate in (3.5)),
contradicting that F is linearly full.

Conversely, let F ⊃ C(φ) be any intermediate field of the function field of M . If F
contains the splitting field of (5.11), then we can use the first three roots in (5.12) to solve
for b

a = σ2−σ3
σ3−σ1

so that the curve g :M → CP 3 is given by

[a : b : c : d] = [1 :
b

a
:
c

a
:
d

b
· b
a
] = [1 :

σ2 − σ3
σ3 − σ1

: σ2 : σ1
σ2 − σ3
σ3 − σ1

]. (5.13)

Thus F contains C(φ)(a, b, c, d) = C(M) since g :M → CP 3 is generically injective.
16



We conclude that the covering φ : M → CP 1 is Galois of order d = [C(M) : C(φ)], and
the group of covering transformations of φ is the Galois group Aut(C(M)/C(φ)).

□

For the lift g =

(
a b
c d

)
:M → CP 3 as in Theorem 5.2, to be referred to as a Galois lift

of F , we associate it with two meromorphic functions

x ≜ c/a, w ≜ b/a.

We employ the geometry of the octahedron to study the Galois covering φ.
The quadric Q2 defined in (5.8) is a saddle surface in CP 3 isomorphic to CP 1 × CP 1 by

the parametrization

(
1 w
x wx

)
, where each pair (w, x) determines uniquely a point p ∈ Q2,

through which there passes a unique w-ruling Lw ≜ {(w, x) | x ∈ CP 1}. Let S2 be the
unit 2-sphere centered at the origin in R3, and let C be the complex plane projected onto
by the stereographic projection η : S2 \ {(0, 0, 1)} −→ C, with (0, 0, 1) mapped to ∞. We
identify the regular octahedron in S2 by sending its top and bottom vertices to (0, 0, 1) and
(0, 0,−1), respectively, and identifying the four horizontal vertices with (±1, 0, 0), (0,±1, 0).

It is well-known that the symmetric group S4 is isomorphic to the projective binary
octahedral group, which acts on the regular octahedron as the rotational group of symmetry,
consisting of the identity, 6 quarter turns and 3 half turns around the axes passing through
two opposite vertices (see the 6 blue points in Figure 1), 6 half turns around the axes passing
through two opposite edge centers (see the 12 red points in Figure 1), and 8 one-third turns
around the axes passing through the centers of two opposite faces (see the 8 green points in
Figure 1). The above 26 points (to be called centers in the following) enumerate all points
on the regular octahedron whose stabilizers are nontrivial under the above group action.

Figure 1. Octahedron

Composing the central projection of the regular octahedron on S2 with the stereographic
projection, we can build a one-to-one correspondence between the points on the octahedron
and points on the extended plane C∪{∞}. Under this correspondence, the above 26 centers
turn out to be the roots of the polynomial equation

(w5 − w)(w8 + 14w4 + 1)(w12 − 33w8 − 33w4 + 1) = 0, (5.14)

where we also count w = ∞ as a root. We point out that the above three polynomial
factors take exactly the vertices, edge centers, and face centers as their roots, respectively.
Furthermore, via this correspondence, the symmetric group S4 (isomorphic to the projective
binary octahedral group) acts on the w-rulings of Q2, and is exactly the action of the
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isotropic group in item (1) of Remark (3.2) on

(
1 w
x wx

)
by matrix multiplication on the

right, where the 26 centers are related to the 26 distinct eigenvectors of these isotropy
matrices.

Now, we introduce two important divisors to study the Galois covering (5.9). In the
following, we denote the degree of the covering φ : M → CP 1 by d, and the degree of the
curve g :M → CP 3 by k.

Let Q be the intersection divisor defined by g and the quadric Q2. By Bezout’s theorem,
we have deg(Q) = 2k.

In the following, we say that a hypersurface G = 0 of degree t in CP 6 is generic if
it does not contain the curve F and it cuts out a divisor on F whose support lives in
V = CP 1 \F−1(Q5). Projective normality [32, pp.230-231]) of the rational normal curve F
warrants the existence of generic hypersurfaces.

A generic hyperplane H =
∑6

i=0 ci ai = 0 in CP 6 with coordinates [a0 : · · · : a6] cuts
γ = F (M) in a divisor DH of degree 6 whose support lies in V , while f1 pulls the hyperplane
H = 0 back to a hypersurface of degree 6 in CP 3 that cuts g in a divisor D of degree 6k by
Bezout’s theorem. Since φ|U is a covering map of degree d over V , the divisor D contains

the pullback divisor D0 ≜ φ∗(DH) of degree 6d. Define their difference by F ,

F ≜ D −D0. (5.15)

In the following, we denote the support of a divisor D by SuppD.

Remark 5.2. F is the fixed part of the intersection divisors of g with the hypersurfaces of
degree 6 obtained by the coordinates of f1 given in (3.5), namely,

F = min
0≤i≤6

{g∗(ai ◦ f1)}. (5.16)

Moreover, let G = 0 be a generic hypersurface of degree t in CP 6 not containing the curve
F . Then

g∗(G ◦ f1) = φ∗(F ∗G) + tF . (5.17)

Proposition 5.1. Let F : CP 1 → H3
0 ⊂ CP 6 be a sextic curve not lying in the closed 2-dim

orbit PSL2 · u5v, and g : M → CP 3 be the Galois lift of F in the commutative diagram
(5.9). Then

F ≤ Q. (5.18)

Moreover, for any given p ∈ SuppQ,

(1) if w(p) is not associated with any of the 6 vertices, then ordp(F) = 0 and f1 ◦ g(p)
lies in the 1-dim orbit PSL2 · u6, and

(2) if w(p) is associated with one of the 6 vertices, then ordp(F) > 0 and f1 ◦ g(p) lies
in the 1-dimensional (respectively, 2-dimensional) orbit if and only if ordp(F) <
ordp(Q) (respectively, ordp(F) = ordp(Q)).

Proof. Recall the quadraticQ5 in (3.8). Via f1 in (3.5) we have the remarkable SL2-invariant
identity

Q5 = 2a0a6 − 2a1a5 + 2a2a4 − a23 = (ad− bc)6. (5.19)

Therefore, we derive that the support of F is contained in that of Q, since the former one
can be further determined (see Remark 5.2) by setting the coordinate functions zero, i.e.,

ai ◦ f1 ◦ g = 0, 0 ≤ i ≤ 6. (5.20)
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Suppose that p ∈ SuppQ, i.e., g(p) ∈ Q2. By the action of PSL2 on H3
0, we may assume

g(p) =

(
1 w
0 0

)
. (5.21)

If w(p) is not associated with any of the 6 vertices, i.e., w4 ̸= 0, 1,∞, then let Up be a
chart around p with local coordinate s and s(p) = 0. From (3.5) and ordp(c), ordp(d) ≥ 1,
we obtain 0 = ordp(a6) < min

0≤i≤5
{ordp(ai)}; thus f1 ◦ g(p) = [0 : 0 : 0 : 0 : 0 : 0 : 1] lies in the

1-dimensional orbit PSL2 · u6, whence
ordp(F) = min

0≤i≤6
{ordp(ai)} = ordp(a6) = 0 < ordp(ad− bc) = ordp(Q).

Next, we assume w4 = 0, 1, or ∞. By the action of PSL2 and the isotropy group of u6

(see Remark (3.2)) on H3
0, we may assume that

g(p) =

(
1 0
0 0

)
. (5.22)

Let Up be a chart around p with local coordinate s and s(p) = 0. By (3.5) and the property
ordp(b), ordp(c), ordp(d) ≥ 1 , we obtain that if ordp(d) ≤ ordp(b), then ordp(a5) < ordp(aj)
for any j ̸= 5, so that f1 ◦ g(p) = [0 : 0 : 0 : 0 : 0 : 1 : 0] lies in the open 2-dimensional orbit,
whence

ordp(F) = min
0≤i≤6

{ordp(ai)} = ordp(a5) = ordp(d) = ordp(ad− bc) = ordp(Q) > 0.

On the other hand, if ordp(d) > ordp(b), then ordp(a6) < ordp(ak) for 0 ≤ k ≤ 5, so that
f1 ◦ g(p) = [0 : 0 : 0 : 0 : 0 : 0 : 1] lies in the 1-dimensional orbit to yield

ordp(F) = ordp(a6) = ordp(b) < ordp(ad− bc) = ordp(Q).

In conclusion, f1◦g(p) lies in the open 2-dimensional orbit if and only if ordp(F) = ordp(Q).
□

Corollary 5.1. Assume the same setting as in Proposition 5.1. We have degφ ≤ deg g ≤
3
2 degφ. Moreover,

(1) deg g = degφ if and only if F = 0.
(2) deg g = 3

2 degφ if and only if F = Q.

(3) If degφ = 1, then deg g = 1 so that g(M) is a line in CP 3.

Proof. Counting the degree of both sides of (5.15), by (5.18) we obtain

6 deg g − 6 degφ = deg(F) ≤ deg(Q) = 2 deg g,

which implies degφ ≤ deg g ≤ 3
2 degφ with the equality conditions as asserted in (1) and

(2). In particular, if degφ = 1, then deg g = 1 and g(M) is a line. □

5.3. The Generally Ramified Family.
By Theorem 4.1, a sextic curve γ in H3

0 is ramified in the sense of harmornic sequences at
a point q if and only if the tangent line of γ at q lies in H3

0. An important class of lines in H3
0

is given by the rulings of the tangent developable surface S (i.e., the closed 2-dimensional
PSL2-orbit), which are exactly the tangent lines of the 1-dimensional orbit PSL2 · u6; in
particular, that there is a unique line though q in the 1-dimensional orbit implies that γ is
ramified at q if and only if γ is tangent to the 1-dimensional orbit at q. Our investigation
of various examples and Galois analysis have prompted the following definition.
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Definition 5.1. We say that a sextic curve γ in H3
0 is in the generally ramified family

if γ is ramified (as always, in the sense of harmonic sequences) at the 1-dimensional orbit
PSL2 · u6 somewhere.

Now, we give a characterization of tangency of γ at the 1-dimensional orbit in terms of
intersection divisors. In the following, we denote the intersection multiplicity at a point
q ∈ γ ∩Q5 by ordq(Q5), and we stipulate that ordq(Q5) = +∞ if γ lies in Q5.

Proposition 5.2. Let F : CP 1 → H3
0 be a sextic curve. F is ramified at the 1-dimensional

orbit at q if and only if ordq(Q5) ≥ 4.

We defer the proof of this proposition to that of Proposition 6.1 for the sake of not
interrupting the smoothness of exposition. Immediately we obtain the following.

Corollary 5.2. Let F : CP 1 → H3
0 be a sextic curve. If either the degree of the covering

φ :M → CP 1 in Theorem 5.2 equals 1, or F lives in the closed 2-dimensional PSL2-orbit,
then F belongs to the generally ramified family.

Proof. When F lives in the closed 2-dimensional orbit, the conclusion holds because the
curve intersects the 1-dimensional orbit at a point q by Theorem 5.1, while the fact that
Q5 ≡ 0 on this curve implies ordq(Q5) = +∞.

For the other case, it follows from Corollary 5.1 that the line g(M) cuts Q2 in two points
p1 and p2. Since F = 0, p1 and p2 are mapped to points on the 1-dimensional orbit by
f1 ◦ g, at which there must hold ordpi(Q5) ≥ 6 for i = 1 or 2. Then the conclusion follows
from Proposition 5.2. □

Henceforth, we assume that F does not lie in the closed 2-dimensional orbit.

Lemma 5.1. Consider the Galois covering φ :M → CP 1 with the Galois group G ⊂ S4 in
the same setting as in Theorem 5.2. Given p ∈ SuppQ, denote by multp(φ) the multiplicity

of φ at p, i.e., φ : s 7→ smultp(φ) for a local uniformizing parameter s with s(p) = 0.

(1) If w(p) is not associated with any of the 26 centers of the octahedron,then multp(φ)=1.
(2) If w(p) is associated with one of the 12 edge centers, then multp(φ) = 1 or 2.
(3) If w(p) is associated with one of the 8 face centers, then multp(φ) = 1 or 3.
(4) If w(p) is associated with one of the 6 vertices, then multp(φ) = 1 or 2 or 4.

Proof. Let Gp ≜ {σ ∈ G | σ(p) = p} be the stabilizer of p. Then by [32, Proposition 3.1,
p. 76; Theorem 3.4, p. 78], we have multp(φ) = |Gp|, and Gp is a finite cyclic subgroup
of G, and hence of S4. Since the non-trivial finite cyclic subgroups of S4 are C2, C3, and
C4, we infer 1 ≤ multp(φ) = |Gp| ≤ 4. As said before, Gp is trivial when w(p) does not
correspond to any of the 26 centers of the regular octahedron, from which the conclusion in
(1) follows. Moreover, with respect to the action of S4 on the octahedron, the stabilizer of
the vertex (respectively, edge center, face center) is isomorphic to C4 (respectively, C2, C3),
from which the conclusions in (2) ∼ (4) follow.

□

Now, we provide sufficient conditions for the curve F to belong to the generally ramified
family.

Theorem 5.3. Let F : CP 1 → H3
0 be a sextic curve which is not contained in the closed

2-dimensional PSL2-orbit. If one of the following holds, then F belongs to the generally
ramified family.
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(1) There exists a point p ∈ SuppQ such that w(p) is not associated with any of the 26
centers of the octahedron, i.e., w(p) does not satisfy (5.14).

(2) There exists a point p ∈ SuppQ\SuppF such that either multp(φ) = 1, or ordp(Q) ≥
2 and w(p) is associated with one of the 12 edge centers and 8 face centers.

(3) There exists a point p ∈M such that 0 < ordp(F) < ordp(Q).

Proof. From (5.17) and (5.19), we obtain φ∗(F ∗Q5)+2F = 6Q; hence, for any point p ∈M ,
we have

multp(φ) ordφ(p)(Q5) = 6 ordp(Q)−2 ordp(F) = 6
(
ordp(Q)−ordp(F)

)
+4ordp(F). (5.23)

We will use Proposition 5.1 and Proposition 5.2 to prove this theorem.
The conclusion for condition (1) follows from ordp(Q) > 0 = ordp(F), and item (1) of

Lemma 5.1.
Under condition (2), we have ordp(F) = 0 while

either ordp(Q) ≥ 2 and multp(φ) ≤ 3, or ordp(Q) ≥ 1 and multp(φ) = 1,

where items (2) and (3) of Lemma 5.1 are used. Substituting these into (5.23), we obtain
ordφ(p)(Q5) ≥ 4. Therefore, F is tangent to the 1-dimensional orbit at F ◦ φ(p).

Under condition (3), we have

ordp(F) ≥ 1, ordp(Q)− ordp(F) ≥ 1,

which implies multp(φ) ordφ(p)(Q5) ≥ 10. Note that in this case, multp(φ) = 1, 2, or 4. The
conclusion follows from that the minimal integer of the form in (5.23) is 16 when it is a
multiple of 4 and is ≥ 10. □

In contrast to Definition 5.1, we introduce the following definition.

Definition 5.2. If a sextic curve in H3
0 is not tangent to the 1-dimensional orbit PSL2 ·u6,

then we say that it lies in the exceptional transversal family.

By Lemma 5.1 and Theorem 5.3, we obtain the following necessary conditions for the
exceptional transversal family.

Proposition 5.3. Let F : CP 1 → H3
0 be a sextic curve that belongs to the exceptional

transversal family. Then for any point p ∈ SuppQ, there holds that w(p) corresponds to
one of the 26 centers of the octahedron. Moreover,

(1) SuppF = SuppQ if and only if F = Q, and
(2) for any given p ∈ SuppQ\ SuppF , we have ordp(Q) = 1, and w(p) is either one of

the 12 edge centers, for which

multp(φ) = 2, ordφ(p)(Q5) = 3,

or one of the 8 face centers, for which

multp(φ) = 3, ordφ(p)(Q5) = 2.

Note that for points in item (2) of the preceding proposition, F intersects the 1-dimensional
orbit PSL2 · u6 at f1 ◦ g(p) transversally.
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5.4. The Exceptional Transversal Family.
We now look at the exceptional transversal family in a unified fashion.
Let G be the group of covering transformations of φ : M → CP 1 in the same setting

as in Theorem 5.2. As a subgroup of S4, the Galois group G can only be one of the
following subgroups: the trivial group, the cyclic groups Ci, 2 ≤ i ≤ 4, the dihedral groups
Dj , 2 ≤ j ≤ 4, the alternating group A4, and S4 itself.

When M = CP 1, the above Galois coverings were classified by Klein [29] as given in
Table 1 below.

G Ci Dj A4 S4

φ(s) si sj − 2 + s−j (s3−1)3

s3(s3+8)3
(s8+14s4+1)3

(s(s4−1))4

Table 1. Rational Galois Coverings

Given a sextic curve belonging to the exceptional transversal family, we label the points
of intersection of this curve and the 1-dimensional orbit as points of type I, and the points
of intersection of this curve and the open 2-dimensional orbit as points of type II.

Let q be a point of type I. For each ramified point p over q = φ(p), it follows from
Proposition 5.3 that ordp(Q) = 1, and

either multp(φ) = 2 and ordq(Q5) = 3, or multp(φ) = 3 and ordq(Q5) = 2.

Let Σ1 and Σ2 be the number of points assuming ordq(Q5) = 2 and 3, respectively. Then

l ≜ 2Σ1 + 3Σ2 (5.24)

satisfies 0 ≤ l ≤ 12. It is easy to verify that the total Q-degree for type I is

(degφ/3)Σ1 + (degφ/2)Σ2 = l degφ/6, (5.25)

where degφ/3 (respectively, degφ/2) is the number of ramified points p over q with multp(φ) =
3 (respectively, multp(φ) = 2) [32, Lemma 3.6, p. 80].

Let q be a point of type II. For each ramified point p over q, it follows from Proposition 5.3
and (5.23) that 4 ordp(Q) = multp(φ) ordq(Q5), which implies that the total Q-degree over
q is ∑

p∈φ−1(q)

ordp(Q) =
∑

p∈φ−1(q)

multp(φ) ordq(Q5)/4 = degφ ordq(Q5)/4. (5.26)

Therefore the total Q-degree for type II is∑
q of type II

degφ ordq(Q5)/4 =

 ∑
q of type II

ordq(Q5)

 degφ/4 = (12− l) degφ/4. (5.27)

Hence
2 deg(g) = deg(Q) = l degφ/6 + (12− l) degφ/4 = (36− l) degφ/12,

which implies deg g = (36− l) degφ/24.
To illustrate, consider degφ = 2, for which deg g = (36− l) degφ/24 gives l = 0 or 12.
If l = 0 then deg g = 3; all points q of SuppQ live in the 2-dimensional orbit PSL2 · u5v.

We seek to find examples where the genus of M is zero. The Riemann-Hurwitz formula
dictates that there be exactly two points q1 and q2 of type II over each of which there sits
a single ramified point p1 and p2, respectively, with ramification index 1 (multpi(φ) = 2),
so that the formula 4 ordp(Q) = multp(φ) ordq(Q5) gives that multqi(Q5) are multiples of 2.
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There may exist other points q3, · · · , qm of type II over each of which there sit two ramified
points pj1 and pj2, 3 ≤ j ≤ m, each with ramification index 0 (multpjk(φ) = 1) so that
ordqj (Q5) is a multiple of 4 for 3 ≤ j ≤ m. In the most generic situation, ordqi(Q5) = 2 for
i = 1, 2 and ordqj (Q5) = 4 for 3 ≤ j ≤ m, for which we have the constraint

12 = 2 + 2 + 4(m− 2), so m = 4.

In other words, there are four points q1, · · · , q4 of type II, where the Galois covering is
unramified over q3 and q4.

Indeed, up to a PSL2-transformation on the left and an isotropy group action on the
right of the Galois lift, a detailed Galois analysis, which we will report elsewhere, proves
that this is the only possibility with the Galois lift g(s) given by

g = [1 : w : x : yw],

x = −
√
−1(t2 − 1)/((−t+

√
−1)s2 + t3 −

√
−1), y = (−

√
−1t2 +

√
−1s2 − ts2 + t)/(t3 − t),

w = (t3 − t)/(s((−t+
√
−1)s2 + t3 −

√
−1)),

whenever t is not a zero of a certain polynomial of a large degree which we do not record
here. The Galois covering φ is z = s2 corresponding to the group C2, q1 and q2 are z = 0
and z = ∞, and q3 and q4 are z = 1 and z = t4.

If l = 12 then deg g = degφ = 2. Since γ is in the exceptional transversal family, each
point q of type I has ordq(Q5) = 3 (since multp(φ) = 2 as degφ = 2). As a result, there
are four points q1, · · · , q4 of type I over each of which there sits a single ramified point
p1, · · · , p4, respectively, each with ramification index 1. The Riemann-Hurwitz formula
implies that there do not exist any such Galois lifts g with genus zero.

Suffices it to say that a detailed Galois analysis proves that when deg g = degφ = 2,
there are two 1-parameter classes of Galois lifts in the generally ramified family.

As another example, let us find a procedure to determine the structure of M with genus
zero, for which the Riemann-Hurwitz formula gives

−2 ≥ −2 degφ+ 2(degφ/3)Σ1 + (degφ/2)Σ2,

so that (2Σ1/3+Σ2/2−2) degφ ≤ −2 from which we determine, since 2Σ1/3+Σ2/2−2 < 0,
an even l to make sure deg g = (36− l) degφ/24 is an integer, which comes down to

(l,Σ1,Σ2) = (8, 1, 2), (6, 0, 2), (4, 2, 0), (2, 1, 0).

If we set degφ ≥ 4, then (2Σ1/3 + Σ2/2 − 2) degφ ≤ −2 gives 2Σ1/3 + Σ2/2 ≤ 3/2, from
which we narrow it down to

(l,Σ1,Σ2) = (8, 1, 2), (6, 0, 2), (2, 1, 0).

We choose (8, 1, 2) to find an example. Since l = 8 for group 1, whose structural constants
ordq(Q5) and ordp(φ) are known to leave the relatively small number 4 for group 2, we
calculate

(l,degφ,deg g) = (8, 4, 6), (8, 6, 7), (8, 12, 14), (8, 24, 28).

If we seek to find an example with an irreducible p(z, x) so that degφ ≥ 6, we should start
with (8, 6, 7), where the genus of M is zero.

In more details, since Σ1 = 1 and Σ2 = 2, we have three points q1, q2, q3 of type I
such that ordq1(Q5) = 2 and ordq2(Q5) = ordq3(Q5) = 3, where each ramified point p1j
sitting over q1 has multp1j (φ) = 3 while each ramified point p2l, p3s over q2 and q3 has
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multp2l(φ) = multp3s(φ) = 2. Therefore, there are two ramified points over q1 and three
ramified points over each of q2 and q3.

Switching to the points of type II, since

−2 degφ+ (2 degφ/3)Σ1 + (degφ/2)Σ2 = −2

already verifies the Riemann-Hurwitz formula, we see that all points of type II are unrami-
fied. We have at most 4 such kind of points. To make (5.26) an integer, for such a point q̃
in the formula, there must hold ordq̃(Q5) ≥ 4 since multp̃(φ) = 1 for each ramified point p̃
over q̃. But then this means that q̃ is the only such kind of point since the total Q5-degree
for type II is 4. Therefore, there are six ramified points sitting over q̃ each with ramification
index 0.

Indeed, a detailed Galois analysis in the case of genus zero proves that this is the only
possibility (up to left PSL2 and right isotropy actions):

g = [a : b : c : d],

a = ((
√
3
√
−1−

√
−1− (1 +

√
−1)b3s

4)
√
2)/2− (((−1 +

√
−1)b3

√
3− 2s4 + (1−

√
−1)b3)s

3)/2,

b = ((((−1 +
√
−1)

√
3 + 2

√
−1b3s

4 − 1 +
√
−1)

√
2− 2(−b3

√
3 + (1 +

√
−1)s4 − b3)s

3)/(2 + 2
√
3),

c = −(((1−
√
−1) + (1 +

√
−1)(s2 + d3)s

3
√
2 + (1−

√
−1)(−d3s2 + 1)

√
3 + (1−

√
−1)d3s

2)s)/2,

d = −((((s2 − d3)
√
3 + s2 + d3)s

3
√
2
√
−1− 2d3s

2 − 2)s)/2, where,

b3 = (−1/6−
√
−1/6)(

√
−6t6 +

√
3d3t

3 − 3d3t
3 +

√
−6)

√
3/t3,

d3 = −(
√
−6t5 −

√
−2t5 + 2)/[t2(

√
−6t−

√
−2t+ 2

√
3− 4)].

Moreover, q1 corresponds to z = ∞, q2 corresponds to z = 0, q3 corresponds to z = −4, and
q̃ corresponds to z = t3 − 2 + 1/t3. No Galois lifts with k = 6, 8, 9 exist. Here, the Galois
covering φ is z = s3 − 2 + 1/s3 with the Dihedral group D3.

To end this subsection, due to its length, we only summarize our classification of Galois
covering when M = CP 1 in Table 2 below.

degφ G deg g
Dimension of the Moduli Spaces

Generally Ramified Family Exceptional Transversal Family

2 C2
2 1 ∅
3 ∅ 1

3 C3
3 1 ∅
4 ∅ 1

4
C4

4, 6 ∅ ∅
5 2 ∅

D2
4, 6 ∅ ∅
5 2 1

6 D3
6, 8, 9 ∅ ∅

7 ∅ 1

8 D4

8, 10, 12 ∅ ∅
9 1 ∅
11 ∅ 1

12 A4

12, 14, 16 ∼ 18 ∅ ∅
13 1 ∅
15 0 ∅

24 S4

24, 26 ∼ 28, 30, 32 ∼ 36 ∅ ∅
25 2 ∅
29 1 ∅
31 ∅ 1

Table 2. Classification of Rational Galois Coverings.
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In particular, there are at most finitely many constantly curved sextic curves ⊂ H3
0 on

the list that belong to the exceptional transversal family, by checking total unramification
encountered in Section 4. In view of the above examples and classification, it is tempting to
suggest that a constantly curved holomorphic 2-sphere in G(2, 5), which differs from a sextic
curve in the exceptional transversal family by a GL(5,C)-automorphism, be nongeneric
among all constantly curved holomorphic 2-spheres of degree 6.

On the other hand, the situation in the generally ramified family is clear-cut. We will
show in the next section that a constantly curved holomorphic 2-sphere of degree 6 in
G(2, 5), which differs from a sextic curve γ in the generally ramified family by a GL(5,C)-
transformation, is such that the 6-plane L it spans in CP 9 differs from that spanned by the
standard Veronese curve (1.1) only by a diagonal matrix in GL(5,C).

6. Generally ramified holomorphic 2-spheres of degree 6 in G(2, 5)

Thanks to the discussion in Section 5, we say that a holomorphic 2-sphere of degree 6 in
G(2, 5) is generally ramified if it is projectively equivalent to a sextic curve in H3

0 belonging
to the generally ramified family. In this section, we will first give a useful parameterization
to such kind of 2-spheres, then employ it to investigate such 2-spheres of constant curvature.
We will show that a generally ramified constantly curved holomorphic 2-sphere of degree
6 can only live in the Fano 3-folds H3 that differ from the standard H3

0 by a diagonal
transformation in GL(5,C5), up to U(5)-equivalence.

Definition 6.1. By the diagonal family we mean constantly curved holomorphic 2-spheres
of degree 6 in G(2, 5) parameterized as follows:

diag(a00, · · · , a44) · (E0, E1, . . . , E6) diag{ω0, ω1, . . . , ω6}Z6(z), (6.1)

where {E0, . . . , E6} is the orthonormal basis of V6 defined in (3.3), and Z6(z) is the Veronese
2-sphere in (2.8).

The following is the main result of this section.

Theorem 6.1. Let γ : CP 1 → G(2, 5) be a generally ramified holomorphic 2-sphere of
degree 6. If γ is of constant curvature, then γ belongs the the diagonal family.

6.1. Sextic curves in H3
0 ramified at the 1-dimensional orbit.

Proposition 6.1. Let γ : CP 1 → H3
0 be a sextic curve, and let p be a point of the 1-

dimensional orbit.
(1) γ is ramified at p, if and only if, up to a transformation in SL(2,C), γ can be parame-
terized as

γ(z) = L
(
1 z z2 · · · z6,

)t
, where (6.2)

L =



L00 L01 L02 0 0 0 0
L10 L11 L12 0 0 0 0
L20 L21 L22 L23 0 0 0
L30 L31 L32 L33 L34 0 0
L40 L41 L42 L43 L44 0 0
L50 L51 L52 L53 L54 L55 0
L60 L61 L62 L63 L64 L65 1


, (6.3)

if and only if, the vanishing order of Q5 restricted on γ at p is no less than 4.
(2) γ is ramified at p with multiplicity no less than 2, if and only if, one of L02, L23, L34 in
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(6.3) vanishes, if and only if, L is lower-triangular, if and only if, the vanishing order of Q5

restricted on γ at p is no less than 6.

Proof. If γ can be parameterized as (6.2) with L taking the form of (6.3), then it is easily
checked that γ is ramified at p, which has multiplicity 2 if L is lower-triangular.

Next, we use the transvectant characterization of H3
0 to prove the reverse part. Choose

a coordinate z on CP 1 such that γ(∞) = p. Note that by applying a transformation
in SL(2, C), we can assume p = v6. Let {l0, l1, · · · , l6} be the columns of L, and set

Lij =
∂6lj

∂viu6−i . Then we have

γ =
6∑

j=0

zjlj , l6 = v6.

Assume γ is ramified at p. By Theorem 4.1, we know the line spanned by l6 and l5 lies in
H3

0. It is well-known that the only line passing through v6 is given by v6 + tuv5. Therefore,
we have l5 = αv6 + βuv5, with β ̸= 0.

In terms of the transvectant characterization (see Proposition 3.1), γ lying in H3
0 is

equivalent to saying (γ, γ)4 = 0, which implies, for any 0 ≤ j ≤ 12, that we have∑
r+s=j

(lr, ls)4 = 0. (6.4)

In the following, we use the symbol ”∗” to denote some unimportant nonzero constants.
Take j = 10 in (6.4). Since (l5, l5)4 = 0, we have

0 = (l6, l4)4 = ∗ ∂
4l6
∂v4

∂4l4
∂u4

= ∗ v2∂
4l4
∂u4

.

It follows that ∂4l4
∂u4 = 0.

Taking j = 9 in (6.4), we have

0 = (l5, l4)4 + (l6, l3)4 = β(uv5, l4)4 + (l6, l3)4 = ∗ v2 ∂4l4
∂u3∂v

+ ∗ v2∂
4l3
∂u4

,

where we have used ∂4l4
∂u4 = 0. It follows that ∂5l3

∂u5 = ∗ ∂5l4
∂u4∂v

= 0.
From

l6 = v6, l5 = αv6 + βuv5,
∂4l4
∂u4

= 0,
∂5l3
∂u5

= 0, (6.5)

we can derive that L takes the form as in (6.3).
To calculate the vanishing order of Q5|γ at p, we use the the transvectant characterization

Q5|γ = (γ, γ)6 =

12∑
j=0

zj
∑

r+s=j

(lj , lk)6. (6.6)

It follows from (6.5) that

(l6, l5)6 = 0, (l6, l4)6 = ∗ ∂
6l4
∂u6

= 0, (l6, l3)6 = ∗ ∂
6l3
∂u6

= 0, (l5, l5)6 = 0, (l5, l4)6 = ∗ ∂6l4
∂u5∂v

= 0.

Therefore, we have deg(Q5|γ) ≤ 8, which implies the vanishing order of Q5|γ at γ(∞) = p
is no less than 4.
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Conversely, assume the vanishing order of Q5|γ at γ(∞) = p is no less than 4. Then we
have

2(l6, l4)6 + (l5, l5)6 = 0, (6.7)

2(l6, l4)4 + (l5, l5)4 = 0, (6.8)

(l6, l3)4 + (l5, l4)4 = 0, (6.9)

(l6, l3)6 + (l5, l4)6 = 0. (6.10)

It follows from (l6, l5)4 = 0 that ∂4l5
∂u4 = 0. By comparing (6.7) with the second derivative

with respect to u on (6.8), it is easy to derive ∂3l5
∂u3 = 0. Then substituting this into the

first derivative with respect to u of (6.8), we obtain ∂5l4
∂u5 = 0. By comparing (6.9) with the

second derivative with respect to u of (6.10), it is easy to derive ∂6l3
∂u6 = 0. Substituting this

into (6.9) and combining (6.8), we have ∂2l5
∂u2 = 0 and ∂4l4

∂u4 = 0. Finally, by taking the second

derivative with respect to u on both sides of 0 = 2(l5, l3)4 + (l4, l4)4, we derive ∂5l3
∂u5 = 0.

Therefore L has the form of (6.3), and is ramified at p.
In fact, that the multiplicity of γ at the ramification point p is no less than 2 can be

characterized by one more equation that (l5, l4)4 = 0. It follows from ∂4l4
∂u4 = 0 that

(l5, l4)4 = (uv5, l4)4 = ∗ ∂4l4
∂u3∂v

.

Therefore, that γ is ramified at p with multiplicity no less than 2 is equivalent to saying

that L takes the form as in (6.3) and ∂3l4
∂u3 = 0, i.e., L34 = 0.

Taking j = 9 in (6.4), we have

−(l5, l4)4 = (l6, l3)4 = ∗ v2∂
4l3
∂u4

.

Therefore, ∂3l4
∂u3 = 0 is equivalent to ∂4l3

∂u4 = 0, i.e., L23 = 0 in (6.3).
Choosing j = 8 in (6.4), it follows from (6.5) that

0 =2(l6, l2)4 + 2(l5, l3)4 + (l4, l4)4

= ∗ v2∂
4l2
∂u4

+ ∗ v2 ∂4l3
∂u3∂v

+ ∗uv∂
4l3
∂u4

+ ∗ ∂4l4
∂u3∂v

∂4l4
∂u∂v3

+ ∗ ∂4l4
∂u2∂v2

∂4l4
∂u2∂v2

.
(6.11)

Taking the second partial derivative with respect to u on both sides, we obtain ∂6l2
∂u6 = ∗L2

23,
which implies that L23 = 0 is equivalent to L02 = 0.

Next, we prove that L34 = 0 if and only if L is lower-triangular, i.e., that the following
equations hold,

l6 = v6, l5 = αv6 + βuv5,
∂3l4
∂u3

= 0,
∂4l3
∂u4

= 0,
∂5l2
∂u5

= 0,
∂6l1
∂u6

= 0. (6.12)

Note that only the last two equations need to be verified. The second to last follows from
taking the partial derivative with respect to u on both sides of (6.11). Taking j = 7 in (6.4),
we have

0 = (l6, l1)4 + (l5, l2)4 + (l4, l3)4

= ∗ v2∂
4l1
∂u4

+ ∗ v2∂
4l2
∂u4

+ ∗ v2 ∂4l2
∂u3∂v

+ ∗ ∂4l4
∂u2∂v2

∂4l3
∂u2∂v2

+ ∗ ∂4l3
∂u3∂v

∂4l4
∂u∂v3

.
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The second partial derivative with respect to u on both sides implies that ∂6l1
∂u6 = 0.

Similar to the discussion in the first part, we can derive that the vanishing order of Q5|γ
at γ(∞) = p is no less than 6, and the reverse part is also true. □

The following technical lemma entailing ramification will be used in the proof of Theo-
rem 6.1. It characterizes when the lower-triangular matrix L is diagonal.

Lemma 6.1. Let γ(z) = LZ6(z) be a rational normal curve of degree 6 in H3
0, with L being

lower-triangular and L21 = 0. If γ(z) is also ramified at z = 0 with multiplicity no less than
2, then γ(0) lies in the closed 2-dimensional orbit. Moreover, the following are equivalent.

(1) L is diagonal. (2) γ(0) lies in the 1-dimensional orbit. (3) L10 = 0. (4) L65 = 0.

Proof. We continue to use the notation given in the proof of the preceding proposition.

Write ai =
6∑

j=0

√(
6
j

)
Lijz

j , 0 ≤ i ≤ 6. Then L is lower-triangular if and only if deg ai =

i, 0 ≤ i ≤ 6. Note that [a0 : a1 : · · · : a6] is exactly the coordinates of γ, and a0 is a
constant. This implies that a4, a5 and a6 can be solved as polynomials of a1, a2 and a3 as
in (5.2).

By the first equation of (5.2) and L21 = 0, we obtain

L41 =

√
2(L10L31 + L11L30)

L00
, L42 =

1

L00
(
√
2L10L32 +

6
√
2√

15
L11L31 −

6√
15
L20L22). (6.13)

Assume γ is also ramified at z = 0 with multiplicity no less than 2. Then we have

0 = (l1, l1)4 = ∗ ∂
4l1
∂u4

∂4l1
∂v4

+ ∗ ∂4l1
∂u3∂v

∂4l1
∂u∂v3

+ ∗ ∂4l1
∂u2∂v2

∂4l1
∂u2∂v2

, (6.14)

0 = (l1, l2)4 = ∗ ∂
4l1
∂u4

∂4l2
∂v4

+ ∗ ∂4l1
∂u3∂v

∂4l2
∂u∂v3

+ ∗ ∂4l1
∂u2∂v2

∂4l2
∂u2∂v2

+ ∗ ∂4l1
∂u∂v3

∂4l2
∂u3∂v

+ ∗ ∂
4l1
∂v4

∂4l2
∂u4

.

(6.15)

Taking the fourth partial derivative with respect to u on (6.14), it follows from ∂6l1
∂u5∂v

=

L11 ̸= 0 that L31 =
∂6l1

∂u3∂v3
= 0. Then considering the fourth partial derivative with respect

to v on (6.14), we obtain L41 = ∂6l1
∂u2∂v4

= 0. Substituting these into the first equation of
(6.13), we have L30 = 0.

Taking the fourth partial derivative with respect to u on (6.15), it follows from ∂6l1
∂u4∂v2

=

L21 = 0 and ∂6l1
∂u3∂v3

= L31 = 0 that L32 = ∂6l2
∂u3∂v3

= 0. Then considering the first partial
derivative with respect to v followed by the third partial derivative with respect to u on

(6.15), we obtain that L42 = ∂6l2
∂u2∂v4

= 0. Substituting these into the second equation of
(6.13), we have L20 = 0. Thus, we have proved that

L20 = 0, L21 = 0, L30 = 0, L31 = 0, L32 = 0,

which implies that the vanishing order of a2 and a3 at z = 0 satisfy

ord(a2) ≥ 2, ord(a3) ≥ 3. (6.16)

It follows from (5.2) that

ord(a4) ≥ 3, ord(a5) ≥ 3, ord(a6) ≥ 5.

It also follows that the ramified point γ(0) = u5(L00u +
√
6L10v) lies in the closed 2-

dimensional orbit.
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Note that γ(0) lies in the 1-dim orbit if and only if L10 = 0, i.e.,

ord(a1) ≥ 1, (6.17)

which is equivalent to one of the following inequalities

ord(a4) ≥ 4, ord(a5) ≥ 5, ord(a6) ≥ 6, (6.18)

where (5.2) and (6.16) are used. Note also that one of the seven inequalities in (6.16) ∼
(6.18) becomes an equality if and only if all of them do, if and only if L is diagonal. This
finishes the proof. □
6.2. Necessary conditions for generally ramified holomorphic 2-spheres to be of
constant curvature.

Let γ : CP 1 → G(2, 5) be a generally ramified holomorphic 2-sphere of degree 6. By
definition and Proposition 6.1, γ can be parametrized as

γ = A · (E0, E1, E2, E3, E4, E5, E6) LZ6(z), (6.19)

where A ∈ GL(5,C), L is in the form of (6.3), and Z6(z) =
(
1

√
6z · · · z6

)T
, with z be-

ing the standard parameter for the condition of constant curvature. Note that up to an isom-
etry of G(2, 5), i.e., a U(5)-transformation, we may assume that A is lower-triangular. Then,

by the definition of ∧2-action, it follows from (3.3) that C ≜ A · (E0, E1, E2, E3, E4, E5, E6)
is of the form

C =



C00 0 0 0 0 0 0
C10 C11 0 0 0 0 0
C20 C21 C22 0 0 0 0
C30 C31 C32 C33 0 0 0
C40 C41 C42 0 0 0 0
C50 C51 C52 C53 0 0 0
C60 C61 C62 C63 C64 0 0
C70 C71 C72 C73 C74 0 0
C80 C81 C82 C83 C84 C85 0
C90 C91 C92 C93 C94 C95 C96

 , (6.20)

which is a 10× 7 matrix obtained by column vectors A ·Ek written relative to the standard
basis ei ∧ ej , 0 ≤ i < j ≤ 4, in the lexicographic order. We point out that Cij are quadratic
in terms of the entries of A. The following lemma is important.

Lemma 6.2. Let G be a 10×7 matrix of rank 7 in the same form as on the right-hand side
of (6.20) with G33G53G64G74 ̸= 0, and let the column vectors of G be mutually orthogonal.

If the holomorphic 2-sphere γ(z) ≜ GZ6(z) lies in a generic linear section of G(2, 5), then
G is in the form 

G00 0 0 0 0 0 0
0 G11 0 0 0 0 0
0 0 G22 0 0 0 0
0 0 0 G33 0 0 0
0 0 G42 0 0 0 0
0 0 0 G53 0 0 0
0 0 0 0 G64 0 0
0 0 0 0 G74 0 0
0 0 0 0 0 G85 0
0 0 0 0 0 0 G96

 , (6.21)

where γ is ramified at z = 0 and z = ∞ with multiplicities at least 2.

Proof. If (6.21) holds, then the last statement follows from

γ′(0) = e0 ∧ e2 ∈ G(2, 5), γ′′(0) = G22e0 ∧ e3 +G42e1 ∧ e2, γ′(0) ∧ γ′′(0) = 0,

γ′(∞) = e2 ∧ e4 ∈ G(2, 5), γ′′(∞) = G64e1 ∧ e4 +G74e2 ∧ e3, γ′(∞) ∧ γ′′(∞) = 0.
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Hence, we need only prove (6.21) in the following. Since the first five columns of G are
perpendicular to the last two, we have

γ(z) =



G00 0 0 0 0 0 0
G10 G11 0 0 0 0 0
G20 G21 G22 0 0 0 0
G30 G31 G32 G33 0 0 0
G40 G41 G42 0 0 0 0
G50 G51 G52 G53 0 0 0
G60 G61 G62 G63 G64 0 0
G70 G71 G72 G73 G74 0 0
0 0 0 0 0 G85 0
0 0 0 0 0 0 G96




1√
6z√

15z2

2
√
5z3√

15z4√
6z5

z6

 .

We denote by {γj | j = 0, . . . , 9} the coordinates of γ. Then it is easy to see

deg(γ0) = 0, deg(γ1) ≤ 1, deg(γ2) ≤ 2, deg(γ3) ≤ 3, deg(γ4) ≤ 2,

deg(γ5) ≤ 3, deg(γ6) ≤ 4, deg(γ7) ≤ 4, deg(γ8) = 5, deg(γ9) = 6.

It follows from γ ⊂ G(2, 5) that

γ2γ4 − γ1γ5 + γ0γ7 = 0, (6.22)

γ3γ4 − γ1γ6 + γ0γ8 = 0, (6.23)

γ3γ5 − γ2γ6 + γ0γ9 = 0, (6.24)

γ3γ7 − γ2γ8 + γ1γ9 = 0, (6.25)

γ6γ7 − γ5γ8 + γ4γ9 = 0. (6.26)

Moreover, γi ̸= 0, i = 0 . . . , 9, since γ lies in a generic linear section. Meanwhile, by the

orthogonality of {Gj | j = 0, . . . , 6}, we obtain |Gj |2
√(

6
j

)
zj = ⟨γ,Gj⟩ =

∑9
k=0Gkjγk, so that

G64γ6 +G74γ7 = |G4|2
√
15z4, (6.27)

G33γ3 +G53γ5 +G63γ6 +G73γ7 = |G3|2
√
20z3. (6.28)

In the following, we will use the assumption G33G53G64G74 ̸= 0. Observe that γ8 = G85z
5

and γ9 = G96z
6. As a polynomial of z, we denote by m(γj) the order of γj at z = 0.

Combining (6.30) and G64G74 ̸= 0, and using deg(γ6) = deg(γ7) = 4, it yields 0 ≤
m(γ6) = m(γ7) ≤ 4. Meanwhile (6.26) gives z5|γ6γ7, which implies 5 ≤ m(γ6) +m(γ7). It
follows that m(γ6) = m(γ7) ≥ 3. Moreover, we obtain z5 | γ3γ7 in accord with (6.25).

Claim 1. γ6 = G64z
4 and γ7 = G74z

4.
Otherwise, we assume m(γ7) = 3. Then 2 ≤ m(γ3) ≤ 3 and m(γ6) = 3. Using (6.28), we

have m(γ5) ≥ 2, which implies z4 | (γ3γ5 + γ0γ9). It follows from (6.24) that z4 | γ2γ6. As a
result, m(γ2) ≥ 1, and z6 | (γ2γ8 − γ1γ9). Next, (6.25) yields z

6 | γ3γ7, and then m(γ3) = 3.
Using (6.28) again, we obtain m(γ5) ≥ 3. Coupled with (6.24), z6 | γ2γ6 can be deduced.
Consequently, m(γ2) ≥ 3, which contradicts deg(γ2) ≤ 2. Hence the claim follows from the
degrees of γ6 and γ7.

Now that we have z4 | (γ1γ6−γ0γ8), it follows from (6.23) that z4 | γ3γ4. Since deg(γ4) =
2, there follows m(γ3) ≥ 2.

Claim 2. γ3 = G33z
3.

Otherwise, we assume m(γ3) = 2. Then m(γ4) = 2. Hence z8 | (γ4γ9 + γ6γ7), and
z8 | γ5γ8, from which we can derive that m(γ5) ≥ 3. Using (6.28) again, there yields that
m(γ3) ≥ 3 (by G33 ̸= 0), which contradicts the assumption. Therefore m(γ3) = 3 and the
Claim 2 follows from deg(γ3) = 3.

Now, γ5 = G53z
3 follows from (6.28) and deg(γ5) = 3.

Using (6.26), we obtain z8 | γ4γ9. Hence γ4 = G42z
2 by deg(γ4) = 2.
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From (6.24), we have z6 | γ2γ6. Therefore, γ2 = G22z
2 due to that deg(γ2) = 2.

Lastly, it follows from (6.25) that z7 | γ1γ9. So γ1 = G11z, as deg(γ1) = 1. □

The method used in the proof of the above lemma can be generalized to prove the following
important proposition.

Proposition 6.2. Let γ : CP 1 → G(2, 5) be a generally ramified holomorphic 2-sphere of
degree 6 parametrized by (6.19). If γ is of constant curvature, then L is lower-triangular.

Proof. To show that L is lower-triangular, it follows from Proposition 6.1 that we need only
prove that one of L02, L23, L34 vanishes.

Suppose that in the following L02L23L34 ̸= 0. Similarly as before, we assume that A is a
lower-triangular matrix. Then G ≜ A · (E0, . . . , E6)L is a 10× 7 matrix with orthonormal
columns and takes the following form

G =



G00 G01 G02 0 0 0 0
G10 G11 G12 0 0 0 0
G20 G21 G22 G23 0 0 0
G30 G31 G32 G33 G34 0 0
G40 G41 G42 G43 0 0 0
G50 G51 G52 G53 G54 0 0
G60 G61 G62 G63 G64 0 0
G70 G71 G72 G73 G74 0 0
G80 G81 G82 G83 G84 G85 0
G90 G91 G92 G93 G94 G95 G96

 , G02G23G43G34G54 ̸= 0, (6.29)

where the inequality comes from the product of diagonal entries of A and L02L23L34.
Since the first five columns of G are perpendicular to the last two, we have

γ(z) = GZ6(z) =



G00 G01 G02 0 0 0 0
G10 G11 G12 0 0 0 0
G20 G21 G22 G23 0 0 0
G30 G31 G32 G33 G34 0 0
G40 G41 G42 G43 0 0 0
G50 G51 G52 G53 G54 0 0
G60 G61 G62 G63 G64 0 0
G70 G71 G72 G73 G74 0 0
0 0 0 0 0 G85 0
0 0 0 0 0 0 G96




1√
6z√

15z2

2
√
5z3√

15z4√
6z5

z6

 .

We denote by {γj | j = 0, . . . , 9} the coordinates of γ. Then it is easy to see

deg(γ0) ≤ 2, deg(γ1) ≤ 2, deg(γ2) ≤ 3, deg(γ3) ≤ 4, deg(γ4) ≤ 3,

deg(γ5) ≤ 4, deg(γ6) ≤ 4, deg(γ7) ≤ 4, deg(γ8) = 5, deg(γ9) = 6,

satisfying (6.22) through (6.26). The same constraint between (6.26) and (6.30) gives

G00γ0 +G10γ1 +G20γ2 +G30γ3 +G40γ4 +G50γ5 +G60γ6 +G70γ7 = |G0|2, (6.30)

G23γ2 +G33γ3 +G43γ4 +G53γ5 +G63γ6 +G73γ7 = |G3|2
√
20z3, (6.31)

G34γ3 +G54γ5 +G64γ6 +G74γ7 = |G4|2
√
15z4. (6.32)

As a polynomial of z, we denote by m(γj) the order of γj at z = 0.
Since γ3 = p04(F ), γ6 = p14(F ), we have that γ3 and γ6 are linearly independent (since F

lies in a generic linear section). Hence combining this with deg(γ3),deg(γ6) ≤ 4, we deduce

k ≜ min{m(γ3),m(γ6)} ≤ 3. (6.33)

It follows from m(γ8) = 5 and m(γ9) = 6, (6.25) and (6.26), that 5 ≤ m(γ3γ7),m(γ6γ7).
Since deg γ7 ≤ 4, by (6.33), we obtain 1 ≤ k ≤ 3, 2 ≤ m(γ7), while (6.32) and G54 ̸= 0
yields

m(γ5) ≥ min{k,m(γ7)} ≥ 1. (6.34)
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Using (6.22) and (6.31), we arrive at

m(G23γ2 +G43γ4) ≥ min{k,m(γ7)} ≥ 1, (6.35)

m(γ2γ4) ≥ min{k,m(γ7)} ≥ 1. (6.36)

We claim that

m(γ2) ≥ [
min{k,m(γ7)}+ 1

2
] ≥ 1, m(γ4) ≥ [

min{k,m(γ7)}+ 1

2
] ≥ 1. (6.37)

Indeed, if m(γ2) = m(γ4), then the claim follows from (6.36). If m(γ2) ̸= m(γ4), then by
G23G43 ̸= 0 and (6.35), we obtain that

min{m(γ2),m(γ4)} = m(G23γ2 +G43γ4) ≥ min{k,m(γ7)} ≥ [
min{k,m(γ7)}+ 1

2
].

This proves our claim. Next, from (6.25), (6.26) and (6.34) we derive (because min{k,m(γ7)} ≥
1) that

m(γ3γ7) ≥ min{5 + [
min{k,m(γ7)}+ 1

2
], 6} ≥ 6,

m(γ6γ7) ≥ min{5 + min{k,m(γ7)}, [
min{k,m(γ7)}+ 1

2
] + 6} ≥ 6.

(6.38)

Since 1 ≤ k = min{deg γ3,deg γ6} ≤ 3, deg γ7 ≤ 4, we must have 2 ≤ m(γ3),m(γ6) and
3 ≤ m(γ7); hence

2 ≤ k ≤ 3, 3 ≤ m(γ7) ≤ 4. (6.39)

Now, we divide the discussion according to m(γ7).
Case 1: Assume that m(γ7) = 3. Then min{k,m(γ7)} = k ≥ 2, so that (6.38) implies

m(γ3γ7) ≥ 6, 7 ≥ deg γ6 +m(γ7) ≥ m(γ6γ7) ≥ 7;

hence, k = 2, m(γ6) = 4, and m(γ3) ≥ 3. But then

2 = k = min{m(γ3),m(γ6)} ≥ min{3, 4} = 3,

a contradiction.
Case 2: Assume that m(γ7) = 4. Then by (6.34), (6.37), (6.38) and (6.39), we obtain

1 ≤ m(γ2),m(γ4), 2 ≤ m(γ3),m(γ5), 3 ≤ m(γ6).

We conclude that G is in the form

G = A · (E0, . . . , E6)L =



G00 G01 G02 0 0 0 0
G10 G11 G12 0 0 0 0
0 G21 G22 G23 0 0 0
0 0 G32 G33 G34 0 0
0 G41 G42 G43 0 0 0
0 0 G52 G53 G54 0 0
0 0 0 G63 G64 0 0
0 0 0 0 G74 0 0
0 0 0 0 0 G85 0
0 0 0 0 0 0 G96

 . (6.40)

Consider the QR decomposition of A · (E0, . . . , E6) = N · L1, where N is a 10 × 7 matrix
with orthonormal columns, and L1 = (Jij)0≤i,,j≤6 is a 7× 7 lower-triangular matrix. Since
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A · (E0, . . . , E6) is in the form (6.20), necessarily N is given by

N =


N00 0 0 0 0 0 0
N10 N11 0 0 0 0 0
N20 N21 N22 0 0 0 0
N30 N31 N32 N33 0 0 0
N40 N41 N42 0 0 0 0
N50 N51 N52 N53 0 0 0
N60 N61 N62 N63 N64 0 0
N70 N71 N72 N73 N74 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 =


N0 01×2

N1 01×2

...
N7 01×2

02×5 Id2

 ,

where Nj , 0 ≤ j ≤ 7 are row vectors in C5. Moreover,

N64N74 ̸= 0, (6.41)

since (N64, N74) is parallel to (
√
15
5 a11a44,

√
10
5 a22a33) and the diagonal entries of A are not

zero. Now, from G = N ·L2 ·L and the orthogonality of columns of G and N , respectively,
we must have that L2 · L = (Hij)0≤i,j≤6 ∈ U(7) is in the same form as (6.3) with

H23 = J22L23 ̸= 0, H34 = J33L34 ̸= 0. (6.42)

Since L2 · L ∈ U(7), it is necessary that

L2 · L =

H0 H1 · · · H4 05×2

02×5

(
H55 0
0 H66

)
where Hi, 0 ≤ i ≤ 4, are column vectors in C5 that form an orthonormal basis of C5, and
H3 and H4 are in the form

H3 = (0, 0, H23, H33, H43)
t, H4 = (0, 0, 0, H34, H44)

t. (6.43)

Since G = N ·L2 ·L, by G6j = 0, 0 ≤ j ≤ 2, and G7i = 0, 0 ≤ i ≤ 3 (see (6.40)), we obtain

N6 ·Hj = 0, 0 ≤ j ≤ 2, N7 ·Hi = 0, 0 ≤ i ≤ 3;

hence, N6 ∈ span{Ht
3, H

t
4} and N7 ∈ span{Ht

4}, so that we conclude by (6.43) that N is in
the following form

N =


N00 0 0 0 0 0 0
N10 N11 0 0 0 0 0
N20 N21 N22 0 0 0 0
N30 N31 N32 N33 0 0 0
N40 N41 N42 0 0 0 0
N50 N51 N52 N53 0 0 0
0 0 N62 N63 N64 0 0
0 0 0 N73 N74 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 .

Then the inner product of the third column with fifth column gives N62N64 = 0, and by

N64 ̸= 0 (see (6.41)) we obtain N62 = 0. Meanwhile, from N6 ∈ span{Ht
3, H

t
4} we deduce

N6 = (0, 0, 0, N63, N64) = a ·Ht
3 + b ·Ht

4,

for some constant a, b. Then from H23 ̸= 0 (see (6.42) and (6.43)), we infer a = 0; hence N6

is parallel to Ht
4. Thus, G63 = N6 ·H3 = 0, which implies that m(γ6) = 4. Then

2 ≤ k = min{m(γ3),m(γ6)} = m(γ3) ≤ 3.

It follows from (6.24) and (6.32) that

m(γ3γ5) ≥ 5, m(G34γ3 +G54γ5) ≥ 4. (6.44)
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From (6.34), we have m(γ5) ≥ k = min{m(γ3),m(γ6)} = m(γ3). Combining (6.44), 2 ≤
m(γ3) ≤ 3 with G34G54 ̸= 0, we arrive at m(γ3) = m(γ5). Then k = m(γ3) = m(γ5) ≥ 5

2
implies k = 3. Next, from (6.37), we see 2 ≤ m(γ2),m(γ4). Lastly by (6.23), we arrive at

m(γ1) + 4 = m(γ1γ6) ≥ 5;

hence m(γ1) ≥ 1, so G10 = 0. Then (6.30) gives G00γ0 = |G0|2, so that G02 = 0, contradic-
tory to the inequality in (6.29).

In short, one of L02, L23, L34 vanishes so that L is lower-triangular. □

Now we can finish the proof of Theorem 6.1.
Proof of Theorem 6.1.

We continue to use the parameterization given in (6.19). Note that by using the automor-

phism of H3
0, we can re-choose A ∈ GL(5,C) such that L21 = 0. In fact, set A1 ≜

(
1 b
0 1

)
with b = L21√

10L11
, then by (3.1),

A · (E0, . . . , E6)L = (Aρ4(A−1
1 )) · (E0, . . . , E6) (ρ

6(A1)L).

Since ρ6(A1) is lower-triangular, ρ
6(A1)L is also lower-triangular, and so we derive

(ρ6(A1)L)21 = L21 − b
√
10L11 = 0.

The constant curvature condition of γ implies that

G ≜ A · (E0, . . . , E6)L, (6.45)

is a 10×7 matrix with orthonormal columns. Similarly as before, up to a U(5)-transformation,
we may assume A is lower-triangular. Since L is lower-triangular, we see that G has the
form as (6.20). It is easy to verify that G33G53G64G74 ̸= 0.

It follows from Lemma 6.2 that G must be in the form of (6.21). Moreover, GZ6(z) and

µ(z) ≜ A−1 ·GZ6(z) = (E0, . . . , E6)LZ6(z)

are ramified at z = 0 and z = ∞ with multiplicities at least 2. Thus we can apply Lemma
6.1 to the curve µ(z). It follows from the proof of Lemma 6.1 that now

L01 = L21 = L31 = L41 = L51 = L61 = 0, L05 = L15 = L25 = L35 = L45.

To prove that L is diagonal, we need only show L65 = 0.
Since G is in the form of (6.21), comparing the second column of both sides of

A−1 ·G = (E0, . . . , E6)L, (6.46)

we deduce

G11A
−1 · e0 ∧A−1 · e2 = L11e0 ∧ e2,

whence A−1 · e2 ∈ span{e0, e2}. Then comparing the penultimate column of both sides of
(6.46), we have

L55e2 ∧ e4 + L65e3 ∧ e4 = G85A
−1 · e2 ∧A−1 · e4 ∈ span{e0 ∧ e4, e2 ∧ e4},

which implies L65 = 0. Hence L is diagonal.
Furthermore, due to that A is lower-triangular, we can also derive that

A−1 · e2 ≡ 0 mod e2, A−1 · e4 ≡ 0 mod e4,
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and then A−1 · e0 ≡ 0 mod e0. By comparing the first and last columns of both sides of
(6.46), we have A−1 · ei ≡ 0 mod ei, i = 1, 3. In conclusion, we have arrived at that A is
diagonal. Therefore, the curve γ belongs to the diagonal family. □

7. Existence and uniqueness results for the diagonal family.

It follows from Theorem 6.1 that to classify generally ramified constantly curved holo-
morphic 2-spheres in G(2, 5), we need only consider those in the diagonal family, which
are determined by diagonal matrices A ∈ GL(5,C) and complex numbers {ω0, ω1, . . . , ω6}
satisfying

ω0ω4 − 4ω1ω3 + 3ω2
2 = 0, ω0ω5 − 3ω1ω4 + 2ω2ω3 = 0, ω0ω6 − 9ω2ω4+

8ω2
3 = 0, ω2ω6 − 4ω3ω5 + 3ω2

4 = 0, ω1ω6 − 3ω2ω5 + 2ω3ω4 = 0,
(7.1)

to guarantee that the holomorphic 2-sphere parameterized as in (6.1) lives in G(2, 5).
In this section, we will pin down the class of diagonal matrices A ∈ GL(5,C) that warrants

the existence of constantly curved holomorphic 2-spheres of degree 6, and meanwhile find
the number of such 2-spheres in each of these Fano 3-folds A(H3

0).
Assume φ is a constantly curved holomorphic 2-sphere in the diagonal family given by

the data A = diag{a00, a11, · · · , a44} and {ω0, ω1, · · · , ω6} satisfying (7.1). It follows from
Definition 6.1 that

φ(z) = a00a11ω0 e0 ∧ e1 +
√
6a00a22 ω1 z e0 ∧ e2 + 3a00a33 ω2 z

2 e0 ∧ e3
+
√
6a11a22 ω2 z

2 e1 ∧ e2 + 2a00a44 ω3 z
3 e0 ∧ e4 + 4a11a33 ω3 z

3 e1 ∧ e3
+ 3a11a44 ω4 z

4 e1 ∧ e4 +
√
6a22a33 ω4 z

4 e2 ∧ e3 +
√
6a22a44 ω5 z

5 e2 ∧ e4
+ a33a44 ω6 z

6 e3 ∧ e4,

(7.2)

and
(9a200a

2
33 + 6a211a

2
22)|ω2|2

15
=

(a200a
2
44 + 4a211a

2
33)|ω3|2

5
= a200a

2
11|ω0|2 =

(9a211a
2
44 + 6a222a

2
33)|ω4|2

15
= a200a

2
22|ω1|2 = a222a

2
44|ω5|2 = a233a

2
44|ω6|2 = 1.

(7.3)

Remark 7.1. We point out that φ has the following standard parameterization in the sense
of section 2.2. (

φ1(z)
φ2(z)

)
=

(
1 0 −

√
6ω2a22
ω0a00

z2 −4ω3a33
ω0a00

z3 −3ω4a44
ω0a00

z4

0 1
√
6ω1a22
ω0a11

z 3ω2a33
ω0a11

z2 2ω3a44
ω0a11

z3

)
. (7.4)

In Jiao and Peng’s approach, they considered collectively the undertermined variables

α2 ≜ −
√
6(ω2a22)/(ω0a00), β3 ≜ −4(ω3a33)/(ω0a00), φ4 ≜ −3(ω4a44)/(ω0a00),

u1 ≜
√
6(ω1a22)/(ω0a11), v2 ≜ 3(ω2a33)/(ω0a11), z3 ≜ 2(ω3a44)/(ω0a11).

Then the constant curvature condition (7.3) is equivalent to

|u1|2 = 6, |v2|2 + |α2|2 = 15, |z3|2 + |β3|2 = 20

|φ4|2 + |α2v2 − β3u1|2 = 15, |α2z3 − φ4u1|2 = 6, |β3z3 − φ4v2|2 = 1.
(7.5)

The standard Veronese curve in (1.1) corresponds to the solution

(α2, β3, φ4, u1, v2, z3) = (−
√
6,−4,−3,

√
6, 3, 2).
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Branching out, observe that after fixing (α2, φ4, u1, v2) = (−
√
6,−3,

√
6, 3), we have that the system

of equations (7.5) reduces to

|z3|2 + |β3|2 = 20, |β3 + 3|2 = 1, |z3 − 3|2 = 1, |β3z3 + 9|2 = 1.

Set

β3 ≜ −3 + e
√
−1θ, z3 ≜ 3 + e

√
−1φ. (7.6)

From the first equation we derive cos θ = cosφ; and so φ = ±θ. If φ = −θ, then the last
equation above gives θ = 0 or π. Therefore without losing generality, we may set φ = θ in
any event. Consequently, we obtain a 1-parameter family of solutions(

1 0 −
√
6z2 (−3 + e

√
−1θ)z3 −3z4

0 1
√
6z 3z2 (3 + e

√
−1θ)z3

)
, (7.7)

hitherto unknown in the literature, to the authors’ knowledge.
Though the simple perturbation (7.6) generates the explicit 1-parameter family (7.7), in

general, however, without further geometric clue it is a difficult task to completely classify the
system (7.5). As our analysis has revealed up to now, the nature of the classification lies in
that one must perturb in certain Fano 3-folds dictated by (7.2) to achieve the classification.
In the following, we will present an algebro-geometric approach to describe all solutions to
the diagonal system (7.2).

Set

ωi ≜
√
tie

√
−1θi , i = 0, . . . , 6.

It follows from the condition of constant curvature (7.3) that

t0 = 1/a211, t1 = 1/a222, t2 = 15/(9a200a
2
33 + 6a211a

2
22), t6 = 1/(a233a

2
44),

t3 = 5/(a200a
2
44 + 4a211a

2
33), t4 = 15/(9a211a

2
44 + 6a222a

2
33), t5 = 1/(a222a

2
44).

(7.8)

Remark 7.2. For the detailed analysis to follow on the length constraints (7.3), without
loss of generality through scaling, we may assume that a00 = 1 and ajj ∈ R+, 1 ≤ j ≤ 4
(by a diagonal unitary transformation in U(5)). Moreover, it follows from Lemma 3.11
that the transformation ρ4(diag{λ, 1}) = diag{1, λ, λ2, λ3, λ4} preserves H3

0 for any λ ∈ C∗.
As a consequence, after multiplying by an appropriate real λ, we may furthermore assume
a22 = a33. This process is equivalent to applying a Möbius reparametrization to the 2-sphere
φ by z 7→ λz.

Similarly, we assume further that θ0 = θ6 = 0, which follows from dehomogenizing to
eliminate θ0 and introducing a rotational reparametrization of the 2-sphere φ to eliminate
θ6.

Combining (7.8) with the above normalization, we have

t2 =
5t0t1

(3t0 + 2)
, t3 =

5t0t1t6
(t0t21 + 4t6)

, t4 =
5t0t

2
1t6

(3t31 + 2t0t6)
, t5 = t6. (7.9)

Moreover, it follows from (7.1) that the angles θi of ωi satisfy
√
t0t4 = 4

√
t1t3e

√
−1(θ1+θ3−θ4) − 3t2e

√
−1(2θ2−θ4),

√
t0t5 = 3

√
t1t4e

√
−1(θ1+θ4−θ5) − 2

√
t2t3e

√
−1(θ2+θ3−θ5),

√
t0t6 = 9

√
t2t4e

√
−1(θ2+θ4) − 8t3e

√
−12θ3 .

(7.10)
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Remark 7.3. Conversely, given a solution {t0, t1 · · · , t6} ⊂ R+ and { θ1 · · · , θ5} ⊂ R to (7.9)

and (7.10), by solving aii from ti and defining ωi = tie
√
−1θi, we can obtain a constantly

curved holomorphic 2-sphere of degree 6 in G(2, 5) parameterized as in (7.2).

We point out that the three equations in (7.10) are not independent by the following
Lemma 7.1. In fact, set

x1 ≜ e
√
−1(θ1+θ3−θ4), y1 ≜ e

√
−1(2θ2−θ4), x2 ≜ e

√
−1(θ1+θ4−θ5),

y2 ≜ e
√
−1(θ2+θ3−θ5), x3 ≜ e

√
−1(θ2+θ4), y3 ≜ e

√
−1(2θ3).

(7.11)

Taking norm squared on both sides of (7.10), we see from the realness of t0, · · · , t6 that

h1 ≜ v − uw = 0, h2 ≜ u2 −Xu+ 1 = 0, h3 ≜ v2 − Y v + 1 = 0,

h4 ≜ w2 − Zw + 1 = 0,
(7.12)

where,
u = x1/y1, v = x2/y2, w = x3/y3,

X = (9t22 + 16t1t3 − t0t4)/(12t2
√
t1t3),

Y = (4t2t3 + 9t1t4 − t0t5)/(6
√
t2t3

√
t1t4),

Z = (64t23 + 81t2t4 − t0t6)/(72t3
√
t2t4).

(7.13)

We first solve (7.12) by viewing {X,Y, Z} as indeterminates. Define

H ≜ −XY Z +X2 + Y 2 + Z2 − 4. (7.14)

Lemma 7.1. If {v, u, w,X, Y, Z} solves the system (7.12), then H = 0. Conversely, given
any complex solution (X0, Y0, Z0) to H = 0, there always exits (v0, u0, w0) ∈ C3, such that
(v0, u0, w0, X0, Y0, Z0) solves this system.

Moreover, when the solution X0, Y, Z0 to H = 0 are real, |v0| = |u0| = |w0| = 1 if and only
if X0, Y0, Z0 ∈ [−2, 2], in which case there are at most two solutions, namely, (v0, u0, w0)
and its complex conjugate (v0, u0, w0), which are distinct unless X2

0 = Y 2
0 = Z2

0 = 4 and
X0Y0Z0 = 8.

Proof. Assume {v, u, w} solves the last three equations in (7.12), respectively. It follows that
{1/v, 1/u, 1/w} also solves them, respectively, with X = u+1/u, Y = v+1/v, Z = w+1/w.
By a straightforward calculation, we have

H = (uvw − 1)(u− vw)(v − uw)(w − uv)/(u2v2w2),

from which the first statement follows by the first equation of (7.12).
To prove the second statement, the realness ofX0, Y0, Z0 dictates that |v0| = |u0| = |w0| =

1 if and only if the last three equations in (7.12) all have a pair of conjugate solutions, which
implies that their discriminants X2

0 − 4, Y 2
0 − 4, Z2

0 − 4 are no more than 0.
Furthermore, given (X0, Y0, Z0) ∈ [−2, 2]3 that solves (7.14), assume {(vi, ui, wi)|i = 0, 1}

are two pairs of solutions of the system (7.12). It follows that

v1 = v0 or v0, u1 = u0 or u0, w1 = w0 or w0.

By the pigeonhole principle, we may assume u1 = u0, w1 = w0 without loss of generality.
Then it follows from the first equation h1 in (7.12) that v1 = u1w1 = v0. Therefore, we
deduce that these two solutions either coincide or differ by a complex conjugation, where
the former case occurs when u0, v0, w0 are all real to satisfy X0 = Y0 = Z0 = ±2 with
X0Y0Z0 = 8 to respect H = 0. □
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Figure 2. Semialgebraic sphere H = 0

Remark 7.4. The cubic surface H = 0 with |x|, |y|, |z| ≤ 2 is a semialgebraic sphere.

We now analyse the diagonal family in terms of (t0, t1, t6) ∈ (R+)3. By substituting (7.9)
and (7.13) into the formula of H in (7.14) and ignoring the nonzero denominator of the
fraction and the nonzero factors, we obtain a hypersurface in (R+)3 defined by F (t0, t1, t6) =
0, where

F (t0, t1, t6) ≜ 168750000 H t
6
0t

11
1 t

4
6/(t2t3t

2
4)

= 9 t1
6
t6

3
t0

9
+

(
6912 t1

9
t6

2 − 366 t1
6
t6

3 − 10260 t1
4
t6

4
)
t0

8

+
(
435888 t1

2
t6

5
+ 299592 t1

4
t6

4
+ (−397332 t1

7
+ 2560 t1

6
)t6

3 − 58329 t1
9
t6

2
+ 63504 t1

12
t6
)
t0

7

+
(
65088 t6

6
+ 225504 t1

2
t6

5
+ (31968 t1

5
+ 533856 t1

4
)t6

4
+ (−451260 t1

7 − 128 t1
6
)t6

3
+

(−1296 t1
10 − 44868 t1

9
)t6

2
+ 16416 t1

12
t6
)
t0

6

+
(
78720 t6

6
+ (−1366848 t1

3
+ 154368 t1

2
)t6

5
+ (−2480688 t1

5
+ 203712 t1

4
)t6

4
+ (2125440 t1

8
+

541536 t1
7
)t6

3
+ (−501336 t1

10
+ 2560 t1

9
)t6

2
+ (−190512 t1

13 − 58329 t1
12

)t6 + 63504 t1
15

)
t0

5
(7.15)

+
(
22016 t6

6
+ (15552 t1

3
+ 99840 t1

2
)t6

5
+ (145152 t1

6 − 2192448 t1
5
)t6

4
+ (1076544 t1

8
+

533856 t1
7
)t6

3
+ (31104 t1

11 − 451260 t1
10

)t6
2
+ (−1296 t1

13 − 366 t1
12

)t6 + 6912 t1
15

)
t0

4

+
(
− 1024 t6

6 − 645120 t1
3
t6

5
+ (5774976 t1

6
+ 154368 t1

5
)t6

4
+ (−3048192 t1

9 − 2480688 t1
8
)t6

3
+

(2125440 t1
11

+ 299592 t1
10

)t6
2 − 397332 t1

13
t6 + 9 t1

15
)
t0

3

+
(
22016 t1

3
t6

5
+ 15552 t1

6
t6

4
+ (145152 t1

9
+ 225504 t1

8
)t6

3
+ 31968 t1

11
t6

2 − 10260 t1
13

t6
)
t0

2

+
(
435888 t1

11
t6

2 − 1366848 t1
9
t6

3
+ 78720 t1

6
t6

4
)
t0 + 65088 t1

9
t6

3
= 0,

with the three necessary discriminant constraints

(9t22 + 16t1t3 − t0t4)
2 − 576t1t

2
2t3 ≤ 0, (4t2t3 + 9t1t4 − t0t5)

2−
144t1t2t3t4 ≤ 0, (64t23 + 81t2t4 − t0t6)

2 − 20736t2t
2
3t4 ≤ 0,

(7.16)

thanks to the assumptions made on X,Y, Z ∈ [−2, 2] in Lemma 7.1:

Remark 7.5. The three constraints |u| = |v| = |w| = 1 are not independent by the first
equation in (7.12). Any two of the three inequalities in (7.16) imply the third. Moreover,
Z ∈ (−2, 2) implies X,Y ∈ (−2, 2) since for a fixed Z ∈ (−2, 2), H = 0 in (7.14) defines an
ellipse good for the conclusion.

In conclusion, we obtain the following existence and uniqueness theorem.

Theorem 7.1. Given a diagonal matrix A = diag{1, a11, a22, a22, a44}, normalized as in
Remark 7.2, there exists a sextic curve γ belonging to the generally ramified family in H3

0

such that A(γ) is of constant curvature, if and only if {t0, t1, t6} given by (7.9) satisfies the
algebraic equation (7.15) and inequalities (7.16).
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Moreover, in A(H3
0), there exist at most two constantly curved holomorphic 2-spheres of

degree 6 belonging to the generally ramified family; they are distinct except when {X,Y, Z}
defined in (7.13) satisfies X2 = Y 2 = Z2 = 4 and XY Z = 8.

Proof. The necessary part has been verified in the preceding discussion.
Conversely, assume that {t0, t1, t6} satisfy the algebraic equation (7.15) and inequali-

ties (7.16). Then we obtain at least a triple (v0, u0, w0) of solution of system (7.12) ac-
cording to Lemma 7.1. By substituting it into system (7.10), we obtain a unique solution
{(xi, yi)|1 ≤ i ≤ 3} by the following recipe: The first equation of (7.10) gives that

y1 =
√
t0t4/(4

√
t1t3 u0 − 3t2), x1 = y1u0. (7.17)

It follows from |u0| = 1 that both x1 and y1 are of unit length. A similar discussion applies
to (x2, y2) and (x3, y3).

Apply the logarithmic function on both sides of (7.11). Since the ranks of the coefficient
matrix of of (θ1, . . . , θ5) and its enlarged version with the augmented (log(x1), · · · , log(y3))
are both equal to 5, we can solve θj from the arguments of the points {(xi, yi)|1 ≤ i ≤ 3}
on the plane. Substituting all the data into (7.2) gives a constantly curved holomorphic
2-sphere φ in A(H3

0) (see Remark 7.3).
Lastly, we remark that φ is uniquely determined by (v0, u0, w0), owing to that the only

difference between any two pairs of solutions {θj |1 ≤ j ≤ 5} and {θ̃j |1 ≤ j ≤ 5} of

(7.11) is θj = θ̃j + 2kjπ/6, 1 ≤ j ≤ 5, for some 0 ≤ k ≤ 5. It is straightforward to
show that the corresponding two curves share the same image by introducing a rotational

reparametrization z̃ = ze
√
−12kπ/6.

In conclusion, any solution (v, u, w) of system (7.12) determines uniquely a constantly
curved 2-sphere. Then the second statement follows from Lemma 7.1. □

Corollary 7.1. The only constantly curved holomorphic 2-sphere of degree 6 in the standard
Fano 3-fold H3

0 tangent to the the standard Veronese curve PSL2 · u6 is the Veronese curve
itself.

Proof. For the standard Fano 3-fold H3
0, the associated {t0, t1, t6} are all equal to 1. There-

fore the corresponding X = Y = Z = 2 by (7.13). □

Remark 7.6. In addition to the standard Fano 3-fold H3
0, let us take the diagonal A =

diag{1, 1, 4, 4, 16}, there exists a unique constantly curved holomorphic 2-sphere of degree 6
belonging to the generally ramified family that lies in A(H3

0) given by(
1 0 −

√
6z2 −2z3 −3z4

0 1
√
6z 3z2 4z3

)
,

since the associated X = Y = Z = 2. It turns out that among Fano 3-folds H3 in G(2, 5),
only three (up to unitary congruence) contain a unique constantly curved holomorphic 2-
sphere of degree 6; the last one will be given in Example 8.5.

8. The moduli space and new examples

Before describing the moduli space of constantly curved holomorphic 2-spheres belonging
to the generally ramified family, we first consider the semialgebraic set S ⊆ (R+)3 deter-
mined by the algebraic equation (7.15) and the three inequalities (7.16).
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Proposition 8.1. The semialgebraic set S is 2-dimensional and equipped with an involution

σ : S → S, t = (t0, t1, t6) 7→ T = (T0, T1, T6) = (g t0, g t1, g
3 t6), (8.1)

where g(t0, t1, t6) ≜ t31/(t
2
0t6).

Proof. It is easy to show that σ is an involution of (R+)3 restricted to S; consequently, we
need only verify that σ(S) ⊆ S.

Assume that t = (t0, t1, t6) ∈ S, i.e., that t satisfies

F (t) = 0, and X(t), Y (t), Z(t) ∈ [−2, 2].

A direct computation yields that

F (T ) = g21F (t) = 0, Z(T ) = Z(t) ∈ [−2, 2].

Note that the last equation of (7.1) gives
√
t1t6 = 3

√
t2t5e

√
−1(θ2+θ5−θ1) − 2

√
t3t4e

√
−1(θ3+θ4−θ1).

Set q = e
√
−1(θ2+θ5−θ3−θ4). Then a similar argument to that deriving (7.12) leads to

q2 −Qq + 1 = 0, where

Q(t) ≜ (−t1t6 + 9t2t5 + 4t3t4)/(6
√
t2t3t4t5).

Since |q| = 1, it forces Q(t) ∈ [−2, 2]. It is straightforward to show that Y (T ) = Q(t) ∈
[−2, 2]. Therefore, combining Remark 7.5, we obtain that the norm of X(T ) is also less
than or equal to 2. This completes the proof that T = σ(t) lies in S.

We are left with showing that the real dimension of the semialgebraic set S is 2. At the
generic point p0 = (1, 12 ,

1
8) ∈ S (for the choice of p0, see Example 8.2 below for details). A

calculation gives

∇F (p0) =
(
∂F/∂t0, ∂F/∂t1, ∂F/∂t6

)
(p0) = (0,−13125/256, 4375/64) ̸= 0.

Owing to the implicit function theorem, near p0, S is locally a graph of t0 and t1; hence,
its real dimension is 2. □

Remark 8.1. We point out that the involution σ comes from the reciprocal transformation
of CP 1 (see the proof of the following Theorem).

Now, we are in a position to present our main theorem. Denote by M the mod-
uli space of constantly curved holomorphic 2-spheres belonging to the generally ramified
family in G(2, 5), modulo the extrinsic ambient U(5)-equivalence and the internal Möbius
reparametrization.

Theorem 8.1. M = S/Z2, so that it is a 2-dimensional semialgebraic set.

Proof. Our first goal is to show that a holomorphic 2-sphere of the diagonal family is also
determined by its coefficients of zk, k = 2, 3, 4 in (7.2). Consider the quotients of them
respectively to define a map

τ : S → (R+)3, (t0, t1, t6) 7→ (A,B,C) ≜ (
a00a33
a11a22

,
a00a44
a11a33

,
a11a44
a22a33

). (8.2)

It follows from (7.8) that (A,B,C) = (
√
t0,
√

t0
t6
t1,
√

t1
t0t6

t1). It is straightforward to

show that t0 = A2, t1 = A4C2/B2, t6 = A10C4/B6; therefore τ is injective.
The next step is to describe our moduli space. Let φ1(z) and φ2(z̃) be two holomorphic 2-

spheres of the diagonal family corresponding to t = (t0, t1, t6) and t̃ = (t̃0, t̃1, t̃6), respectively.
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If there exists a U ∈ U(5) such that the image of U · φ1 agrees with that of φ2, then U
induces a Möbius transformation z̃ = f(z) on CP 1. Since the ramified points of φ1 and φ2

are both {0,∞} by Lemma 6.2, this set is invariant under φ. Hence z̃ = µz or µ
z , where

µ ∈ C∗. Our aim is to establish that t̃ = t or t̃ = σ(t), which suffices to complete the proof.
We divide the argument into two cases.

Case (1): Suppose that z̃ = µz. Comparing the first two and last two terms of φ1 and
φ2, we obtain that (see (7.2))

U · e0 ∧ U · e1 ≡ 0 mod (e0, e1), U · e0 ∧ U · e2 ≡ 0 mod (e0, e2),

U · e2 ∧ U · e4 ≡ 0 mod (e2, e4), U · e3 ∧ U · e4 ≡ 0 mod (e3, e4).

Hence, U = diag{u00, . . . , u44} is diagonal as U is unitary. As a result, they share the same
quotients in (8.2), i.e., τ(t) = τ(t̃), so that t = t̃ by the injectivity of τ .

Case (2): Suppose that z̃ = µ
z . Following a similar argument as in Case (1), we see

that U is anti-diagonal. Consequently, the quotients in (8.2) satisfy A(t̃) = C(t), B(t̃) =
B(t), C(t̃) = A(t). By the exposition below (8.2), it is easy to show that t̃ = σ(t).

Now, the conclusion follows from Theorem 6.1. □

The end of this section is devoted to the construction of several interesting individual as
well as 1-parameter families of examples.

Recall the involution σ : S → S and its invariant subset S1 defined by setting g = 1, so
that 1 = g = t31/(t

2
0 t6). It is a piecewise smooth simple closed curve. Indeed, substitute

t6 = t31/t
2
0 into (7.15) and ignore the non-zero denominator and the non-zero factors. The

level set S1 is the semialgebraic set defined by the three inequalities in (7.16) and(
441 t80 − 42 t70 + t60 − 72 t50t1 − 5136 t40t1 − 1592 t30t1 + 7056 t20t

2
1 − 672 t0t

2
1 + 16 t21

)
·

(t0 − 1)
(
2 t30 − 3 t1t0 + t1

)
= 0.

In the t0t1-coordinate plane, S1 is plotted in Figure 3. The branch corresponding to (t0 −
1) = 0 is the blue vertical line segment. The second branch described by

(
2 t30 − 3 t1t0 + t1

)
=

0 is the end point (1, 1) of the blue line segment. The third branch corresponds to the union
of the (upper) brown and (lower) green curves parametrized by

ψ1 = {(s, F1(s)) | s ∈ [1, 11/6]}, ψ2 = {(s, F2(s)) | s ∈ [1, 11/6]}, (8.3)

respectively, where F1 = (t30(199+642t0+9t20+30∆))/(4(21t0− 1)2), F2 = (t30(199+642t0+9t20−
30∆)/(4(21t0 − 1)2), and ∆ ≜ (3t0 + 2)

√
(4t0 + 1) (11− 6t0).

It follows from Theorem 8.1 that the moduli space is M = S/σ with the simple closed
curve S1 on its boundary. By applying the coordinate transformation (t0, t1, t6) 7→ (t0, t1, λ)
with λ = 1/g, we can plot M as in Figure 4. It looks like a horn, with S1 marked in red,
and the level sets of g = 2 and g = 3 marked in green and blue, respectively. The figure
seems to suggest that the moduli space M is a topological disk. It would be interesting to
see whether this is indeed the case.

Example 8.2. We point out that examples on the blue line segment coincide with the
1-parameter family (7.7) in Remark 7.1. In fact, it follows from (7.9) that

t0 = 1, t2 = t1, t3 = 5t21/(4t1 + 1), t4 = t21, t5 = t31, t6 = t31,

a00 = 1, a11 = 1, a22 = a33 = 1/
√
t1, a44 = 1/t1.
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Figure 3. The level set S1 Figure 4. The moduli space M

Moreover, substituting all the data into (7.4), we obtain that(
1 0 −

√
6e

√
−1θ2z2 −4

√
t3
t1
e
√
−1θ3z3 −3e

√
−1θ4z4

0 1
√
6e

√
−1θ1z 3e

√
−1θ2z2 2

√
t3
t1
e
√
−1θ3z3

)
. (8.4)

Set t1 ≜ (5 + 3 cos θ)/(20− 12 cos θ), then cos θ = (20t1 − 5)/3(4t1 + 1). Then θ0 ≜
0, θ6 ≜ 0, and

θ1 ≜ θ − β0 − β1
2

, θ2 ≜ θ, θ3 ≜ θ +
β0 + β1

2
, θ4 ≜ θ, θ5 ≜ θ − β0 − β1

2
,

satisfy (7.10), where

β0 = Arg

(
3 + e

√
−1θ

√
10 + 6 cos θ

)
, β1 = Arg

(
3− e

√
−1θ

√
10− 6 cos θ

)
.

It is straightforward to verify that (7.7) differs from (8.4) by multiplying its third and

fourth columns by e
√
−1(β1−β0+θ), its last column by e

√
−1(2(β1−β0)+θ), and performing a

reparameterization z 7→ e
√
−1(β0−β1)/2z. Note that ±θ give the same t1; they correspond to

the two complex-conjugated solutions.

Proposition 8.2. The second fundamental form A of a constantly curved holomorphic 2-
sphere of degree 6 belonging to the generally ramified family is not of constant norm, except
for the standard Veronese curve (1.1).

Proof. It follows from the Gauss equation that

||A||2 = 20/3− ||∂F/∂z ∧ ∂F/∂z||2/(9(1 + |z|2)8), (8.5)

where F is the Plücker embedding of the holomorphic 2-sphere in G(2, 5) into CP 9 (see
[21, p.6, p.9] for details). Note that ||∂F/∂z ∧ ∂F/∂z||2 only vanishes at ramified points.
Therefore, using Lemma 6.2 we can derive that the second term on the right-hand side of
||A||2 is not constant. □

Example 8.3. On the level set S1, choose t0 = 11/6. Then we can solve for t1 = 1331/864.
It gives an exact solution to (7.15),

t0 =
11

6
, t1 =

131

864
, t2 =

14641

7776
, t3 =

73205

41472
, t4 =

1771561

1119744
, t5 = t6 =

19487171

17915904
,

It is checked that X = Y = 5
√
5/
√
33 and Z = 2. from which the angles {θ1, · · · , θ5} can

be solved.
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Example 8.4. On the level set S1, choose t0 =
(
2
√
79 + 20

)
/21. Then we can solve for

t1 =
(
2
√
79 + 20

)
/21. It gives an exact solution to (7.15),

t0 = t1 = t5 = t6 =
(
2
√
79 + 20

)
/21, t2 = t4 =

(
23
√
79 + 209

)
/189,

t3 = (9 +
√
79)/8,

from which the angles {θ1, · · · , θ5} can be solved. Note that for this example, the diagonal
matrix A has two distinct eigenvalues a00 = a44 ̸= a11 = a22 = a33.

Example 8.5. Start with the equations P ≜ X2− 4 = 0, Q ≜ Y 2− 4 = 0, R ≜ Z2− 4 = 0,
with X,Y, Z given in (7.13) to express them in terms of the variables t0, t1, g, with t6 =
t31/(t

2
0g) by (8.1). Continue to compute the derived resultants of the refined numerators

P ′, Q′, R′ of P,Q,R, in terms of t0, t1, g, after removing powers of g − 1 and those single-
variable factors without positive solutions by, e.g., Sturm’s algorithm for counting the exact
number of distinct positive roots of a real polynomial, while setting aside possible candidate
polynomials before proceeding with the next level of resultant computation; along the way,
we heed the constraint that (gt0, gt1, 1/g) is a set of solution if (t0, t1, g) is, by Proposition
8.1, to further narrow down the candidates. We end up with the exact equations for possible
t0, t1, g :

p ≜ 3004245721g
6 − 139634316726g

5 − 67838574585g
4 − 318786958820g

3 − 67838574585g
2

− 139634316726g + 3004245721 = 0,

q ≜ 2537649t
6
0 − 40347234t

5
0 + 36454860t

4
0 − 19711080t

3
0 + 26076060t

2
0 − 17915544t0 + 3452164 = 0,

r ≜ 6861904453295341780216896t
6
1 − 57789440847499427495680896t

5
1 − 3541432129528999644182160t

4
1

+ 2695787548715827169923680t
3
1 − 242591843875043061525060t

2
1 − 261056339362401426814176t1

+ 53689575410338079139841 = 0.

Compute the Gröbner basis of the ideal (P ′, Q,′R′, p, q, r) to obtain the basis consisting
of six elements of which we only record the two essential ones,

E ≜ 30407219135534569920865279281g
2
t1 − 5684396631350441922486404084g

2

+ 4826381508202691775218328738gt1 + 8781109390742136392820835978g

+ 22087970177286319548246901485t0 − 37952752504503427337193407559t1

− 10129670167010754418270796864 = 0,

G ≜ 323983664320381367395969030814241g
3 − 15097919249633508113716536736052777g

2

+ 24001947052912436490532391777190000gt1 − 10297270579570244241163795555112489g

− 21160216103727154670480065729425120t0 + 38155570002907589892718590589124280t1

− 10753529104240427995602453394128335 = 0.

We obtain t0 ≜ R/S and t1 = T/U in closed form of g, where

R ≜ 323983664320381367395969030814241g
5 − 15046494988853004912329176221825959g

4

− 8611085577295995251867740593198034g
3
+ 6658017307603866925677723269688366g

2

+ 8122830950478969874129540484608001g + 26132918116090821757236925434099385,

S ≜ 21160216103727154670480065729425120g
2
+ 20793797801629220801560324794395760g

+ 1305303435283084266467628002760120,

T ≜ −423618308217230277983078980100353g
3
+ 26861312395386909671099284789417865g

2

+ 2464682459146076205358051730246729g + 26749087059945119323559494796984559,

U ≜ 38088388986708878406864118312965216g
2
+ 37428836042932597442808584629912368g

+ 2349546183509551679641730404968216.

It is then checked that all the remaining equations in the basis are compatible with p = 0.
Now, p = 0 has two positive real roots reciprocal to each other as the coefficients of p are
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symmetric, which are approximately g ∼ 0.0212731522 and 47.0076078738 (Since all the
above polynomial equations are exact, the listed numerical values are accurate up to the
last digit, checked by the intermediate value theorem, for instance.) We then derive the
corresponding values for t0 and t1 through R,S, T, U to yield

(t0, t1, g) ∼ (0.3184944933, 0.1803379951, 47.0076078738), or

∼ (14.9716642533, 8.4772577609, 0.0212731522),

accurate up to the last digit, in accord with Proposition 8.1; both give X = Y = Z = 2.
The second set gives the pointed end of the horn in Figure 2.

This is the third and the last example, aside from the two given in Remark 7.6 with g = 1,
for which there is only one constantly curved 2-sphere belonging to the generally ramified
family in the corresponding Fano 3-fold A(H3

0), where A is computed by (7.8).

Example 8.6. Set t1 ≜ t20/6 in F given in (7.15) and factor out positive terms to yield

f(g, t0) ≜ 190512g
4
t
6
0 + 20736g

4
t
5
0 + 95256g

3
t
6
0 + 27g

4
t
4
0 − 205416g

3
t
5
0 − 401301g

3
t
4
0

− 104328g
2
t
5
0 − 6264g

3
t
3
0 − 59319g

2
t
4
0 + 168282g

2
t
3
0 + 32913gt

4
0 + 202140g

2
t
2
0 + 35388gt

3
0

+ 6720gt
2
0 + 2034t

3
0 + 19504gt0 + 2460t02 + 688t0 − 32 = 0.

It defines a plane algebraic curve C. We claim that C∗ ⊂ C falling in the rectangle R
given by 8/15 ≤ t0 ≤ 5, 1475/10000 ≤ g ≤ 3, is a smooth, connected closed curve contained
in S, the double of the moduli space M.

Firstly, observe that (t0, g) = (1, 1) solves f = 0 so that that C∗ is not empty. It is also

directly checked that ∂f
∂t0
/∂f∂g = 2 at (t0, g) = (1, 1), so that the implicit function theorem

implies that f = 0 is locally a curve (t0, g(t0)) around (t0, g) = (1, 1) with negative slope.

Setting t0 ≜ 8/15 or 5, and g ≜ 1475/10000 or 3, respectively, we solve f(g, t0) = 0 to
attain (accurate up to the last digit for the exact polynomials)

for t0 = 8/15, ∄ real g, while for t0 = 5, g ∼ −0.4687373438, or − 0.0109931977;

for g = 1475/10000, t0 ∼ 0.0088038166, while for g = 3,

t0 ∼ −0.5591240674,−0.4272041173,−0.0337884110, 0.0005317397.

This means that the set C∗ never leaves the rectangle R, so that by analytic continuation
of an algebraic curve, C∗ consists of closed curves and, a priori, a few isolated points. The
latter can be ruled out since these finitely many points must satisfy f = ∂f/∂t0 = ∂f/∂g = 0
and the Gröbner basis associated with the ideal (f, ∂f/∂t0, ∂f/∂g) is {g− 1, 3t0+2} whose
zero locus (t0, g) = (−2/3, 1) does not fall in the domain R. As a result, it also implies that
the finitely many closed curves constituting C∗ are smooth and disconnected in R.

By calculating the resultants of f = ∂f/∂t0 = 0 against g and t0 and solving for the
roots, we verify that none of the possible pairs of (t0, g) satisfy (7.14) (see the remark below
for the engaged computational error analysis for rational functions), except possibly for two
points (t0, g) approximately at

(0.6547026351, 2.9099350324), or (4.5794327836, 0.1475263321), (8.6)

accurate up to the last digit. Since there exist at least two such points, this proves that C∗ is
only tangent to the horizontal lines, g = constants, precisely at the two points; likewise, this
is also true for the vertical line test. In particular, C∗ has only one connected component
as, otherwise, we would have more than two points tangent to horizontal or vertical lines.
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We calculate the resultants of f and the numerator of R ≜ Z2 − 4 against g and t0 and
solve for the roots, to confirm that the only point of intersection of the curve C∗ and the
boundary of Z2 ≤ 4 occurs with tangency at

(t0, g) ∼ (1.5271772661, 0.4663765333),

with the correspondingX = Y ∼ 1.8718004195 and Z = 2. It follows that C∗ lies completely
in Z2 ≤ 4 since (t0, g) = (1, 1) satisfies Z2 < 4. In particular, the three constraints in (7.16)
are satisfied by Remark 7.5.

Figure 5 depicts the curve C∗ (in red) in S. Since it extends into the region with g > 1, we
apply the involution σ to flip it back into M with g ≤ 1. Figure 6 shows the resulting self-
crossing, flipped C∗ (in red), which opens at g = 1 for which t0 = 1 or t0 ∼ 1.4542230103.
The region bounded by the three constraints is colored yellow.

Figure 5. The curve C∗ in S Figure 6. Folded C∗ in M

Remark 8.2. Let f(x, y) =
∑M,N

m,n=0 amn x
myn and l(x, y) ≜

∑I,J
i,j=0 bij x

iyj over a rectangle

R : [a, b]×[c, d] with a, c > 0. Assume l(x, y) > 0 and define the positive function ||f ||(x, y) ≜∑M,N
m,n=0 |amn|xmyn over R. Given (x0, y0), (x, y) ∈ R with 0 < |x0 − x|, |y0 − y| < h, where

h > 0 is so small that nh << 1 for n =M,N, I, or J , then p(x, y) ≜ f(x, y)/l(x, y) satisfies
the error estimate

|p(x0, y0)− p(x, y)| ≤ (C(M,N) + C(I, J)) sup
(x,y)∈R

(||f ||(x, y)/l(x, y)), (8.7)

where, for n ∈ N with nh < 1, we define γn ≜ nh/(1− nh), and

C(p, q) ≜ (e1/a − 1)γp + (e1/c − 1)γq + (e1/a − 1)(e1/c − 1)γpγq

for p, q ∈ N. (We leave it to the reader to verify.)

In Example 5, x ≜ g and y ≜ t0, R is the rectangle [1475/10000, 3]× [8/15, 5], and f(g, t0)
is given in Example 5. Write, for H in (7.14),

H = f(g, t0)/l(g, t0), l(g, t0) ≜ 405000 t30 g
2 (3t0 + 2) (3gt0 + 2) > 0,

Since M = 4, N = 6, A = 3, and B = 5, if we take h ≜ 10−20, the error estimate
(8.7) gives that C(M,N) +C(A,B) is in the magnitude of 10−17, and an elementary mini-
max estimate derives ||f ||(x, y)/g(x, y) ≤ 1 for all (x, y) ∈ R, so that the error is in the
magnitude of 10−17. Consequently, all the engaged computations for the data satisfying
H ̸= 0 to obtain, e.g., (8.6) are accurate up to the tenth decimal place if we set the last
significant decimal place to be the twentieth; all the undesired values above, in fact, are such
that their third decimal digits are nonzero to satisfy H ̸= 0.
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