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ABSTRACT. Up to now the only known constantly curved sextic curve, i.e., holomorphic
2-sphere of degree 6, in the complex G(2,5) has been the first associated curve of the
Veronese curve of degree 4, which indicates that such curves are rare to find. Exploring the
rich interplay between the ramification of harmonic sequences in differential geometry and
algebro-geometric properties of projectively equivalent Fano 3-folds of index 2 and degree
5, we invoke the moduli space structure of sextic curves in the Fano 3-fold often referred
to as Vs to confirm the rarity of constancy of curvature, by establishing that the harmonic
sequence of a generic sextic curve in G(2,5) is totally unramified. This paper proposes to
investigate from the Galois viewpoint the way ramification can appear in relation to the
constancy of curvature among nongeneric sextic curves in G(2,5).

To this end, we break it into two cases. The first is when the sextic curve is GL(5, C)-
equivalent to a curve v C V5 not living in the PSLa-invariant tangent developable surface
S of Vs, where we may lift v to a Galois cover in the CP? containing PSLs. By studying
the branch points of the Galois covering in connection with the intersection of v and S
in Vs, we categorize such « further into two sub-families, namely, the family consisting
of those « ramified at the singular locus of S somewhere, to be labeled as the generally
ramified family, and the family complementary to it. In the second case when the 2-sphere
is GL(5,C)-equivalent to a ~ living in S, we show by the PSLs-invariant theory that it
necessarily belongs to the generally ramified family.

We prove through elaborate PS La-transvectant and engaged unitary analyses that, up
to the ambient unitary equivalence, the moduli space of constantly curved sextic curves
in G(2,5) that are GL(5,C)-equivalent to those in the generally ramified family, is semi-
algebraic of dimension 2, all members of which barring the above Veronese curve are
nonhomogeneous. Many explicit examples can be constructed.

We also outline in general the structure of the Galois covers of the sextic curves in the
family complementary to the generally ramified family. It appears to suggest, through all
classes of rational Galois covers we have completely classified, each dependent on a single
parameter, that the constantly curved sextic curves in G(2,5) that are GL(5, C)-equivalent
to the ones in this family, be nongeneric among all constantly curved ones in G(2,5).
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1. INTRODUCTION

Minimal surfaces constitute one of the most enduring topics in Differential Geometry
that not only enjoys its deep links with partial differential equations, complex analysis, and
algebraic curves, but also finds intriguing connections to the physical world. In 1980, Din and
Zakrzewski [16] classified complex projective o-models, or, mathematically, harmonic maps
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from the 2-sphere to the ambient projective space, to be the (projectivized) basis elements
of a Frenet frame of a holomorphic CP' into the ambient space. Subsequently, Burstall and
Wood [6], Chern and Wolfson [10], and Uhlenbeck [40] independently generalized it to other
ambient spaces by different methods.

Of all minimal surfaces, those of constant curvature in different ambient spaces form a
model class that have continually drawn attention, such as Calabi [§], Wallach [41], Do
Carmo-Wallach [I§], Chen [9], Barbosa [2], Kenmotsu [26], and Bryant [5] in the real space
forms, Kenmotsu [27], Bando-Ohnita [1], Bolton-Jensen-Rigoli-Wood [3], Chi-Jensen-Liao
[11], and Kenmotsu [28] in the complex projective spaces, and Yau [43] in Kéhler manifolds
of nonnegative constant holomorphic sectional curvature. In particular, constantly curved
minimal 2-spheres in the real space forms are Boruvka spheres [4], up to rigid motion.
Similarly, constantly curved minimal 2-spheres in the complex projective spaces are, up to
rigid motion, the (projectivized) basis elements of the Frenet frame of the Veronese curve of
constant curvature, where the proof followed from Calabi’s rigidity principle [7] that states
that if the isometric embedding from one complex manifold into the complex projective
space exists, then it is unique up to rigid motion.

The rigidity principle of Calabi no longer holds for general ambient spaces. Motivated by
the Grassmannian o-models introduced by Din and Zakrzewski [17] and the rigidity prin-
ciple, the first named author and Zheng [13] classified the noncongruent, constantly curved
holomorphic 2-spheres of degree 2 in G(2,4) into two 1-parameter families, by exploring the
method of moving frames and Cartan’s theory of higher order invariants [22]. Later on, Li
and Yu [31] classified all constantly curved minimal 2-spheres in G(2,4), using the Pliicker
embedding and the theory of harmonic sequences.

The next simplest ambient space is the complex Grassmannian G(2,5). By analyzing
a 2 x 5 matrix representation of a holomorphic CP!, constantly curved holomorphic 2-
spheres in G(2,5) are divided into two classes by Jiao and Peng, the singular and the
nonsingular ones (a technical condition different from the usual geometric meaning, see
Section for definition). They classified nonsingular constantly curved holomorphic 2-
spheres of degree less than or equal to 5 in G(2,5), and proved the nonexistence of such
spheres with degree 6 < d < 9 [23] 24]. For the singular category, however, as the degree
increases the computational complexity involved in their method rises dramatically. It is
thus technically difficult to apply the method to construct singular 2-spheres in general.
Subsequently, there have emerged several partial classifications (e.g. under the condition of
total unramification or homogeneity) of constantly curved holomorphic (minimal) 2-spheres
in G(2,5) or G(2,n) in general; see [7,[34] and the references therein.

Constantly curved holomorphic 2-spheres in G(2,4) and G(2, 5) have also been studied by
Delisle, Hussin and Zakrzewski in [I5] from the viewpoint of Grassmannian o-models, where
the classification results they obtained coincide with those mentioned above. Moreover, they
posed a conjecture about the upper bound of the degrees of constantly curved holomorphic
2-spheres in the Grassmannians. This conjecture was affirmed by them in the case of G(2,5),
for which the upper bound equals 6 (see also a recent paper [21] with more detailed proof
by He).

At the critical degree d = 6, however, there does exist a singular (in the above sense)
constantly curved holomorphic 2-sphere of degree 6 in G(2,5), namely,

(1 27 622 223 z4)

0 1 6z 322 223 (1.1)
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referred to in this paper as the standard Veronese curve in G(2,5). To the authors’ knowl-
edge, it has been the only known example in the literature. Surprisingly, we will show in
this paper that the moduli space of constantly curved holomorphic 2-spheres in G(2,5) has
a 2-dimensional semialgebraic component, modulo rigid motion, out of which many explicit
examples can be constructed.

Different from all existing methods, to see whether there are constantly curved holomor-
phic examples of degree 6 other than the standard Veronese curve in G(2,5), let us return
to our paper [12] for motivation, where we investigated constantly curved holomorphic (and
minimal) 2-spheres of degree d in the complex hyperquadric. Such a holomorphic 2-sphere
is a rational normal curve of degree d sitting in a projective d-plane, so that the 2-sphere
lies in the intersection of the d-plane and the hyperquadric called a linear section of the
hyperquadric, which is itself a quadric (may be singular). Thus, the moduli space of such
2-spheres is essentially a fibered space over the base space that is a semialgebraic subset of
the variety of linear sections of the hyperquadric.

In the same vein, albeit more sophisticated, via the Pliicker embedding, a holomorphic
2-sphere of degree 6 contained in G(2,5) C CPY is a rational normal curve (a sextic curve)
sitting in a projective 6-plane L in CP?; thus, the curve lies in the linear section LNG(2, 5).
Castelnuovo [14] showed that generic (see Section for definition) such linear sections
constitute the intriguing class of Fano 3-folds of index 2 and degree 5 all of which are
projectively equivalent (see also [36] for a detailed modern account and Section for a
quick overview).

Employing PSL(2, C)-representations, Mukai and Umemura [33] constructed a beautiful
Fano 3-fold of index 2 and degree 5, to be denoted by Hj henceforth (often denoted by
Vs in the literature), which can be identified naturally with the linear section of G(2,5)
cut out by the 6-plane L containing the above standard Veronese curve, whose tangent
developable surface S C Hg plays a crucial role in the sequel, where Ly turns out to be
precisely the projectivization P(Vg) of the irreducible PSL(2,C)-module Vg of dimension 7.
This fits ideally in our differential-geometric framework for computation when the condition
of constant curvature is engaged.

Recall a holomorphic curve F' : M — G(2,5) C CP? is unramified at p if the tangent
line to F' at p does not lie entirely in G(2,5), in which case F is totally unramified at p if
the curve [dF' A dF] € CP* is unramified as a projective curve at p. Now, transforming
by GL(5,C), we can use the sextic curves in H3 to parameterize holomorphic 2-spheres of
degree 6 in G(2,5). Takagi and Zucconi’s work on the Moduli space (Hilbert scheme) [38, [39)
of sextic curves in ?—[8, in which the intersection properties between a general sextic curve in
H} and lines and conics were investigated, turns out to characterize the total unramification
of harmonic sequences (see Theorem , from which we obtain that generic holomorphic
2-spheres of degree 6 in G(2,5) are not of constant curvature (see Theorem [4.2]).

To find constantly curved nongeneric holomorphic 2-spheres of degree 6 in G(2,5), we
explore the way ramification occurs from the standpoint of Galois covers. We approach
this by separating the analysis into two distinct cases. When a sextic curve v C 7—[8 does
not live in S, by exploring Mukai and Umemura’s orbit decomposition structure of Hg, we
may lift v to a Galois cover in the natural CP? containing PSL(2,C) (see Section
Studying the Galois covering at its branch points that cover the points of intersection of S
and the sextic curve, enables us to categorize all sextic curves not contained in S into two
classes, namely, the more flexible one labeled as the generally ramified family, consisting
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of those sextic curves ramified at the singular locus of S somewhere, and the more rigid
complementary one labeled as the exceptional transversal family.

In contrast, when a sextic curve 7 lives in S but not in its singular locus, through the
PSLy-invariant theory, we may explicitly lift v to a line in the same CP3, so that in
particular v also falls in the generally ramified family.

It turns out that a constantly curved holomorphic 2-sphere of degree 6, GL(5, C)-equivalent
to a sextic curve lying in the generally ramified family, spans a 6-plane L differing from Lg
by a diagonal transformation of GL(5,C). This is done through elaborate PS Lo-invariant
transvectant and engaged unitary analyses (see Section @ to yield the following.

Theorem. The moduli space M of constantly curved holomorphic 2-spheres of degree 6
in G(2,5), which are GL(5,C)-equivalent to sextic curves living in the generally ramified
family, is a 2-dimensional semialgebraic set, up to the ambient U (5)-equivalence.

The moduli space structure facilitates the computation to verify that the second funda-
mental form of all members of M are not of constant norm, and thus all but the standard
Veronese curve are nonhomogeneous.

Of particular interest are three points in the moduli space M, for each of which the
corresponding Fano 3-fold contains a unique constantly curved holomorphic 2-sphere of
degree 6, whereas the Fano 3-fold corresponding to a point other than the three in M
contains exactly two distinct constantly curved holomorphic 2-spheres conjugated to each
other in an appropriate sense (see Sections [7| and .

Our approach facilitates the explicit construction of many new examples, through algebro-
geometric means, of constantly curved 2-spheres of degree 6.

Based on Felix Klein’s work [29], we have completely classified all Galois covers of genus
zero and their corresponding sextic curves in Hj for the exceptional transversal family (see
Table 2, Section , which consists of a few l-parameter examples and hence at most
finitely many such of constant curvature in H3 by considering total unramification. (Since
the classification is long, we only indicate a couple of examples in the current paper. See
Section [5.4]) It is tempting to suggest, up to U(5)-equivalence, that there would be at
most finitely many 1-parameter examples of constantly curved 2-spheres in the transversal
exceptional family.

The paper is organized as follows. Section 2 is devoted to recalling the representation
theory of PSL(2,C), as well as Jiao and Peng’s classification of nonsingular (in their sense)
constantly curved holomorphic 2-spheres in G(2,5). In Section 3, we introduce briefly the
theory of generic linear sections of G(2,5) and the Fano 3-fold H% constructed by Mukai and
Umemura. In Section we show that generic holomorphic 2-spheres of degree 6 in GL(2,5)
are not constantly curved. In Section when a sextic curve v C ”HS is not in S, we introduce
its Galois lift in CP3, where Galois analyses lead to the generally ramified family that also
includes the case when v C S is not in the singular locus of S, as outlined above. Starting
from Section [6] we explore PSLo-transvectant and engaged unitary analyses in preparation
for the existence and uniqueness (Theorem of constantly curved holomorphic 2-spheres
of degree 6 in the generally ramified family in Section [7} and for the moduli space structure
of the aforementioned Theorem (Theorem and related results in Section (8} from which
interesting individual as well as 1-parameter families of new examples are exhibited.



2. PRILIMINARIES
2.1. Irreducible representations of SLy(C).

Let V,, be the the space of binary forms of degree n in two variables u and v, on which
SLs(C) (to be denoted by SLs) acts by

SLy X Vi = Vo, (9. f) > (g f)(w,0) £ F(g7" (u,0)"). (2.1)

It is well-known that V;,, n € Z>¢, are the only finite-dimensional irreducible representations
of SL2
Choose the following basis of V,,,

e & (?)%u”_lvl, [=0,...,n. (2.2)

Under this basis, write
(€0s---ren) p™(g) 2 (g €0,g-€1y---y 9" €n)- (2.3)
The representation p™(g) : SLy — GL(n + 1;C) induces the wedge-product representation
SLy x Vo ANV, = Vo AV, (gyer Ne) — (g-ex) A(g-er), 0<k,1l<n. (2.4)

For the sake of clarity, we view V,, AV}, as the space of anti-symmetric matrices A2C"H1,
by identifying er A ¢; with the anti-symmetric matrix Ey — Ej, € M, 1+1(C), where the
only nonvanishing entry of Fy; is 1 at the (k,1) position, 0 < k < [ < n. With the basis
{ex Nep | 0 < k <1 < n} (see (2.2))), it is not difficult to obtain the wedge-product
representation in matrix form,
PP SLy x NPCMHE 5 APCM (g, A) = (" (9)) - A - (0"(9)"
The Clebsch-Gordan formula states that (assume m > n)
Vm & Vn = Vm+n @ Vm+n—2 DD Vm—n-

Moreover, for any given number p € [0,n], the projection V;,, ® V,, — Vp,1n—2, can be
formulated by

(f ) o (f, by, & MDA = P! Z(—w‘(p) i I (2.5)

min! — i} OuP~—t0vt QutdvP—t’
1=

which is PS Le-equivariant and is called the p-th transvectant [37, Eq (2.1), p. 16]. Moreover,
Vn/\vn = %n—Q@%n—ﬁ@-‘-@w, (26)

where r is the remainder of 2n — 2 divided by 4, and the projections are the same as .

Gordan proved that the binary sextic Vg has 5 invariants and 26 covariants given by a
finite number of iterated transvectants [37, Table 1.1, p. 12; Theorem 2.1.3, p. 18], among
which (f, f)2, (f,f)a, (f, )¢ [37, Sections 4.5, 5.6] appear in geometry in an unexpected
way (see Proposition [3.1]).

2.2. Holomorphic 2-spheres in G(2,5).

We briefly review some basic facts of constantly curved holomorphic 2-spheres in the
complex Grassmannian G(2,5), and along the way introduce those nonsingular ones that
Jiao and Peng [23] defined and classified.

Throughout, we equip G(2,5) with the standard Kéhler metric induced from the Fubini-
Study metric of CPY when G(2,5) is realized as a subvariety of CP? by the Pliicker embed-
ding,

i:G(2,5) = P(A2CP) = CP?, span{u,v} — [uAv)].
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Explicitly, let {eo,€1,...,€4} be a basis of C°. Then {e; A€j|0 < i < j < 4} forms a basis
of A2CP so that p = [Z” pij € A €;] belongs to G(2,5) if and only if p A p = 0, which is
equivalent to

Po1P23 — Po2pP13 + PosPiz = 0, Po1p2a — po2p14 + poapr2 = 0,

Po1P34 — Po3pP1a + PoaP1s = 0, Po2psa — Posp24 + poap2s = 0, (2.7)

D12P34 — P13P24 + P1apas = 0.

Remark 2.1. It follows from the definition that G(2,5) is PSS Lo-invariant under the wedge-
product action p* A p* given in (2.4).

Let ¢ : CP! — G(2,5) be a holomorphic 2-sphere. It follows from the Normal Form
Lemma [35] that there exist two holomorphic curves f,g : CP! — CP*, such that ¢ =
span{f,g}. Explicitly, choosing an affine coordinate z on CP!, we can write f(z) =
(fo(2),..., fa(z)) and g(z) = (go(2), ..., g94(2)) as row vectors with polynomial entries except
at some isolated points.

In view of Remark we obtain that ¢ is of constant curvature K if and only if i 0 ¢
is of constant curvature K under the Pliicker embedding. This guarantees that the rigidity
principle of Calabi can be employed to study constantly curved holomorphic 2-spheres in
G(2,5), which we rephrase as follows for reference.

Lemma 2.1. Let f : CP' — CP" be a holomorphic 2-sphere of degree d. The following are
equivalent.

(1) The Gauss curvature K of f is % . Furthermore, up to the action of U(n + 1) and
Mébius reparametrization, f is given by the Veronese sphere

Zy(z) A2 [1:Vdz:---: (,‘j)z’C oo 29 (2.8)
(2) There is an affine chart z € C over which |f|? = (1 + |z|?)%.

(3) There is an affine chart z € C over which f = ZZ:O \/ (Z) Ap2¥, and {Ag, A1, -+, Ag}
forms an orthonormal basis of the d-plane spanned by f.

For a constantly curved holomorphic 2-sphere ¢ : CP! — G(2,5), it is known [23] [31]
that ¢ can be parameterized as ¢ = (1(2)", gpg(z)t)t with

©1(2)=(1,0, p12(2), 13(2), 014(2)), 2(2)=0, 1, p22(2), p23(2), P24(2)), (2.9)
where ¢1;(2) and ¢9;(z) (2 < i < 4) are polynomials vanishing at z = 0. In the sequel,
will be called a standard parameterization of p. We point out that this kind of pa-
rameterization is not unique. In fact, if {¢1, @2} is a standard parameterization of ¢, then
{apr + Bpa, —Bp1 + s} is also a standard parameterization after rotating eg and €; while
maintaining |a|? + 8% = 1.

In [23], a holomorphic 2-sphere ¢ : CP! — G(2,5) is called nonsingular if there exists a
standard parameterization {¢1, @2} of ¢, such that [p1(00)] # [p2(c0)] in CP%. Otherwise,
@ is called singular. It is easy to verify that ¢ is nonsingular if and only if there exists a
standard parameterization {¢1, @2} of ¢, such that

deg ¢ = deg 1 + deg . (2.10)

Using a standard parameterization, one can construct explicitly nonsingular examples as
was done by Jiao and Peng in [23]. Indeed, under the nonsingular assumption, Jiao and
Peng in the paper proved the following nonexistence result.
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Theorem 2.1. There does not exist nonsingular holomorphic constantly curved 2-spheres
of degree 6 in G(2,5).

The idea goes as follows. By contradiction, otherwise, it would follow from that
we had only three possibilities that (degy1,degp2) = (5,1), (4,2), (3,3). In each case, we
obtained vectors Ay, 0 < k < 6, where i o @ = 1 A g 2 22:0 \/(];T)Akzk, in terms of
undetermined coefficients of ¢; and ¢y to violate item (3) of Lemma

As the degree of ¢ increases, however, the number of undetermined coefficients rises
dramatically, so that it is technically difficult to apply the method to construct singular
2-spheres.

It is readily verified that the Veronese curve (|1.1)) given in the introduction is singular in
terms of Jiao and Peng’s definition, where a standard parameterization in the sense of

can be chosen to be
1 0 —v622 —423 —324
01 6z 322 223 )

We point out that this example is smooth (nonsingular) in the usual algebro-geometric
sense, which is indeed what we are after.

(2.11)

2.3. Reducible and Irreducible holomorphic curves in G(2,5).

For later purposes, we develop the extrinsic geometry of holomorphic curves in G(2,5)
from the viewpoint of developable surfaces.

Let f: M — G(2,5) be a holomorphic map from a Riemann surface M. Composed with
the Pliicker embedding, F' £ i o f is a holomorphic curve in CP? = P(A2C). Since F lies
in G(2,5), we have F'A F = 0, whose derivative with respect to a local complex coordinate
z yields that F' A OF/0z = 0. Consider the tangent developable surface D of F in CP?,
spanned by F' and its tangent line OF /0z,

D2 {[uF +v0dF/dz] | [u:v] € CP'}.

Lemma 2.2. The following are equivalent.

(1) The tangent developable surface D of F' lies in G(2,5).
(2) OF 0z NOF 0z = 0.

The lemma follows by differentiating (u F'+ v 0F/0z) A (uF + v0F /0z) = 0 while em-
ploying FFAOF/0z = 0.

Inspired by the first item in Lemma we call a holomorphic curve f : M — G(2,5)
reducible, if the tangent developable surface D of F' = i o f also lies in G(2,5); otherwise,
we call f irreducible. If f : M — G(2,5) is irreducible, then 0F/0z A OF /0z has isolated
zeroes, which we call ramified points (with multiplicity) and f is said to be ramified at these
points.

Remark 2.2. In the theory of harmonic sequences, a holomorphic curve f : M — G(2,5) is
called reducible if the rank of the next term fi is strictly less than 2; see [25]. This definition
coincides with the above definition. We thank Professor L. He for helpful discussions about
1t.

It was proven in [19] that a constantly curved reducible holomorphic 2-sphere of degree
6 is rigid, which is unitarily equivalent to the standard Veronese curve (1.1) in G(2,5). As

a result, we need only consider irreducible holomorphic 2-spheres in G(2,5) in the sequel.
7



3. ALGEBRO-GEOMETRIC PREPARATION

3.1. Generic linear sections of G(2,5) and Fano 3-folds of index 2 and degree 5.

To motivate, a holomorphic 2-sphere of degree 6 in G(2, 5) lies in a 6-plane L in P(A2C%) =
CPY and so it lives in the intersection L N G(2,5) called a linear section of G(2,5). The
dual 2-plane of L in (A2C®)* is given by a linear system

AN+ pB + 701, A:p:7] € CP? (3.1)

where A, B, C are fixed skew-symmetric matrices of size 5 x 5 identified with elements in
(A2CP)*. Following [36], we say that L is generic if all matrices in the linear system are of
rank 4, and the associated cut L N G(2,5) is referred to as a generic linear section. Let us

look at a concrete example next.
By the Clebesch-Gordan formula ([2.6]), we obtain that A2C® = V5 @ Va. Here, we identify
Vs with a SLo-invariant subspace of 5 X 5 anti-symmetric matrices by

0 ao al \/gaz %ag
6 —agp 0 \/%0.2 %as \/§a4
Z \/ (?)aiu(s*ivi > —aq —\/gag 0 \/gaz; as . (32)
i=0 7\/%112 7%0«3 *\/gtu 0 ag

1 3
— /598 —\/gcm —as —ag 0

Let {e;} be an orthonormal basis of C5. An orthonormal basis of Vg is given by

Eoéeo/\el, Eléeo/\eg, Egé\/3/560/\63—|—\/2/561/\62,
FE5 é1/\/560/\644—2/\/561/\63, E4é\/3/561/\64"‘!‘\/2/562/\63, (33)

A A
E5 :62/\64, Eﬁ 263/\64.

It is readily checked that uv(u* —v*) (respectively, u%) in Vi corresponds to (Ey — E5)/v/6
(respectively, Fy). Note that, the dual plane to Vj is given by a linear system of the form

in (3.1]), where
A2 V6po3 —3p12 =0, B2 2pos —p13 =0, C 2 V6p14 — 3pa3 = 0. (3.4)

It is also readily checked that the rank of [AA + uB + 7C] is 4 for every [X: pu: 7] € CP2.
Therefore, as a linear section,

H3 2 P(V5) NG(2,5),
is generic.

Note also that the space P(Vj) is the 6-plane spanned by the standard Veronese curve in
, which is precisely the orbit PSLsy -5 confirmed by a computation with (Ep, - - - , Eg) -
Zs(z), where Zg is given in , to see that they are agreeable.

We include a short outline of the following well-known fact for the reader’s convenience.
Our reference is [36].

Theorem 3.1. All generic linear sections LN G(2,5) are PGL(5, C)-equivalent to H3.

To begin, the Pfaffian of a (2n) x (2n) skew-symmetric matrix M with entries a;; is
defined to be

pf(M) £ Z sgn(a) iy j1 Qg jo * * * Wiy i
g

where o : {1,2,---,2n} — {i1,J1,%2,52, " ,in,jn}, in order, runs over permutations of
{1,2,---,2n} satisfying is < js,1 < s < n, and i; < i9 < --- < i,. The Pfaffian enjoys
8



the property that if N is a (2n+ 1) x (2n + 1) skew-symmetric matrix of rank 2n, then the
1-dimensional kernel of N is spanned by the vector (vy, -+ ,v2,41), where v; is the diagonal
Pfaffian of the (2n) x (2n) skew-symmetric matrix obtained by deleting the ith row and
column.

Now, since the dual 2-plane of a generic 6-plane L in P(A%(C®)) is a linear system [AA +
puB+7C), [\ : 7] € CP?% all of whose 5 x 5 skew-symmetric matrices are of rank 4, we
can use the associated diagonal Phaffians to define the center map

c:[A\:p: 7] € CP? = projectivized center of [AA 4+ uB + 7C] € CP*.

It is then verified that the center map is an embedding of CP? into CP?* of degree 2, and
thus the image of c, called the projected Veronese surface, is a generic projection from
the standard Veronese surface in CP® to CP*. Consequently, any two such 2-plane linear
systems are PGL(5,C)-equivalent, and so are the corresponding linear sections. In fact,
LN G(2,5) is the closure of all lines in CP? intersecting the associated projected Veronese
surface in three distinct points.

Exploring the center map ¢, the authors in [36] also obtained the automorphism group of
a generic linear section L N G(2,5).

Theorem 3.2. The automorphism group of a generic linear section LN G(2,5) is PSLs.

Generic linear sections L N G(2,5) constitute all Fano 3-folds of index 2 and degree 5,
first classified by Castelnuovo [14], a typical one of which is to be denoted by H3 henceforth;
here, the degree is that of the Fano 3-fold as a subvariety of CP?, and the index is the
difference between its degree and codimension in G(2,5), so that its anti-canonical bundle
is ~ O(2). To reference, we call H3 = P(Vg) N G(2,5) introduced earlier the standard Fano
3-fold.

We point out that the automorphism group of a Fano 3-fold of index 2 and degree 5 has
also been studied by Mukai and Umemura in [33] from the viewpoint of algebraic group
actions. By considering the action of PSLy on P(Vg), they proved that the closure of
PSLs - uv(u* — v*) is precisely ’Hg. In the same paper, they also obtained the following
beautiful orbit decomposition structure on 7—[8.

Theorem 3.3.
Hp = PSLy - uv(ut —v?) = PSLy - uv(u® — v*) U PSLy - u’v LU PSLy - u®.

Remark 3.1. In the above orbit decomposition, PSLs-uv(u*—v?) is of dimension 3, which
is parameterized as

fi1: PSLy — P(Vg), [(Z Z)] — [(CCL Z) cuv(ut — o) =Jagay : - agl,

ap 2 —V6dPc +V6dc®, ay 2 d* (ad + 5bc) — ¢*(5ad + be),

az £ —bd? (ad + 2b¢) V10 + ac® (2 ad + be) V10, (3.5)
as 2 b2d? (ad + be) V30 — a®c? (ad + be) V30,

ag 2 —b3d (2ad + be) V10 + a’c (ad + 2 be) V10,

as 2 b*(5ad + be) — a* (ad +5bc), ag 2 —V6b°a + V6ba®.

Similarly, the orbit PSLo - uS is parameterized as

[(Ccl Z)] = [d® s —VBbd® : VIBHRA! 1 V200 VI1Bbd? : —V/Bbd : ). (3.6)
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It is precisely the Veronese curve Zg in (2.8]). Its tangent developable surface constitutes
the closure of the 2-dimensional orbit (see [33)]),

PSLy-ubv = PSLy - u’vU PSLy - u°,

where PSLy - u?v has the following parameterization

f2: PSLy = P(Vg), [(Z fl)m[(ij >.u5v]=[bo:b1:~-:b6],

b 2 —V6d¢c, b 2 d*(ad+5bc), by 2 —bd® (ad + 2bc) V10, (3.7)
b3 2 b2d? (ad + be) V30, by 2 —b3d (2ad + be) V10,
bs 2 bt (5ad + be), b & —V6b a.

QL

Meanwhile, using the invariants and covariants of the binary sextic (see (2.5))), we remark
that the above orbits have another SLs-invariant characterization.

Proposition 3.1. Given f = Z?:o (G)aiuﬁﬂ'v" defining [f] € P(Vg), we have

%

(1) [f] lies in H3 = P(V5)NG(2,5) = PSLy - uv(u* — v?) if and only if the 4-th transvec-
tant (f7 f)4 =0,

(2) [f] lies in the closed 2-dim orbit PS Lo - udv if and only if the 4-th and 6-th transvec-
tants (f, f)a and (f, f)e¢ vanish, and

(3) [f] lies in the 1-dimensional orbit PSLsy - uS if and only if the 2nd transvectant

(fa f)2 =0.
For later purposes, we quote the following well known calculations: (f, f)2 = Hess(f)/450.

(f, f)6 = 2apag — 2a1as + 2azas — a3. (3.8)

4
(fs f)a= Z \/6751%472‘111', where
=0

2 6
to = B(\/ﬁao% —V30aia3 + 3a3), t; = \g(5a0a5 — V15a1a4 + V2azas),
6 6
ty & \g(SaoaG — 3agas +2a3), t32 \12(5(11% — V15aa5 + V2a3a4), (3.9)
2
ty 2 B(\/ﬁagag — v/ 30azas + Sai).

4
We point out that %f ANf=tyiegN---NE A Neg € P(A*(C?)), where the notation
i=0

€; means that we omit the term e;.
Meanwhile, since H3 and the 5-quadric Q5 defined by

Qs ={[f] € P(Vs) : (f, f)e =0} (3.10)

are both PSLo-invariant in P(Vs), the closed 2-dimensional P.SLy-orbit is precisely Qs NH}.
Note also that (f, f)2 vanishes if and only if f is the 6-th power of a linear form; see [30,
Prop 5.3, p. 71] for an algebraic reason.
10



Remark 3.2. The isotropy groups of the two orbits of Hy of dimension > 2 are given below.
(1) The open orbit PSLy - uv(u* — vt) : Its isotropy group at uwv(u* —v*) is the projective
binary octahedral group of order 24, isomorphic to S4, consisting of the following elements
(€2 218 | =0,1,...,3):

(6 je) (e 6) (06 )

o () (4 (V)

(2) The 2-dimensional orbit PSLo - u®v : Its isotropy group at u’v is

a 0 *
{(0 1/a>|a€(C} mod =+ Is.
For later computational purposes, we prove the following.

Lemma 3.1. Let A be a matriz in SLy. Then
p'(A) - (Eo, Ei, ..., E) = (Eo, En, ..., Eg) p°(A), (3.11)

where the left-hand side with a dot is the N*-action of p*(A) on Vg C A%(CP) and the
right-hand side without a dot is a matrixz multiplication.

Proof. Since the Clebsch-Gordon transvectant 7 2 fAg — (f, ¢)1 in (2.5) is SLo-equivariant,
we obtain from the commutativity of the diagram

4
vinve 2 viav

l” » l“ (3.12)

V6p—>V6

that pS(A) : Vg — Vg is induced from the AZ-action of p*(A) (see (2.4)). O

4. GENERIC HOLOMORPHIC 2-SPHERES OF DEGREE 6 IN G(2,5)

In this section, we prove that generic holomorphic 2-spheres of degree 6 in G(2,5) are not
of constant curvature. Here, a holomorphic 2-sphere of degree 6 is called generic if it differs
from a general (in the sense given in [39, Condition 3.20]) rational normal curve of degree 6
(a sextic curve) in the standard Fano 3-fold H§ by a transformation in GL(5,C).

Firstly, we review some results of general sextic curves in ’HS’ referred to as the quintic
del Pezzo 3-fold and denoted by V5 in [38] [39]. In these two papers, Takagi and Zucconi
investigated the moduli space (Hilbert scheme) of sextic curves in H3. (Their results are
more general; we only invoke the special case when the curve degree is 6.) Let H® be the
Hilbert scheme whose general points parameterize sextic curves in ’HS’. The following results
(see Corollary 3.10 in [38], Proposition 2.3.1, Proposition 2.3.3 and Proposition 2.3.4 in [39])
were proved.

Proposition 4.1. The closure of H® is an irreducible variety of dimension 12. Moreover,
for a general sextic curve Cg in Hy,
(1) Cs intersects the closure of the 2-dimensional orbit PSLy - uSv simply,

(2) there exist at most finitely many bi-secant lines of Cg in Hy, and any one of them
11



intersects Cg simply, and
(3) Qlc, has no point of multiplicity greater than 2 for any multi-secant conic Q.

It turns out the above proposition can be used to prove that general sextic curves in 7—[8’
are totally unramified in the sense of harmonic sequences [10], from which we can derive that
generic holomorphic 2-spheres of degree 6 in G(2,5) are not of constant curvature. Recall
(below Lemma [2.2)) that a holomorphic 2-sphere F': CP! — G(2,5) is unramified if F' A F”
is nowhere vanishing, in which case it is called totally unramified if, furthermore, the curve
[F' A F'] : CP! — P(A*CP) = CP* is unramified as a projective curve, which is equivalent
to saying that F” A F’ is nowhere parallel to F’ A F’. Our key observation is the following
interesting algebro-geometric characterization of total unramification.

Theorem 4.1. Let F : CP! — G(2,5) be a holomorphic 2-sphere of degree 6.

(1) F' N F' is zero at a point p if and only if the tangent line of F at p lies in G(2,5).

(2) Assume F' N F'" is nonzero at p. If [F' N\ F'] is ramified at p, then there exists a conic
Q tangent to F' at p such that Q|p has multiplicity no less than 3 at p.

Proof. The conclusion in (1) follows from F A F’ = 0 so that
(F+tF'YAN(F+tF)=t*F'AF', tc C.

For the conclusion in (2), we assume that F' = f A g. Since F' A F’ does not vanish at p,

we can choose a basis {e1,ea,--- ,e5} of C° such that

F(p) =e1Nea, F'(p)=e1 Nes—ex Aey, (4.1)
and

F"(p) = f"(p) Nez —2e3 Aes+e1 A g (p). (4.2)

If [F" A F'] is ramified at p, then there exist two complex number « and f such that

(aF(p) + BF"(p)) A F'(p) = 0.

It follows that

f"(0),9"(p) € {e1,e2,e3,ea}. (4.3)

Consider the 2-plane P, spanned by {F(p), F”(p), F”(p)} and its intersection with G(2,5).

Using ([4.1)~(4.3), it is easy to verify that [F(p) + zF’(p) + yF"(p)] lies in G(2,5) if and
only if

—dy +22% + NP+ pxy =0 (4.4)
for two constants A and p, which means that the intersection P,NG(2,5) is exactly a conic.
We denote this conic by Q.

We choose a local coordinate z near p such that z(p) = 0. It follows from the Taylor

22 .28 2%

expansion of F' at z = 0 that, near p, F' can be parameterized as [1 : z: 5 : 55 : -+ : &,
with respect to the frame {F(p), F’'(p), F"(p), -, F¥(p)} on the d-plane containing F.
Substituting z = z and y = % into the left-hand side of (4.4]), we have

H
2

A
—dy + 207 + Ny + pay = 2 (5 + 72),

which implies Q|r has multiplicity no less than 3 at p. O
Proposition Theorem and an easy construction of a totally unramified sextic
curve in G(2,5) whose curvature is not constant, imply that a generic holomorphic 2-sphere

of degree 6 is totally unramified, and so we obtain the main result of this section.
12



Theorem 4.2. Generic holomorphic 2-spheres of degree 6 in G(2,5) are not of constant
curvature.

5. GALOIS COVERING OF THE HOLOMORPHIC 2-SPHERES OF DEGREE 6 IN G(2,5)

We see from the preceding section that holomorphic 2-spheres of degree 6 with constant
curvature in G(2,5) are nongeneric. To understand better how and when the ramification
in the sense of harmonic sequences can appear, we look at it from the Galois point of view.
We divide the discussion according to whether the curve lies in the closed 2-dimensional
P S Ly-orbit as follows.

5.1. The case when the curve lies in the closed 2-dimensional orbit.

Part of the following theorem is known to algebraists [42]. We give a straightforward

proof pertaining to our geometric situation here.

Theorem 5.1. Let F : CP! — H} be a rational normal curve of degree 6. Assume F lies

in the closed 2-dimensional orbit PSLs - udv but does not coincide with the 1-dimensional
orbit. Then F can be lifted to a projective line ¢ : CP1 — CP3 in the diagram

cp3
¢ i 5.1
}fz (5.1)
cp' I CPS,
where fa is given in (3.7). Moreover, F intersects the 1-dimensional orbit.
Proof. We give a proof based on the PSLs-invariant theory.
Firstly, we show the existence of the lift ¢. Assume that F' = Z a;(z) (?) 6=ty where

a;(z) are polynomials of z with a;(z) # 0 because F' is linearly full Then by (3.9), we obtain

\/ﬁalag — \/§a2 o — \ﬁalag — 3a1a2 — \faoagag
V50 ) 5 5a(2) )
S\ﬁalagag — 3\fa2 — 2faoa3
5[&0

By (3.8) and (5.2), F' lying in the closed 2-dimensional orbit PSLs - u®v is equivalent to

9 , 2v2(V15a} — 9agaz)ar  2(8v/T5agaz — 15a3)a}
0=Qs=—=d} " 2 09
5 5@0 25@0

ag =
(5.2)

ae =

We can directly write down the lift ¢ = [<z Z)] by assigning

V6a;  —5v10aias + 15v5agas —v/10a1as + 3v5agas
—+ y b= )
ao 10a? — 4v/15apaz 10a? — 4v/15apa
c=—1,and d = 1. In fact, given ¢ - u’v = (u + av)(u — bv)®, we derive that

Zgz \/7 0=yt 2 F — ag(u + av)(u — bv)® = 0 (5.5)

13
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in C(agp, a1, a2)as]/(Qs), viewing ay, ..., as as independent variables. To see this, by direct
computations, g9 = ¢g1 = 0, and g; = r; - Q5, 2 < i < 6, for some polynomials r; €
C(ao, a1, az)las] with degree deg,.(r;) =i—2, 2 < i < 6, which can be obtained by Euclid’s

coef‘f(gg,ag7 )

division algorithm; for example, ro = coell(Qn.a5.2)?

etc. The only thing to remark is that

5a3 — 2v/15agaz # 0 (5.6)

in (5.4). Otherwise, as = \ﬁal , and then by (5.3), 0= Qs = % to yield a3 =
3

@%1, so that by the graph structure (5.2) we obtain F' = MC&%M, which contradicts

the assumption that F' does not coincide with the 1-dimensional orbit. (In the following
Remark , we will motivate the choice of a and b given in the lift ) Moreover, F
intersects the 1-dimensional orbit P.SLs - u® at the zeros of a + b.

In conclusion, we have the above commutative diagram (5.1]). Next, we show that ¢(CP')
is a projective line. We may assume that a, b, c,d are polynomials of an affine coordinate
z, after factoring out the common denominator. Set o = gcd(a,c), 8 = ged(b,d), and

A2 (g;z Z%) Then

5. (a b)Y 5 a 0\ 5 _ (55 5. _ A5
o uv—<c d> uv-(A(O ﬂ>) uwv = (f’a) A -u’v=A- u’v,
after projectivizing. We may thus assume that ged(a,c) = ged(b,d) = 1 and ¢ = A in the
following arguments.

By (3.7) and that F' is nondegenerate in CP®, none of a, b, ¢, d are identically zero, from
which there induces two non-constant holomorphic maps

¢1:CP! - CPY, 2z [a: c; ¢2: CP' - CPY, 2 [b:d].
Moreover, the coordinates by, by, - - - ,bg of F' given in (3.7]) cannot vanish simultaneously at
any point of C. Therefore,
deg(F) = Orilaécﬁ{deg(bi)} < max{dega,deg c} + S max{degb, deg d} = deg(¢1) + 5deg(¢2), (5.7)

where we have used the fact that b; are homogeneous of bidegree (1,5) in (a,c) and (b, d),
respectively. We assert that the reverse inequality of also holds. To this end, multiply-
ing a matrix from the left by interchanging the rows, we may assume that deg(a) > deg(c).
If deg(b) > deg(d), then

deg(F) > deg(bg) = deg(a) + 5deg(b) = deg(¢1) + 5deg(¢2);

otherwise, deg(F') > deg(b1) = deg(a) + 5 deg(d) = deg(¢1) + 5 deg(p2). Hence, we have the
equality in ((5.7). Lastly, since both ¢; and ¢9 are non-constant, it follows from deg(F') = 6
that deg(¢1) = deg(¢2) = 1. Therefore ¢ is a projective line in CP3.

U

Remark 5.1. [t follows from the PS Lo-invariant theory that the curve F' lying in the closed

2-dimensional orbit is equivalent to F' and g—i having a greatest common divisor G of positive

degree in u. Indeed, their resultant with respective to u is Res,(F, %) = 62208@003062? = 0.

Moreover, G can be found by Eculid’s algorithm through F = (yu + ,Lw)g% + G, where
G (2v/15agaz — 5a%)v? A (a1azv2 — 3agaz)v/5v3 R T

6a0 3a0
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So, G is of degree 4 in u by (5.6). The proof that OF /Ou is divided by G, and G has a root
b of multiplicity 4 is similar to (5.5)). Thus, by the relations between roots and coefficients
for G, we derive b = 2705’ gwen in (5.4]). Moreover, b is also the root of F with multiplicity

5, and the simple root —a of F can also be found through —(—a) — 5b = _\%?1'

5.2. The case when the curve does not lie in the closed 2-dimensional orbit.
We identify the projectivization of the space of 2 x 2 nonzero (complex) matrices with

CP3 by
L:(Z Z)%[a:b:c:d].

Via ¢, the subset of 2 x 2 matrices of zero determinant is the following PS Le-invariant
hyperquadric @2 of dimension 2,

Q22 {[a:b:c:d € CP?|ad—bc=0}. (5.8)
Note that we can identify PSLy with CP3\ Q.

Theorem 5.2. Let F : CP' — H3 C G(2,5) be a sextic curve. If F does not lie in the closed

2-dimensional orbit PSLs - uSv, then there exists a compact Riemann surface g : M — CP3
covering F as in the following commutative diagram

M —2 5 Ccp3
l@o ifl (5'9)
cp! £, cps

Moreover, ¢ : M — CP? is a (branched) Galois covering, and the group of covering trans-
formations G = {0 € Aut(M) | ¢ oo = p} is a subgroup of Sy isomorphic to the isotropy
group at uwv(u* —v*?) given in item (1) of Remark (3.2).

Proof. Recall the invariant quadric Q)5 defined in , which cuts the sextic curve F in a
divisor of degree 12 with support points q1,--- , ¢ by Bezout’s theorem.

In the following, we abuse the notation to denote by ¢ either a point of the curve F(CP!)
or its preimage on CP!, whenever there is no possibility of confusion.

Consider the complementary set V.= CP! \ {q1,...,q}; F(V) lies in the open 3-
dimensional orbit Y £ PSLs - uv(u* —v*). Let U be a connected component of the fibered
product

UCV xy PSLy 2 {(p,B) €V x PSLy : F(p) = f1(B)}, (5.10)

with the two standard projections w1 and w9 onto V and PSLy C CP3, respectively. Then
U is an unramified covering space of V', by item (1) of Remark We extend my : U — V
to a ramified covering ¢ : M — CP! by the monodromy representation [20, Theorem 8.4,
p. 51], where M is a compact Riemann surface. Hence, we obtain the commutative diagram
, where g extends 7y, ¢ extends m, and M is the desingularization of the closure of
7 (U) in CP3.

Furthermore, the group of covering transformations G = {0 € Aut(M) | poo = ¢} is
isomorphic to the group

G={CeS,|V(¢g,B)eUCV x PSLsy, st. (¢, BC) € U}.
15



It is easy to see that the elements of the group G permutes the points on a regular fiber of
; thus, we obtain the isomorphism

GG, Croc®((g.B)eUr (¢, BCT),
whose inverse is given by
G—GCSy, o Cyp2glolg) '9(a), VaeU,

where Cj is well-defined due to that U is connected and the isotropy group Sy is finite.
Furthermore, the order of G equals d £ deg ¢, the number of points on a regular fiber.
Indeed, given a point (qo, By) € U, the fiber over g is

{(g0, BoCy), | Ci € Sa, 1< i < d}.

By definition, we have G C {C4,...,Cq}. On the other hand, for a given 1 < j < d,
since U and U - C; = {(q, BC}) | V¥ (¢, B) € U} are two connected components of the fiber
product V' xy PSLy through the same point (qo, BoC;) and so are identical, we conclude
that C; € G.

To show the Galoisness of ¢, given the data in (3.5) and (5.9)), consider the polynomial
equation

6
p(z,z) = Z \/@@i(z)azi =0, (5.11)
=0

where the entries of F(z) = [ag(2) : - -+ : ag(z)] belong to the polynomial ring C[z] such that
the coeflicients are relatively prime with the maximum degree 6. Then the splitting field of
p(p,z) £ o*(p(z,z)) over C(y), where ¢ is given in (5.9), is exactly the function field C(M)
of the covering M.

To see this, the splitting field belongs to C(M) due to that the six roots of p(p,x) are
linear fractions of the coordinate functions a, b, ¢, d of g(M). In fact, the map g over M in

splits f1 0 g = u% - p(p, 2) (see (5.11))) into
fiog= (Z Z) cuv(ut — vt = (du — bw)(av — cu) ((du — bv) — (av — cu)) x

((du — bv) 4 (av — cu)) ((du — bv) + V=1(av — cu)) ((du — bv) — vV—1(av — cu)),
where the six distinct roots are

A d sc+d c—d c++/-1d c—+/—1d
b’ S a+b a=b a++/—=1b a—+/—1b
Note that the denominators of the six roots can never be identically zero, since either of
them being identically zero would imply ag = ab(a* — b*) = 0 (the last coordinate in ([3.5))),
contradicting that F' is linearly full.

Conversely, let F D C(y) be any intermediate field of the function field of M. If F
contains the splitting field of , then we can use the first three roots in to solve
for g = % so that the curve g : M — CP?3 is given by

L

01 02

(5.12)

C
— 03
a

b d b — —
[a:b:c:d}:[lzf:E:f-f]:[l:02 s :02:0102 %, (5.13)
a a b a 03 — 01 03 — 01
Thus F contains C(¢)(a, b, c,d) = C(M) since g : M — CP3 is generically injective.
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We conclude that the covering ¢ : M — CP! is Galois of order d = [C(M) : C(¢)], and
the group of covering transformations of ¢ is the Galois group Aut(C(M)/C(p)).
U

For the lift g = <Z Z) : M — CP? as in Theorem to be referred to as a Galois lift

of F, we associate it with two meromorphic functions
r=cla, w2b/a.

We employ the geometry of the octahedron to study the Galois covering (.
The quadric Q2 defined in (5.8)) is a saddle surface in CP? isomorphic to CP! x CP! by

. 1 . . . .
the parametrization . 111)1):10 , where each pair (w, x) determines uniquely a point p € @2,

through which there passes a unique w-ruling L, £ {(w,z) | = € CP'}. Let S? be the
unit 2-sphere centered at the origin in R?, and let C be the complex plane projected onto
by the stereographic projection 1 : S\ {(0,0,1)} — C, with (0,0,1) mapped to co. We
identify the regular octahedron in S? by sending its top and bottom vertices to (0,0, 1) and
(0,0, —1), respectively, and identifying the four horizontal vertices with (£1,0,0), (0,+£1,0).
It is well-known that the symmetric group S4 is isomorphic to the projective binary
octahedral group, which acts on the regular octahedron as the rotational group of symmetry,
consisting of the identity, 6 quarter turns and 3 half turns around the axes passing through
two opposite vertices (see the 6 blue points in Figure , 6 half turns around the axes passing
through two opposite edge centers (see the 12 red points in Figure (1)), and 8 one-third turns
around the axes passing through the centers of two opposite faces (see the 8 green points in
Figure . The above 26 points (to be called centers in the following) enumerate all points
on the regular octahedron whose stabilizers are nontrivial under the above group action.

o (] e
e o
< °
e <
®
L L
L L ]

Fi1GURE 1. Octahedron

Composing the central projection of the regular octahedron on S? with the stereographic
projection, we can build a one-to-one correspondence between the points on the octahedron
and points on the extended plane CU{oc}. Under this correspondence, the above 26 centers
turn out to be the roots of the polynomial equation

(w® — w)(w® + 14w + 1) (w'? — 33w® — 33w* + 1) =0, (5.14)

where we also count w = oo as a root. We point out that the above three polynomial

factors take exactly the vertices, edge centers, and face centers as their roots, respectively.

Furthermore, via this correspondence, the symmetric group Sy (isomorphic to the projective

binary octahedral group) acts on the w-rulings of @2, and is exactly the action of the
17



. . o 1 w . e
isotropic group in item (1) of Remark (3.2) on <$ wx> by matrix multiplication on the

right, where the 26 centers are related to the 26 distinct eigenvectors of these isotropy
matrices.

Now, we introduce two important divisors to study the Galois covering . In the
following, we denote the degree of the covering ¢ : M — CP! by d, and the degree of the
curve g : M — CP3 by k.

Let O be the intersection divisor defined by g and the quadric Q2. By Bezout’s theorem,
we have deg(Q) = 2k.

In the following, we say that a hypersurface G = 0 of degree t in CPS is generic if
it does not contain the curve F' and it cuts out a divisor on F' whose support lives in
V = CP'\ F71(Qs). Projective normality [32, pp.230-231]) of the rational normal curve F
warrants the existence of generic hypersurfaces.

A generic hyperplane H = Z?:O c;a; = 0 in CP% with coordinates [ag : --- : ag] cuts
~v = F(M) in a divisor Dy of degree 6 whose support lies in V', while f; pulls the hyperplane
H = 0 back to a hypersurface of degree 6 in CP?3 that cuts g in a divisor D of degree 6k by
Bezout’s theorem. Since ¢|y is a covering map of degree d over V, the divisor D contains
the pullback divisor Dy £ ¢*(Dy) of degree 6d. Define their difference by F,

F 2D -"Dy. (5.15)
In the following, we denote the support of a divisor D by Supp D.

Remark 5.2. F is the fized part of the intersection divisors of g with the hypersurfaces of
degree 6 obtained by the coordinates of f1 given in (3.5), namely,

F = Oréliigf)_{g*(ai o f1)} (5.16)

Moreover, let G = 0 be a generic hypersurface of degree t in CP% not containing the curve
F. Then
g (Go f1) = " (F*G) + tF. (5.17)

Proposition 5.1. Let F : CP! — H} C CPS be a sextic curve not lying in the closed 2-dim
orbit PSLy -ubv, and g : M — CP3 be the Galois lift of F in the commutative diagram
(5.9). Then
F <. (5.18)
Moreover, for any given p € Supp Q,
(1) if w(p) is not associated with any of the 6 vertices, then ord,(F) = 0 and fi o g(p)
lies in the 1-dim orbit PSLsy - uS, and
(2) if w(p) is associated with one of the 6 vertices, then ord,(F) > 0 and fi o g(p) lies
in the 1-dimensional (respectively, 2-dimensional) orbit if and only if ord,(F) <
ord,(Q) (respectively, ord,(F) = ord,(Q)).
Proof. Recall the quadratic @5 in . Via f1in we have the remarkable S Lo-invariant
identity
Qs = 2apas — 2a1a5 + 2aza4 — a3 = (ad — be)®. (5.19)
Therefore, we derive that the support of F is contained in that of Q, since the former one
can be further determined (see Remark by setting the coordinate functions zero, i.e.,

ajofiog=0 0<i<6. (5.20)
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Suppose that p € Supp Q, i.e., g(p) € Q2. By the action of PSLy on H3, we may assume

9(p) = <(1) 7“5) : (5.21)

If w(p) is not associated with any of the 6 vertices, i.e., w* # 0,1, 00, then let U, be a
chart around p with local coordinate s and s(p) = 0. From (3.5) and ord,(c),ord,(d) > 1,
we obtain 0 = ord,(ag) < Oréli%{ordp(ai)}; thus fiog(p) =[0:0:0:0:0:0:1] lies in the

1-dimensional orbit PSLsy - u%, whence
ord,(F) = OrileG{ordp(ai)} = ordp(ag) = 0 < ordy(ad — be) = ord,(Q).

Next, we assume w* = 0,1, or co. By the action of PSLy and the isotropy group of u%
see Remark (3.2))) on Hj, we may assume tha
Remark (3.2 H y that

9(p) = (é 8> : (5.22)

Let U, be a chart around p with local coordinate s and s(p) = 0. By and the property
ord,(b), ordy(c),ord,(d) > 1, we obtain that if ord,(d) < ord,(b), then ord,(as) < ord,(a;)
for any j # 5, so that fiog(p) =[0:0:0:0:0:1:0] lies in the open 2-dimensional orbit,
whence

ord,(F) = 012126{ordp(ai)} = ordp(as) = ordy(d) = ordy(ad — be) = ord,(Q) > 0.

On the other hand, if ord,(d) > ord,(b), then ord,(as) < ord,(ax) for 0 < k < 5, so that
fiog(p)=[0:0:0:0:0:0:1] lies in the 1-dimensional orbit to yield

ord,(F) = ord,(as) = ord,(b) < ord,(ad — bc) = ord,(Q).

In conclusion, fjog(p) lies in the open 2-dimensional orbit if and only if ord,(F) = ord,(Q
O

).
Corollary 5.1. Assume the same setting as in Proposition[5.1 We have deg ¢ < degg <
% deg . Moreover,
(1) degg = degy if and only if F = 0.
(2) degg = %deg@ if and only if F = Q.
(3) Ifdegp =1, then degg = 1 so that g(M) is a line in CP3.

Proof. Counting the degree of both sides of (5.15)), by ([5.18) we obtain
6degg — 6degp = deg(F) < deg(Q) = 2degy,

which implies degp < degg < %degcp with the equality conditions as asserted in (1) and
(2). In particular, if degp = 1, then degg = 1 and g(M) is a line. O

5.3. The Generally Ramified Family.

By Theorem a sextic curve v in HJ is ramified in the sense of harmornic sequences at
a point ¢ if and only if the tangent line of v at ¢ lies in H3. An important class of lines in HJ
is given by the rulings of the tangent developable surface S (i.e., the closed 2-dimensional
PS Ls-orbit), which are exactly the tangent lines of the 1-dimensional orbit PSLs - u%; in
particular, that there is a unique line though ¢ in the 1-dimensional orbit implies that ~ is
ramified at ¢ if and only if v is tangent to the 1-dimensional orbit at g. Our investigation
of various examples and Galois analysis have prompted the following definition.
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Definition 5.1. We say that a sextic curve v in Hy is in the generally ramified family
if v is ramified (as always, in the sense of harmonic sequences) at the 1-dimensional orbit
PSLsy - u® somewhere.

Now, we give a characterization of tangency of ~ at the 1-dimensional orbit in terms of
intersection divisors. In the following, we denote the intersection multiplicity at a point
g € YN Qs by ordy(Qs), and we stipulate that ord,(Q5) = +o0 if 7 lies in Q5.

Proposition 5.2. Let F : CP! — H} be a sextic curve. F is ramified at the 1-dimensional
orbit at q if and only if ordy(Qs) > 4.

We defer the proof of this proposition to that of Proposition [6.1] for the sake of not
interrupting the smoothness of exposition. Immediately we obtain the following.

Corollary 5.2. Let F : CP! — 7—[8 be a sextic curve. If either the degree of the covering
©: M — CP! in Theorem equals 1, or F lives in the closed 2-dimensional PSLsy-orbit,
then I belongs to the generally ramified family.

Proof. When F' lives in the closed 2-dimensional orbit, the conclusion holds because the
curve intersects the 1-dimensional orbit at a point ¢ by Theorem [5.1] while the fact that
@5 = 0 on this curve implies ordy(Qs) = +o0.

For the other case, it follows from Corollary that the line g(M) cuts Q2 in two points
p1 and po. Since F = 0, p; and po are mapped to points on the 1-dimensional orbit by
f10g, at which there must hold ordy, (Qs) > 6 for i = 1 or 2. Then the conclusion follows
from Proposition [5.2 O

Henceforth, we assume that F' does not lie in the closed 2-dimensional orbit.

Lemma 5.1. Consider the Galois covering o : M — CP' with the Galois group G C Sy in
the same setting as in Theorem . Given p € Supp Q, denote by mult,(y) the multiplicity
of p atp, i.e., p: s YD) for g local uniformizing parameter s with s(p) = 0.

(1) Ifw(p

(2) If w(p
(3) If w(p
(4) If w(p
Proof. Let G, £ {0 € G | o(p) = p} be the stabilizer of p. Then by [32, Proposition 3.1,
p. 76; Theorem 3.4, p. 78], we have mult,(¢) = |G,|, and G, is a finite cyclic subgroup
of GG, and hence of Sy. Since the non-trivial finite cyclic subgroups of Sy are Cs, C3, and
Cy, we infer 1 < mult,(¢) = |Gp| < 4. As said before, G, is trivial when w(p) does not
correspond to any of the 26 centers of the regular octahedron, from which the conclusion in
(1) follows. Moreover, with respect to the action of S* on the octahedron, the stabilizer of
the vertex (respectively, edge center, face center) is isomorphic to Cy4 (respectively, Co, Cs3),
from which the conclusions in (2) ~ (4) follow.

~—

is not associated with any of the 26 centers of the octahedron,then mult,(¢)=1.
is associated with one of the 12 edge centers, then mult,(¢) =1 or 2.

is associated with one of the 8 face centers, then mult,(p) =1 or 3.

is associated with one of the 6 vertices, then mult,(¢) =1 or 2 or 4.

T

O

Now, we provide sufficient conditions for the curve F' to belong to the generally ramified
family.

Theorem 5.3. Let F' : CP! — H} be a sextic curve which is not contained in the closed
2-dimensional PSLo-orbit. If one of the following holds, then F belongs to the generally
ramified family.
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(1) There exists a point p € Supp Q such that w(p) is not associated with any of the 26
centers of the octahedron, i.e., w(p) does not satisfy .

(2) There exists a point p € Supp Q\Supp F such that either mult,(p) = 1, orord,(Q) >
2 and w(p) is associated with one of the 12 edge centers and 8 face centers.

(3) There ezists a point p € M such that 0 < ordy(F) < ord,(Q).

Proof. From ([5.17)) and (5.19)), we obtain ¢*(F*Q5)+2F = 6Q; hence, for any point p € M,
we have

mult, () ord,,) (Qs) = 6 ord,(Q) —2o0rd,(F) = 6(ordy(Q) — ordy(F)) 4+ 4 ord,(F). (5.23)

We will use Proposition and Proposition to prove this theorem.

The conclusion for condition (1) follows from ord,(Q) > 0 = ord,(F), and item (1) of
Lemma 511

Under condition (2), we have ord,(F) = 0 while

either ord,(Q) > 2 and mult,(¢) <3, or ord,(Q) > 1 and mult,(¢) =1,

where items (2) and (3) of Lemma are used. Substituting these into (5.23]), we obtain
ord,(,)(Q5) > 4. Therefore, F' is tangent to the 1-dimensional orbit at F' o ¢(p).
Under condition (3), we have

ord,(F) > 1, ord,(Q) — ord,(F) > 1,

which implies mult,(¢) ord, ) (@5) > 10. Note that in this case, mult, () = 1,2, or 4. The
conclusion follows from that the minimal integer of the form in (5.23)) is 16 when it is a
multiple of 4 and is > 10. O

In contrast to Definition [5.1] we introduce the following definition.

Definition 5.2. If a sextic curve in H3 is not tangent to the 1-dimensional orbit PSLy-uS,
then we say that it lies in the exceptional transversal family.

By Lemma [5.1] and Theorem we obtain the following necessary conditions for the
exceptional transversal family.

Proposition 5.3. Let F : CP' — 7—[8 be a sextic curve that belongs to the exceptional
transversal family. Then for any point p € Supp Q, there holds that w(p) corresponds to
one of the 26 centers of the octahedron. Moreover,
(1) Supp F = Supp Q if and only if F = Q, and
(2) for any given p € Supp Q \ Supp F, we have ord,(Q) =1, and w(p) is either one of
the 12 edge centers, for which

mult, (@) = 2, ordy(,) (Qs) = 3,

or one of the 8 face centers, for which

multp(tp) = 3, ord¢(p)(Q5) = 2.

Note that for points in item (2) of the preceding proposition, F intersects the 1-dimensional
orbit PSLy - u% at f1 o g(p) transversally.
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5.4. The Exceptional Transversal Family.

We now look at the exceptional transversal family in a unified fashion.

Let G be the group of covering transformations of ¢ : M — CP! in the same setting
as in Theorem As a subgroup of Sy, the Galois group G can only be one of the
following subgroups: the trivial group, the cyclic groups C;, 2 < i < 4, the dihedral groups
Dj;, 2 < j <4, the alternating group A4, and Sy itself.

When M = CP!, the above Galois coverings were classified by Klein [29] as given in
Table [ below.

G [C D; Ay S

. N - 3713 8+144+13
o(s) | st | s =245 85?534_%)3 (S(s(s4i1))4)

TABLE 1. Rational Galois Coverings

Given a sextic curve belonging to the exceptional transversal family, we label the points
of intersection of this curve and the 1-dimensional orbit as points of type I, and the points
of intersection of this curve and the open 2-dimensional orbit as points of type II.

Let ¢ be a point of type I. For each ramified point p over ¢ = ¢(p), it follows from
Proposition that ord,(Q) =1, and

either mult,(p) = 2 and ordy(Qs) =3, or mult,(¢) =3 and ordy(Qs) = 2.
Let 37 and Y9 be the number of points assuming ord,(Qs) = 2 and 3, respectively. Then

[ £ 2% + 3% (5.24)
satisfies 0 <1 < 12. It is easy to verify that the total Q-degree for type I is
(deg ©/3)%1 + (deg p/2)Es = | deg ¢/6, (5.25)

where deg ¢ /3 (respectively, deg ¢/2) is the number of ramified points p over ¢ with mult,(¢) =
3 (respectively, mult,(¢) = 2) [32, Lemma 3.6, p. 80].

Let q be a point of type II. For each ramified point p over g, it follows from Proposition 5.3
and that 4 ord,(Q) = mult,(¢) ord,(Qs), which implies that the total Q-degree over
q is

Z ord,(Q) = Z mult,(¢) ordy(Qs)/4 = deg ¢ ordy(Qs)/4. (5.26)
pEP~(q) pEP~Haq)
Therefore the total O-degree for type II is

D" degyp ordy(Qs)/4 = > ordy(Qs) | degp/a=(12—1)degp/4.  (5.27)
q of type I qof type II

Hence
2deg(g) = deg(Q) =ldegp/6+ (12 —1)degp/4 = (36 — 1) deg /12,

which implies deg g = (36 — 1) deg /24.

To illustrate, consider deg¢ = 2, for which degg = (36 — 1) deg /24 gives [ = 0 or 12.

If I = 0 then deg g = 3; all points ¢ of Supp Q live in the 2-dimensional orbit PSLs - uv.
We seek to find examples where the genus of M is zero. The Riemann-Hurwitz formula
dictates that there be exactly two points ¢; and ¢o of type II over each of which there sits
a single ramified point p; and po, respectively, with ramification index 1 (mult,,(¢) = 2),

so that the formula 4 ord,(Q) = mult,(¢) ord,(Qs) gives that mult,, (Q5) are multiples of 2.
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There may exist other points ¢s, - - - , gm of type Il over each of which there sit two ramified
points pj1 and pj2,3 < j < m, each with ramification index 0 (mult,, (¢) = 1) so that
ordy, (Qs) is a multiple of 4 for 3 < j < m. In the most generic situation, ordy, (Q5) = 2 for
i =1,2 and ordy, (Qs5) = 4 for 3 < j < m, for which we have the constraint

12=2+42+4(m—2), som=4.

In other words, there are four points qi,---,qq4 of type II, where the Galois covering is
unramified over g3 and g4.

Indeed, up to a PSLs-transformation on the left and an isotropy group action on the
right of the Galois lift, a detailed Galois analysis, which we will report elsewhere, proves
that this is the only possibility with the Galois lift g(s) given by

g=[1:w:z:ywl,
=12 = 1)/(=t+V=-1)s> +t3 = V=1), y=(—vV-1t2+V=1s*> —ts> +1)/(t> — 1),
w= (= t)/(s((=t + V=1)s* +¢° = V-1)),

whenever t is not a zero of a certain polynomial of a large degree which we do not record
here. The Galois covering ¢ is z = s? corresponding to the group Cs, ¢ and ¢o are z = 0
and z = oo, and ¢3 and g4 are z = 1 and z = t*.

If I = 12 then degg = degp = 2. Since ~ is in the exceptional transversal family, each
point ¢ of type I has ord,(Qs) = 3 (since mult,(p) = 2 as degp = 2). As a result, there
are four points qp,---,q4 of type I over each of which there sits a single ramified point
p1, - , P4, respectively, each with ramification index 1. The Riemann-Hurwitz formula
implies that there do not exist any such Galois lifts g with genus zero.

Suffices it to say that a detailed Galois analysis proves that when degg = degyp = 2,
there are two 1-parameter classes of Galois lifts in the generally ramified family.

As another example, let us find a procedure to determine the structure of M with genus
zero, for which the Riemann-Hurwitz formula gives

—2 > —2degp + 2(deg /3)%1 + (deg ¢/2) %2,

so that (2%21/3+X2/2—2) deg ¢ < —2 from which we determine, since 23 /34 39/2—2 < 0,
an even [ to make sure degg = (36 — ) deg ¢/24 is an integer, which comes down to

(l7 Zlu 22) - (87 17 2)7 (67 07 2)7 (47 27 0)7 (27 17 0)

If we set degy > 4, then (2X1/3 + 32/2 — 2)degp < —2 gives 231/3 + £5/2 < 3/2, from
which we narrow it down to

(la Zla 22) = (87 17 2)? (67 07 2)7 (27 17 0)

We choose (8,1,2) to find an example. Since [ = 8 for group 1, whose structural constants
ordy(Qs) and ord,(yp) are known to leave the relatively small number 4 for group 2, we
calculate

(I,deg p,degg) = (8,4,6), (8,6,7), (8,12,14), (8,24,28).

If we seek to find an example with an irreducible p(z,x) so that deg¢ > 6, we should start
with (8,6, 7), where the genus of M is zero.

In more details, since ¥ = 1 and X9 = 2, we have three points qi,q2,qs of type I
such that ordg, (Q5) = 2 and ordg,(Qs) = ordg,(Qs) = 3, where each ramified point py;
sitting over ¢ has mult,,; (¢) = 3 while each ramified point py, p3s over g2 and g3 has
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multy,, (¢) = multy, (¢) = 2. Therefore, there are two ramified points over ¢; and three
ramified points over each of g2 and gs.
Switching to the points of type II, since

—2deg o+ (2deg p/3)31 + (degp/2)Xy = —

already verifies the Riemann-Hurwitz formula, we see that all points of type II are unrami-
fied. We have at most 4 such kind of points. To make (5.26)) an integer, for such a point ¢
in the formula, there must hold ords(Qs) > 4 since mult;(¢) = 1 for each ramified point p
over ¢. But then this means that ¢ is the only such kind of point since the total J5-degree
for type Il is 4. Therefore, there are six ramified points sitting over ¢ each with ramification
index 0.

Indeed, a detailed Galois analysis in the case of genus zero proves that this is the only
possibility (up to left PSLy and right isotropy actions):
g=la:b:c:d,
a=((V3V=1 V=1 -1+ V-1)b3s")V2)/2 — (=1 + V-1)b3V3 — 25* + (1 — V—1)b3)5)/2,
b= ((((—1+V-1)V3+2vV-1b3s* =1+ V-1)vV2 = 2(=bsV3+ (1 + V—1)s* — b3)s®) /(2 + 2V/3),

—(((1 = V=1) + (1 + V=1) (s> + d3)s’V2 + (1 — V=1)(—dss> + 1)V3 + (1 — V/=1)d35%)s)/2,

—((((s® = d3)V3 + 5% + ds)s>V2V/—1 — 2d3s® — 2)s)/2, where,

by = (—1/6 — /—1/6)(v/—6t° + V/3d3t> — 3dst® + v/—6)V/3/t3,
d3 = —(V—=6t> — V=2t + 2) /[t*(v/—6t — V=2t + 2V/3 — 4)].

Moreover, ¢ corresponds to z = 00, go corresponds to z = 0, g3 corresponds to z = —4, and
g corresponds to z = t3 — 2 + 1/t3. No Galois lifts with k¥ = 6, 8,9 exist. Here, the Galois
covering ¢ is z = s3 — 2+ 1/s% with the Dihedral group Ds.

To end this subsection, due to its length, we only summarize our classification of Galois
covering when M = CP' in Table [2 below.

Dimension of the Moduli Spaces

deg e ¢ degg Generally Ramified Family | Exceptional Transversal Family
2 1 2]
2 G2 3 2] 1
3 1 2]
3 | 1 z T
4,6 2] 2]
4 Ca 5 2 Iz
= 1,6 2] 2}
2 5 2 T
6,8,9 2} 2]
6 | Ds 7 z T
8,10,12 Iz} 12}
8 Dy 9 1 7]
11 Iz 1
12,14,16 ~ 18 2] 2]
12 Ay 13 1 z
15 0 2}
24,26 ~ 28, 30,32 ~ 36 2} 2}
25 2 %]
2 S 29 T 7]
31 7] 1

TABLE 2. Classification of Rational Galois Coverings.
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In particular, there are at most finitely many constantly curved sextic curves C Hg on
the list that belong to the exceptional transversal family, by checking total unramification
encountered in Section 4l In view of the above examples and classification, it is tempting to
suggest that a constantly curved holomorphic 2-sphere in G(2,5), which differs from a sextic
curve in the exceptional transversal family by a GL(5,C)-automorphism, be nongeneric
among all constantly curved holomorphic 2-spheres of degree 6.

On the other hand, the situation in the generally ramified family is clear-cut. We will
show in the next section that a constantly curved holomorphic 2-sphere of degree 6 in
G(2,5), which differs from a sextic curve « in the generally ramified family by a GL(5,C)-
transformation, is such that the 6-plane L it spans in CP? differs from that spanned by the
standard Veronese curve (1.1 only by a diagonal matrix in GL(5, C).

6. GENERALLY RAMIFIED HOLOMORPHIC 2-SPHERES OF DEGREE 6 IN G(2,5)

Thanks to the discussion in Section [5], we say that a holomorphic 2-sphere of degree 6 in
G(2,5) is generally ramified if it is projectively equivalent to a sextic curve in HJ belonging
to the generally ramified family. In this section, we will first give a useful parameterization
to such kind of 2-spheres, then employ it to investigate such 2-spheres of constant curvature.
We will show that a generally ramified constantly curved holomorphic 2-sphere of degree
6 can only live in the Fano 3-folds H? that differ from the standard H§ by a diagonal
transformation in GL(5,C%), up to U(5)-equivalence.

Definition 6.1. By the diagonal family we mean constantly curved holomorphic 2-spheres
of degree 6 in G(2,5) parameterized as follows:

diag(aoo, s 761,44) . (E()7 El, e ,E(;) diag{wo, Wi,y .- ,w6} Z6(Z), (61)
where {Ey, ..., Eg} is the orthonormal basis of Vs defined in (3.3)), and Zg(z) is the Veronese
2-sphere in (2.8)).

The following is the main result of this section.

Theorem 6.1. Let v : CP! — G(2,5) be a generally ramified holomorphic 2-sphere of
degree 6. If v is of constant curvature, then v belongs the the diagonal family.

6.1. Sextic curves in ”H,g ramified at the 1-dimensional orbit.

Proposition 6.1. Let v : CP! — ’Hg be a sextic curve, and let p be a point of the 1-
dimensional orbit.

(1) v is ramified at p, if and only if, up to a transformation in SL(2,C), v can be parame-
terized as

Y(z)=L(1 z 2* - 26,)t , where (6.2)
Loo Lot Lgo O 0 0 0
L L1 L O 0 0 0
Loo Loy Lo Loz 0 0 0

L= |L3s L3 L3 L3z Lzyz 0 Of, (6.3)
Ly Lyv Lsp Lsz Ly 0 0O
Lso Lsy Lso Ls3 Lsy Lss 0O

Leo Le1 Le2 Le3 Les Les 1
if and only if, the vanishing order of Qs restricted on vy at p is no less than 4.

(2) v is ramified at p with multiplicity no less than 2, if and only if, one of Loz, Las, L3g in
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(6.3) vanishes, if and only if, L is lower-triangular, if and only if, the vanishing order of Qs
restricted on vy at p is no less than 6.

Proof. If v can be parameterized as with L taking the form of , then it is easily
checked that + is ramified at p, which has multiplicity 2 if L is lower-triangular.

Next, we use the transvectant characterization of 7—[8’ to prove the reverse part. Choose
a coordinate z on CP! such that y(co) = p. Note that by applying a transformation

in SL(2,C), we can assume p = v5. Let {lg,l1, -+ ,lg} be the columns of L, and set
61,
Lij = #. Then we have

6
v = szlj, lg = 0°.
j=0

Assume < is ramified at p. By Theorem [4.1] we know the line spanned by lg and I3 lies in
H3. Tt is well-known that the only line passing through v is given by v% + tuv®. Therefore,
we have I5 = av’ 4 puv®, with 8 # 0.

In terms of the transvectant characterization (see Proposition , ~ lying in 7-[8 is
equivalent to saying (7,7)4 = 0, which implies, for any 0 < j < 12, that we have

> (I l)a=0. (6.4)
r+s=j

In the following, we use the symbol ”%” to denote some unimportant nonzero constants.

Take j = 10 in (6.4]). Since (I5,15)4 = 0, we have
0 01y 5, 04y
0= (lﬁ,l4)4 = % 781)4 78u4 = % 78’“4 .

It follows that % = 0.
Taking j = 9 in (6.4]), we have

94l 04
2 4 2 3
Ou3ov Ty out’

0= (I5,14)s + (I6,13)s = B(u®, 14)s + (I6,13)s = *v

Wh;re we have used —gil:} = 0. It follows that —%ilg = % aiilélv =0.
rom
Al 0°1
lg =0°, I5 = av® + Puv?, 5l 0, 505 0, (6.5)

we can derive that L takes the form as in (6.3)).
To calculate the vanishing order of @5/, at p, we use the the transvectant characterization

Qsly = (v 76 =D_2 > (i, 1n)e. (6.6)

7=0 r+s=j
It follows from ([6.5)) that
951, 915 951,
(l,15)6 = 0, (lg,la)6 = * Jub 0, (lg,13)6 = * a6 0, (Is,15)6 = 0, (I5,l4)6 = * D0 0

Therefore, we have deg(Qs|,) < 8, which implies the vanishing order of Q5| at y(c0) = p

is no less than 4.
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Conversely, assume the vanishing order of @5/, at y(c0) = p is no less than 4. Then we
have

2(lg, la)s + (I5,15)6 = (6.7)
2(lg, la)a + (I5,15)a = (6.8)
(lg;13)a + (I5,12)4 = O, (6.9)
(ls;13)6 + (I5,la)6 = O. (6.10)

It follows from (lg,l5)s = O that % = 0. By comparing (6.7) with the second derivative
with respect to u on , it is easy to derive % = 0. Then substituting this into the

aulé = 0. By comparing with the
second derivative with respect to u of -, it is easy to derive 8 l3 = 0. Substituting this
into (6.9) and combining , we have 2 6 =0 and %ulf = 0. Flnally, by taking the second

derivative with respect to u on both sides of 0 = 2(I5,13)4 + (l4,14)4, we derive % = 0.
Therefore L has the form of (6.3), and is ramified at p.
In fact, that the multiplicity of v at the ramification point p is no less than 2 can be

characterized by one more equation that (I5,14)s = 0. It follows from % = 0 that

(5, 1a)a = (uv®,l4)s =
Therefore, that v is ramified at p with multiplicity no less than 2 is equivalent to saying
that L takes the form as in (6.3) and % =0, ie., L3gg =0.
Taking j = 9 in (6.4]), we have
out’
Therefore, %T 0is equlvalent to g by — =0, i.e., Log =0 in (6.3).
Choosing j = 8 in , it follows from (6.5 . that
0 =2(l6, l2)s + 2(15, I3)a + (layla)a
4 4 4 4 4 4 (6.11)
_*v28l2+*28l3 +*m}8l3+*8l4 0%y Ly 0%y 8[4.
out ou3dv Oudv3 Ou20v? Ou2ov?

—(l5,14)a = (l6,l3)a = *v

out Ju3dv

Taking the second partial derivative with respect to u on both sides, we obtain % e — L%S,
which implies that Lo3 = 0 is equivalent to Lge = 0.

Next, we prove that L3y = 0 if and only if L is lower-triangular, i.e., that the following
equations hold,

3 4 5 6
6[4:0’8l3:78l2:07811:0‘ (6.12)
ou? out oud OuS
Note that only the last two equations need to be verified. The second to last follows from
taking the partial derivative with respect to u on both sides of . Taking 7 = 7 in ,
we have

0=(lg,l1)a+ (I5,12)a + (la,13)4
9 ol o4l o4l ol o4l Bl
2 220 2 2 4 3 3 4
- Out T oul THY Oudov t Ou20v? Ou2ov? T Oudov Oudvd”
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The second partial derivative with respect to w on both sides implies that % = 0.

Similar to the discussion in the first part, we can derive that the vanishing order of Q5|
at y(oco) = p is no less than 6, and the reverse part is also true. O

The following technical lemma entailing ramification will be used in the proof of Theo-
rem It characterizes when the lower-triangular matrix L is diagonal.

Lemma 6.1. Let y(z) = L Zg(2) be a rational normal curve of degree 6 in H3, with L being
lower-triangular and Loy = 0. If v(2) is also ramified at z = 0 with multiplicity no less than
2, then v(0) lies in the closed 2-dimensional orbit. Moreover, the following are equivalent.

(1) L is diagonal. (2) v(0) lies in the 1-dimensional orbit. (3) Lig =0. (4) Lgs = 0.
Proof. We continue to use the notation given in the proof of the preceding proposition.

6 ,
Write a; = > ,/(?)Lijzj, 0 < i < 6. Then L is lower-triangular if and only if dega; =
j=0

i, 0 < i < 6. Note that [ap : a1 : -+ : ag] is exactly the coordinates of v, and ag is a
constant. This implies that a4, a5 and ag can be solved as polynomials of a1, as and ag as

in (52).
By the first equation of (5.2)) and Lg; = 0, we obtain

V2(LioLs1 + L11 L 1 6v/2 6
Ly = (1o ?’Lloo 1 30), Ly = T@(ﬁhoﬂ‘sz + 7T5L11L31 - 7T5L20L22)- (6.13)
Assume 7 is also ramified at z = 0 with multiplicity no less than 2. Then we have
0*y 0ty oty o, oty 0,y

= = .14
0=(h:h)a=x Bul 0ut T 0udB0 dud® | 0urdv? 0urdv?’ (6.14)
0= (I1,la)s = + 0*y 0 . 0y 0%y Ly oy 0y Ly oy 0y . 0*y 01

TR T 90t 9ot T 9udde dudv® T 9uPdu? dudv? | Qudvd duddu | dul 8&4@

Taking the fourth partial derivative with respect to w on (6.14)), it follows from 8‘265% =
Lq1 # 0 that L3 = Wgﬁ = 0. Theg considering the fourth partial derivative with respect
to v on (|6.14), we obtain L4 = % = 0. Substituting these into the first equation of
(6.13]), we have Lsy = 0.

Taking the fogrth partial derivative with resbpect to w on (6.15)), it follows from % =
Lo = 0 and % = L3 = 0 that L3y = % = 0. Then considering the first partial
derivative with respect to v followed by the third partial derivative with respect to w on
6.15]), we obtain that L4 = % = 0. Substituting these into the second equation of

6.13)), we have Log = 0. Thus, we have proved that
Loy =0, Lo1 =0, Lzo =0, Lg; =0, L3z =0,
which implies that the vanishing order of as and ag at z = 0 satisfy
ord(ag) > 2, ord(as) > 3. (6.16)

It follows from ([5.2)) that
ord(as) > 3, ord(as) > 3, ord(ag) > 5.

It also follows that the ramified point v(0) = u®(Lgoou + v/6L1gv) lies in the closed 2-
dimensional orbit.
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Note that «(0) lies in the 1-dim orbit if and only if Liy = 0, i.e.,
ord(a;) > 1, (6.17)
which is equivalent to one of the following inequalities
ord(as) > 4, ord(as) > 5, ord(ag) > 6, (6.18)

where and are used. Note also that one of the seven inequalities in (6.16]) ~
(6.18) becomes an equality if and only if all of them do, if and only if L is diagonal. This
finishes the proof. O
6.2. Necessary conditions for generally ramified holomorphic 2-spheres to be of
constant curvature.

Let v : CP! — G(2,5) be a generally ramified holomorphic 2-sphere of degree 6. By
definition and Proposition ~ can be parametrized as

FY:A'(E07E17E27E37E47E57E6) LZG(Z)7 (619)
where A € GL(5,C), L is in the form of (6.3), and Zg(z) = (1 6z - zG)T, with z be-

ing the standard parameter for the condition of constant curvature. Note that up to an isom-
etry of G(2,5), i.e., a U(5)-transformation, we may assume that A is lower-triangular. Then,
by the definition of A%-action, it follows from (3.3)) that C £ A - (Ey, E1, B2, E3, E4, E5, Eg)

is of the form
Coo O 0 0
CioCi11 O 0
Ca0 C21 C22 0O
C30 C31 C32 Cs3
C = | G0 Cu1 Ca2 0
Cs0 C51 Cs2 Cs3
Ceo Co1 Co2 Co3 Cea
C70 C71 Cr2 C73 Cry
Cso Cg1 Cs2 Cs3 Cgq Css
Cgo Cy1 Cg2 Cg3 Cos Cos Coyg

which is a 10 X 7 matrix obtained by column vectors A - Ej, written relative to the standard
basis e; Aej, 0 <@ < j <4, in the lexicographic order. We point out that C;; are quadratic
in terms of the entries of A. The following lemma is important.

[N eNoNoNoie)

, (6.20)

(=l elololoNoNoNo)
[l elololo)oNoloNo}]

Lemma 6.2. Let G be a 10 X 7 matriz of rank 7 in the same form as on the right-hand side
of with G33G53GeaGrg # 0, and let the column vectors of G be mutually orthogonal.
If the holomorphic 2-sphere y(z) = G Zg(2) lies in a generic linear section of G(2,5), then
G is in the form

Goo 0 0 O O 0 O
0 Gi1 0 0 O 0 O
0 0 G O O O O
0 0 0 Gzz 0 0 O
0 0 Gg2 0O O O O
0 0 0 Gs3 0O 0O O ’ (6'21)
0 0 0 0 Ges O O
0 0 O 0 Gra O O
0 0 O O 0 Gs O
0 0 0O 0 0 0 Ggs

where v is ramified at z = 0 and z = oo with multiplicities at least 2.
Proof. If (6.21)) holds, then the last statement follows from
Y (0) =eg Aes € G(2,5), v"(0) = Gageg A ez + Gaoer Aea, 7/(0) A" (0) =0,

7' (00) = ea Aes € G(2,5), 7"(00) = Geaer A es + Graea Aeg, 7' (00) Ay (o0) = 0.
29



Hence, we need only prove (6.21]) in the following. Since the first five columns of G are
perpendicular to the last two, we have

Goo O 0 0 0 0 0

Gio G11 O 0 0 0 0 1
gzo ng 822 GO 0 0 O V62
30 G31 Ga2 Gzg 0 0 O 1522
(Z) _ Gy G41 Gg2 O 0 0 0 % 3
v T | Gs0Gs1Gs2Gsz 0 00 .
Geo Ge1 Ge2 Gez Gea 0 0 V152
Gro G71 G’72 G73 Grg 0 O V625

0 0 Ggs O 26

0 0 0 0 0 0 Gos
We denote by {v; | j =0,...,9} the coordinates of v. Then it is easy to see
deg(v0) =0, deg(y1) < 1, deg(y2) <2, deg(vs) <3, deg(na) < 2,
deg(vs) < 3, deg(ys) < 4, deg(y7) <4, deg(ys) =5, deg(v9) = 6.
It follows from v C G(2,5) that

Y274 — M5 + Y077 = 0, (6.22)

Y374 — 1% + Y078 = 0, (6.23)

Y3Ys — Y26 + Y09 = 0, (6.24)

V3Y7 — 2% + 7170 = 0, (6.25)

Y6v7 — V578 + Y470 = 0. (6.26)

Moreover, v; #0, i =0...,9, since « lies in a generic linear section Meanwhile, by the
orthogonality of {G; | j =0,...,6}, we obtain |G,? \/72] = (7,G;) = 30 _ Grjvk, 0 that
Goavs + Grayr = \G4|2\ﬁz , (6.27)

G373 + Gss7s + Gesye + Grayr = |Ga[* V2027, (6.28)

In the following, we will use the assumption G33G53G64Gra # 0. Observe that v = Ggs2®
and v9 = Gos2®. As a polynomial of z, we denote by m(7;) the order of v; at z = 0.

Combining and GgsG74 # 0, and using deg(vs) = deg(yr) = 4, it yields 0 <
m(vs) = m(y7) < 4. Meanwhile gives 2°|y677, which implies 5 < m(vs) + m(vy7). It
follows that m(vs) = m(y7) > 3. Moreover, we obtain 2° | 377 in accord with (6.25).

Claim 1. Y6 = G64Z4 and Y7 = G74Z4.

Otherwise, we assume m(y7) = 3. Then 2 < m(~v3) < 3 and m(v) = 3. Using (/6.28), we
have m(7s) > 2, which implies z* | (375 + Y0y9). It follows from that 2% | 7976. As a
result, m(y2) > 1, and 2% | (278 — 7179). Next, yields 25 | 4377, and then m(y3) = 3.

Using (6.28) again, we obtain m(v;) > 3. Coupled with (6.24)), 25 | 7276 can be deduced.
Consequently, m(v2) > 3, which contradicts deg(y2) < 2. Hence the claim follows from the

degrees of g and ~7.

Now that we have z* | (7176 —707s), it follows from that 2% | y374. Since deg(y4) =
2, there follows m(y3) > 2.

Claim 2. Y3 = G3323.

Otherwise, we assume m(y3) = 2. Then m(ys) = 2. Hence 2% | (y479 + v677), and
2% | v5s, from which we can derive that m(y5) > 3. Using again, there yields that
m(y3) > 3 (by Gss # 0), which contradicts the assumption. Therefore m(vy3) = 3 and the
Claim 2 follows from deg(~3) = 3.

Now, 75 = G532> follows from and deg(vys) = 3.

Using (6.26]), we obtain 2% | 7479. Hence v4 = G422% by deg(y4) = 2.
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From (6.24), we have 2% | 79v5. Therefore, 7o = G222 due to that deg(ye) = 2.
Lastly, it follows from (6.25) that 27 | y179. So v1 = G112, as deg(y1) = 1. O

The method used in the proof of the above lemma can be generalized to prove the following
important proposition.

Proposition 6.2. Let v : CP! — G(2,5) be a generally ramified holomorphic 2-sphere of
degree 6 parametrized by (6.19). If v is of constant curvature, then L is lower-triangular.

Proof. To show that L is lower-triangular, it follows from Proposition [6.1] that we need only
prove that one of Lgo, Los, L34 vanishes.

Suppose that in the following LgsLosLss # 0. Similarly as before, we assume that A is a
lower-triangular matrix. Then G £ A - (Eo,...,Fs) L is a 10 x 7 matrix with orthonormal
columns and takes the following form

Goo Go1 Go2 0 0
G10 G11 Gi2 0 0
Goo G21 Ga2 Ga3z 0
G3o G31 Gs2 G33 Gaa
G = | G0 Ga1 Gaz Gaz 0
G50 Gs1 Gs2 Gs3 Gsa
Geo Ge1 Ge2 Ges Gea
Gro Gr1 Gr2 G73 G
Gso Gg1 Gg2 Gsz Gsg Gss
Goo Gg1 Go2 Goz Gog Gos Gog

where the inequality comes from the product of diagonal entries of A and LgsLo3Lsy.
Since the first five columns of G are perpendicular to the last two, we have

, Go2G23G43G34Gsy # 0, (6.29)

QOO OCOOO
[N ool oo oo}

Goo Go1 Go2 O 0 0 0
Gi10 G11 Gi12 O 0 0 0 1
g20 821 g22 g23 GO 8 8 V62
30 G31 G32 G33 Gag V1522
_ _ | Gao Ga1 Ga2 G4z 0O 0 O
1(2) =G Z6(2) = G50 Gs1 Gs2 Gs3 Gs4 0 0 2\/522
Geo Ge1 Ge2 Gz Gea 0 0O V152
Gro Gr1 Gra Gr3 G7a 0 0 V62°
0 0 0 0 0 Ggs O P

0 0 0 0 0 0 Gos
We denote by {7; | j =0,...,9} the coordinates of y. Then it is easy to see
deg(v0) < 2, deg(y1) < 2, deg(2) < 3, deg(vs) <4, deg(ma) < 3,
deg(ys) < 4, deg(ve) < 4, deg(yr) <4, deg(rs) =5, deg(v9) = 6,
satisfying through (6.26). The same constraint between (6.26)) and (6.30) gives

Goovo + Giom + G207z + G073 + Gaova + G0 + Geovs + Grovr = |Gol?, (6.30)
Gosv2 + Gaavs + Gazya + G375 + Gesve + Grayr = |Gs|*V202°, (6.31)
G3473 + G475 + Goays + Grayr = |Ga|?V152*. (6.32)

As a polynomial of z, we denote by m(v;) the order of v; at z = 0.
Since v3 = poa(F'), v6 = p14(F'), we have that v3 and 7 are linearly independent (since F'
lies in a generic linear section). Hence combining this with deg(vs3), deg(vs) < 4, we deduce

k = min{m(vys), m(ys)} < 3. (6.33)

It follows from m(yg) = 5 and m(y9) = 6, (6.25) and (6.26), that 5 < m(y3vy7), m(v677).
Since degvy7 < 4, by (6.33)), we obtain 1 < k < 3, 2 < m(~7), while (6.32) and G54 # 0
yields
m(ys) = min{k, m(y7)} > 1. (6.34)
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Using (6.22)) and (6.31)), we arrive at
m(Gazye + Gazya) 2 min{k, m(y7)} > 1, (6.35)
m(y2y4) > min{k, m(vy7)} > 1. (6.36)
We claim that
min{k, m(y7)} + 1 min{k, m(y7)} + 1
2 2

Indeed, if m(y2) = m(74), then the claim follows from (6.36)). If m(v2) # m(v4), then by
G23Gy3 # 0 and (6.35)), we obtain that

] > 17 m(’M) > [

m(y2) > | ] > 1. (6.37)

min{k? m(77)} + 1]

5 :
This proves our claim. Next, from (6.25]), (6.26]) and (6.34)) we derive (because min{k, m(y7)} >
1) that

min{m(y2), m(v4)} = m(Gagy2 + Gazva) > min{k,m(y7)} > |

min{k,m(y7)} + 1

m(y37y7) = min{5 + | 5 ],6} > 6, (6.38)
m(y677) = min{5 + min{k, m(y7)}, [mm{k? mz(W)} - 1] +6} > 6.

Since 1 < k = min{deg~ys,degys} < 3, degvyr < 4, we must have 2 < m(v3), m(v) and
3 < m(~7); hence

2< k<3, 3<m(y) <4 (6.39)

Now, we divide the discussion according to m(7y7).
Case 1: Assume that m(y7) = 3. Then min{k, m(v7)} = k > 2, so that (6.38]) implies

m(y3y7) > 6, 7>degys +m(yr) > m(veyr) > 7
hence, k = 2, m(vys) = 4, and m(v3) > 3. But then
2 = k = min{m(vy3),m(y6)} > min{3,4} = 3,

a contradiction.
Case 2: Assume that m(vy7) = 4. Then by (6.34]), (6.37), (6.38]) and (6.39)), we obtain

1< m('YQ)a m(’74)7 2< m(73)7m(’75)7 3< m(’%)'

We conclude that G is in the form

Goo Go1 Go2 0 0
Gi0 G11 Gi2 0 0
Ga21 G2z Goz 0
0 G32 G33 Gaa
Ga1 Gaz Gaz 0
Gs2 Gs3 Gsa
0 Gs3 Gea
0 0 Grg
0 0 0 G
0 0 0

(6.40)

[=jelelololoioNo)
oo ocooCOoCOo0o

o0

5

QOO OOO
oo oo
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Q

©

6

Consider the QR decomposition of A - (Ey,...,FEs) = N - L1, where N is a 10 x 7 matrix
with orthonormal columns, and L1 = (J;5)o0<i, j<6 is a 7 x 7 lower-triangular matrix. Since
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A-(Ey,...,Eg) is in the form (6.20)), necessarily N is given by

Noo O 0 0 0 00
NigNi1 0 0 0 00 N
Nog N2y Nag 0 0 00 0 O1x2
N3o N31 N32 N33 0 00 N1 Oix2
N = Nao Ng1 Ngo O 0 00 —
Nso Ns1 Ns2 Ns3 0 00 : ’
Ngo N1 Ne2 Ne3z Nga 00 N7 O1x2
N7o N71 N72 N73 N74 00 O2x5 Ids
0 0 0 0 0 10
0 0 0 0 0 01
where N;, 0 < j <7 are row vectors in C®. Moreover,
NgaN7y # 0, (6.41)

since (Ng4, N74) is parallel to (@ana@;, @aggagg) and the diagonal entries of A are not

zero. Now, from G = N - Ly - L and the orthogonality of columns of G and N, respectively,
we must have that Ly - L = (H;j)0<i j<6 € U(7) is in the same form as (6.3]) with

Haz = JaaLag # 0, H3y = J33L34 # 0. (6.42)
Since Lo - L € U(7), it is necessary that
Hy Hy --- Hy O5x2
Ly-L = 0 Hss O
2X5 0 H66

where H;, 0 < i < 4, are column vectors in C° that form an orthonormal basis of C?, and
Hs and Hy are in the form

Hj = (0,0, Hos, Hss, Hys)',  Hy=(0,0,0, Hsq, Haa)". (6.43)
Since G=N-Ly-L, by G¢j =0, 0< j <2,and G7; =0, 0 < i < 3 (see (6.40)), we obtain
Ne-Hj=0,0<;5<2, N;-H; =0 0<13<3;

hence, Ng € span{HZ%, H.} and Ny € span{H!}, so that we conclude by (6.43) that N is in
the following form

Noo O 0 0 0 00

Nip N11 O 0 0 00

N2g N21 Nag O 0 00

N3o N31 N32 N33 0 00

N = Nio Ng1 Ngo O 0 00
Nso Ns1 Ns2 Ns3 0 00

0 0 Ng2 Ng3z Ngga 00

0 0 0 Ny3 N7400

0 0 0 0 0 10

0 0 0 0 0 01

Then the inner product of the third column with fifth column givesEﬁm = 0, and by
Nega # 0 (see (6.41])) we obtain Ngo = 0. Meanwhile, from Ng € span{H}, H,} we deduce

Ng = (0,0,0, Ng3, Noa) = a - HS +b- Hf,
for some constant a,b. Then from Haz # 0 (see (6.42) and (6.43))), we infer a = 0; hence Ng
is parallel to Hf. Thus, Gg3 = Ng - H3 = 0, which implies that m(vs) = 4. Then

2 <k =min{m(y3),m(76)} = m(y3) < 3.
It follows from and that

m(v3ys) > 5, m(Gzays + Gsays) > 4. (6.44)
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From (6.34), we have m(vs) > k = min{m(v3),m(v6)} = m(y3). Combining (6.44)), 2 <

m(ys) < 3 with G34Gs4 # 0, we arrive at m(y3) = m(7ys). Then k = m(y3) = m(y5) > 3
implies k = 3. Next, from (6.37)), we see 2 < m(v2), m(y4). Lastly by (6.23), we arrive at

m(y1) +4 =m(y1v) > 5;

hence m(vy1) > 1, so G1g = 0. Then (6.30) gives Ggoyo = |Gol|?, so that Goz = 0, contradic-
tory to the inequality in (6.29)).
In short, one of Lgs, Las, L34 vanishes so that L is lower-triangular. O

Now we can finish the proof of Theorem
Proof of Theorem 6.1.
We continue to use the parameterization given in (6.19)). Note that by using the automor-

phism of H3, we can re-choose A € GL(5,C) such that Lo; = 0. In fact, set A; = ((1) ll))
with b = \/1£02£11’ then by (3.1)),
A-(Eo,....Es) L= (Ap" (A1) - (Eo, ..., Es) (p°(Ar) L).

Since p%(A1) is lower-triangular, p®(A;)L is also lower-triangular, and so we derive
(p6(A1)L)21 = L21 — b\/ 10L11 =0.
The constant curvature condition of v implies that
G=A-(Ey,... Fg) L, (6.45)

is a 10x 7 matrix with orthonormal columns. Similarly as before, up to a U (5)-transformation,
we may assume A is lower-triangular. Since L is lower-triangular, we see that G has the
form as . It is easy to verify that G33G53GgaGra # 0.

It follows from Lemma[6.2] that G must be in the form of ([6.21)). Moreover, G Z(z) and

p(z) £ A G Zg(2) = (Eo, - ., Be) L Zs(2)

are ramified at z = 0 and z = oo with multiplicities at least 2. Thus we can apply Lemma
to the curve p(z). It follows from the proof of Lemma [6.1| that now

Lo1t = Loy = L31 = Lyy = Ls1 = Le1 =0, Los = L15 = Los = L35 = Lys.

To prove that L is diagonal, we need only show Lgs = 0.
Since G is in the form of (6.21]), comparing the second column of both sides of

A™'.G = (Ey,...,F) L, (6.46)
we deduce
G111 AL eg N\ AL eo = Ly1eg N es,
whence A™! - es € span{eg,e2}. Then comparing the penultimate column of both sides of
(6.46), we have

Lsses A eg + Lgsez N\ ey = Gy AL ea A\ AL €4 € Span{eo A eq,e2 N\ 64},

which implies Lgs = 0. Hence L is diagonal.
Furthermore, due to that A is lower-triangular, we can also derive that

Al e =0 mod €, Al ey, =0 mod ey,
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and then A=! - ey = 0 mod eg. By comparing the first and last columns of both sides of
(6.46]), we have A= - e; =0 mod e;, i = 1,3. In conclusion, we have arrived at that A is
diagonal. Therefore, the curve v belongs to the diagonal family. U

7. EXISTENCE AND UNIQUENESS RESULTS FOR THE DIAGONAL FAMILY.

It follows from Theorem that to classify generally ramified constantly curved holo-
morphic 2-spheres in G(2,5), we need only consider those in the diagonal family, which
are determined by diagonal matrices A € GL(5,C) and complex numbers {wp,wr,...,ws}
satisfying

wowy — dwiws + 3w§ =0, wows—3wiwg + 2wows =0, wowe — wawy+ (71)
8w§ =0, wowg— dwsws + Swi =0, wiwg— 3waws + 2wswy = 0, .
to guarantee that the holomorphic 2-sphere parameterized as in (6.1) lives in G(2,5).

In this section, we will pin down the class of diagonal matrices A € GL(5,C) that warrants
the existence of constantly curved holomorphic 2-spheres of degree 6, and meanwhile find
the number of such 2-spheres in each of these Fano 3-folds A(HJ).

Assume ¢ is a constantly curved holomorphic 2-sphere in the diagonal family given by
the data A = diag{ago,a11, - ,a44} and {wo, w1, - ,we} satisfying (7.1). It follows from
Definition [6.1] that

2
<p(z) = agpaiiwg eg N e1 + \/6&006122 wi zeg N\ eg + 3agpasz ws 27 eg N e3

2 3 3
+ \/éauagg wo z°e1 N es + 2ap0a44 w3 2° €9 N €4 + daq1a33 w3 2° €1 N es

(7.2)
+ 3a11044 Wy 24 e1 Neyg+ \@azgagg Wy 24 ex N\ eg + \/6a22a44 ws 2° eg N\ ey
+ azzaqs we 2° €3 A eq,
and

(9adya3s + 6aT;a3y)|ws|? _ (adoaiy + 4af a3)|ws|? — a2y, |wol? =

15 5 00211 |0 (7.3)
9 2 .2 6 2 2 2 :
e 1;22(133)@4\ = agoap|wi|® = a3yadslws|? = a3zal,|wsl® = 1.

Remark 7.1. We point out that ¢ has the following standard parameterization in the sense
of section 2.2

2 2a33 .3 4
(cm(z)> _ (P00 VB A 2 3o (7.4)
1G22 2a33 3A44
pa(2) 0 1 \/ém z 3w0a11 o 2woa11 o
In Jiao and Peng’s approach, they considered collectively the undertermined variables
as & —\/6(&)2&22)/(&)0@00), Bs £ —4(wsass)/(woano), P4 = —3(waaus)/(woaoo),

up 2 V6(wiag)/(woarr), va 2 3(weazs)/(woair), 23 2 2(wsaas)/ (woarr).

Then the constant curvature condition (7.3)) is equivalent to

ur]* = 6, Jva]® + |az|® = 15, [25]* + |Bs]* = 20
|pal? + |aguy — Baur | = 15, |azzs — paus|* = 6, |Ba2s — pava* = 1.
The standard Veronese curve in (1.1)) corresponds to the solution

(a2aﬁ37 P4,U1, V2, Z3) = (_\/éa _4a _37 \/6) 37 2)
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Branching out, observe that after firing (o, a4, u1,v9) = (—v6, —3,v/6,3), we have that the system
of equations ([7.5) reduces to

23] + 163> =20, |83 +3°=1, |z3—3%=1, |Bs23+9]* = 1.
Set
By & —3+eV 10 sy L3peVle (7.6)
From the first equation we derive cos = cosy; and so ¢ = £0. If o = —0, then the last

equation above gives 0 = 0 or w. Therefore without losing generality, we may set o = 0 in
any event. Consequently, we obtain a 1-parameter family of solutions

1 0 —622 (=3+eV 103 —324
0 1 62 322 (34 V103 )7

hitherto unknown in the literature, to the authors’ knowledge.

Though the simple perturbation generates the explicit 1-parameter family , in
general, however, without further geometric clue it is a difficult task to completely classify the
system . As our analysis has revealed up to now, the nature of the classification lies in
that one must perturb in certain Fano 3-folds dictated by to achieve the classification.
In the following, we will present an algebro-geometric approach to describe all solutions to

the diagonal system (7.2)).
Set

(7.7)

w; & VeV 1=20,...,6.
It follows from the condition of constant curvature ([7.3|) that
to =1/afy, ti = 1/a3,, ts = 15/(9agea3s + 6atiad,), te = 1/(a3sal,),

(7.8)
lz = 5/(“30“4214 + 4‘1%1‘133)’ ly = 15/(9‘1%1@4214 + 6a§2a§3), ls = 1/(a§2ai4).

Remark 7.2. For the detailed analysis to follow on the length constraints , without
loss of generality through scaling, we may assume that agp = 1 and a;; € RT, 1 < j <4
(by a diagonal unitary transformation in U(5)). Moreover, it follows from Lemma
that the transformation p*(diag{\, 1}) = diag{1, \, A2, A3, \*} preserves H} for any A € C*.
As a consequence, after multiplying by an appropriate real X\, we may furthermore assume
aso = agy. This process is equivalent to applying a Mobius reparametrization to the 2-sphere
© by z— Az.

Stmilarly, we assume further that 89 = 0g = 0, which follows from dehomogenizing to
eliminate 0y and introducing a rotational reparametrization of the 2-sphere ¢ to eliminate

0.
Combining (|7.8) with the above normalization, we have

Stotr , _ _ Stohts ~ bigtite
(Bto+2)" > (tot2 + 4tg)’ (33 + 2tots)’

4=
Moreover, it follows from (7.1]) that the angles 6; of w; satisfy
/ — 4./ V=1(01+03—04) _ V—=1(202—64)
t0t4 4 t1t36 3t26 5
vV t0t5 = 3\/ t1t46\/jl(01+04795) - 2\/ t2t3€\/jl(02+03795), (710)

Viote = O/EatseY 102102) _ gy oV 1205
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Remark 7.3. Conversely, given a solution {to, t --- ,t¢} C RT and {6, --- ,05} C R to (7.9)
and (7.10), by solving a;; from t; and defining w; = t@-e‘/?wi, we can obtain a constantly
curved holomorphic 2-sphere of degree 6 in G(2,5) parameterized as in (7.2]).

We point out that the three equations in (7.10)) are not independent by the following
Lemma [7.1] In fact, set
L 6\/?1(91+93_94), n AL e\/jl(292—94)
o A e\/jl(92+93—95)’ xg 2 e\/jl(92+94), Y3
Taking norm squared on both sides of (|7.10]), we see from the realness of tg, - - - ,ts that

hi2v—uw=0, hy2u?—Xu+1=0, hs2v>—Yv+1=0,

T , L2 = e\/jl(01+94_95)7 711
& VT(20) (7.11)

7.12
ha 2w?—Zw+1=0, ( )
where,
u=1x1/y1, v=m2/y2, w=13/Yys,
X = (915 4 16t1t3 — tots)/(12to\/t113), (713)
13

Y = (4t2t3 + 9ttty — t0t5)/(6\/ tots3/ Iflt4),
7 = (6413 + 81toty — tots)/(T2t3y/tats).
We first solve (|7.12)) by viewing {X,Y, Z} as indeterminates. Define

H2 - XYZ+X?*+Y?+27%—4. (7.14)

Lemma 7.1. If {v,u,w, X,Y, Z} solves the system , then H = 0. Conwversely, given
any complex solution (Xo, Yy, Zg) to H = 0, there always exits (vo, ug,wo) € C3, such that
(vo, up, wo, Xo, Yo, Zo) solves this system.

Moreover, when the solution Xo,Y, Zy to H = 0 are real, |vg| = |ug| = |wo| = 1 if and only
if Xo,Y0,Zo € [—2,2], in which case there are at most two solutions, namely, (vg,ug, wo)
and its complex conjugate (Ug,Ug,Wy), which are distinct unless Xg = Y02 = Zg =4 and
XoYoZo = 8.

Proof. Assume {v, u,w} solves the last three equations in (7.12)), respectively. It follows that
{1/v,1/u,1/w} also solves them, respectively, with X = u+1/u, Y =v+1/v, Z = w+1/w.
By a straightforward calculation, we have

H = (uvw — 1) (u — vw) (v — vw)(w — w)/(v*v*w?),

from which the first statement follows by the first equation of .

To prove the second statement, the realness of Xy, Yy, Zy dictates that |vg| = |ug| = |wo| =
1 if and only if the last three equations in all have a pair of conjugate solutions, which
implies that their discriminants Xg —4, Yy —4, Zg — 4 are no more than 0.

Furthermore, given (Xo, Yo, Zg) € [—2, 2]? that solves (7.14), assume {(v;, u;, w;)|i = 0,1}
are two pairs of solutions of the system . It follows that

V1 = Vg Or g, U1 = ug Or Uy, w1 = wWp Or wWy.

By the pigeonhole principle, we may assume u; = Uy, wi = Wg without loss of generality.

Then it follows from the first equation hq in that v1 = wywy = vg. Therefore, we

deduce that these two solutions either coincide or differ by a complex conjugation, where

the former case occurs when wug, vg, wy are all real to satisfy Xog = Yy = Zp = £2 with

XoYoZy = 8 to respect H = 0. [l
37



FIGURE 2. Semialgebraic sphere H = 0

Remark 7.4. The cubic surface H = 0 with |x|, |y|, |z] < 2 is a semialgebraic sphere.

We now analyse the diagonal family in terms of (to,t1,%) € (RT)3. By substituting (7.9)
and (7.13) into the formula of H in (7.14]) and ignoring the nonzero denominator of the

t
fraction and the nonzero factors, we obtain a hypersurface in (RT)? defined by F(to, t1,tg) =
’ 0,41, 6
0, where
F(to, t1,t6) 2 168750000 H t3t1 "t/ (tatst)
=9¢,%6%40° + (6912 %62 — 366 ¢,%6° — 10260 t14t64)t08
+ (435888 t12t6° + 2995921 16 + (—397332t;" 4 2560t °)te® — 583291 %16 + 63504 t112t6)t07
+ (65088 6% + 225504 1% t6° 4 (31968t1° 4 533856 t1 *)te™ + (—451260t1 7 — 128, %) 16>+
(—1296 ¢, "0 — 448681, ")t + 16416 tllzts)tof’
6 3 2 5 5 4 4 8
+ (78720 te® 4 (—1366848 1> + 154368 t1%)t6” + (—2480688 t,° + 20371211 %)t6® + (2125440, 5+
541536 t1 " )t + (—501336 10 + 2560 t1°)ts> + (—190512 ¢, % — 583291 12)ts + 63504 t115)t05 (7.15)
+ (22016 6% + (1555211 ° + 99840 t1%)t6" + (1451521 % — 2192448 ¢, °)t6* + (1076544 ¢, 5+
533856 t1 )t + (3110411 — 451260, 0)te> + (—1296 t1 1% — 366 t1 %)t + 6912 t115)to4
+ ( — 1024 t6° — 645120 ¢1%t6° + (5774976 t1° + 1543681 °)ts* + (—3048192¢;° — 24806881 %)t +

(2125440 t1 ' + 2995921 10)t6% — 397332¢1 Ptg + 9t115)t03

+ (22016t13t65 + 1555241 t* + (145152¢, 7 + 225504 ¢, %)t6® + 31968 ¢, t6> — 10260 t113t6) to?
T (435888 1 462 — 1366848 ¢1%t6° + 7872Ot16t64) to + 65088 1 %% = 0,
with the three necessary discriminant constraints

(9t2 + 16t1t5 — totg)? — 576t tats < 0, (4tats + ity — tots)>—

, ) \ (7.16)
144t 1 totsty < 0, (6462 + 8ltaty — totg)? — 20736tt3ts < 0,
thanks to the assumptions made on X,Y, Z € [-2,2] in Lemma [7.1}
Remark 7.5. The three constraints |u| = |v| = |w| = 1 are not independent by the first

equation in (7.12]). Any two of the three inequalities in (7.16)) imply the third. Moreover,
7Z € (—2,2) implies X, Y € (—2,2) since for a fized Z € (—2,2), H =0 in (7.14]) defines an
ellipse good for the conclusion.

In conclusion, we obtain the following existence and uniqueness theorem:.

Theorem 7.1. Given a diagonal matrizv A = diag{l, ai1, ass, a2z, ass}, normalized as in
Remark there exists a sextic curve v belonging to the generally ramified family in Hj
such that A(7y) is of constant curvature, if and only if {to,t1,t6} given by satisfies the
algebraic equation and inequalities .
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Moreover, in A(”H%), there exist at most two constantly curved holomorphic 2-spheres of
degree 6 belonging to the generally ramified family; they are distinct except when {X,Y,Z}
defined in (7.13)) satisfies X?> =Y? =272 =4 and XY Z = 8.

Proof. The necessary part has been verified in the preceding discussion.

Conversely, assume that {to,t1,%} satisfy the algebraic equation and inequali-
ties . Then we obtain at least a triple (vo,ug,wp) of solution of system ac-
cording to Lemma By substituting it into system , we obtain a unique solution
{(zi,y:)|1 < i < 3} by the following recipe: The first equation of gives that

Y1 = v t0t4/(4\/ tltg ug — 3t2), T1 = Y1uUp- (717)

It follows from |ug| = 1 that both z; and y; are of unit length. A similar discussion applies
to (z2,y2) and (z3,ys3).

Apply the logarithmic function on both sides of . Since the ranks of the coefficient
matrix of of (01, ...,05) and its enlarged version with the augmented (log(x1),--- ,log(ys))
are both equal to 5, we can solve #; from the arguments of the points {(x;,y;)|1 < i < 3}
on the plane. Substituting all the data into ((7.2)) gives a constantly curved holomorphic
2-sphere o in A(H}) (see Remark .

Lastly, we remark that ¢ is uniquely determined by (v, ug,wp), owing to that the only
difference between any two pairs of solutions {#;[1 < j < 5} and {§;|]1 < j < 5} of
is 0; = 9} + 2kjm/6, 1 < j < 5, for some 0 < k < 5. It is straightforward to
show that the corresponding two curves share the same image by introducing a rotational
reparametrization z = zeV 12k /6,

In conclusion, any solution (v, u,w) of system determines uniquely a constantly
curved 2-sphere. Then the second statement follows from Lemma,[7.1 Il

Corollary 7.1. The only constantly curved holomorphic 2-sphere of degree 6 in the standard
Fano 3-fold H3 tangent to the the standard Veronese curve PSLo-u® is the Veronese curve
itself.

Proof. For the standard Fano 3-fold Hj, the associated {to,t1,t¢} are all equal to 1. There-
fore the corresponding X =Y = Z = 2 by (7.13). O

Remark 7.6. In addition to the standard Fano 3-fold Hy, let us take the diagonal A =
diag{1,1,4,4,16}, there exists a unique constantly curved holomorphic 2-sphere of degree 6
belonging to the generally ramified family that lies in A('Hg) given by

1 0 —v622 —223 —324
0 1 62 322 423 )7

since the associated X =Y = Z = 2. It turns out that among Fano 3-folds H? in G(2,5),
only three (up to unitary congruence) contain a unique constantly curved holomorphic 2-
sphere of degree 6; the last one will be given in Ezample [8.5]

8. THE MODULI SPACE AND NEW EXAMPLES

Before describing the moduli space of constantly curved holomorphic 2-spheres belonging
to the generally ramified family, we first consider the semialgebraic set S C (R*)? deter-
mined by the algebraic equation ([7.15)) and the three inequalities (|7.16]).
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Proposition 8.1. The semialgebraic set S is 2-dimensional and equipped with an involution
0:8 =8, t=(tg,t1,tg) — T = (To, T1,Ts) = (gto, gt1,9° te), (8.1)

where g(to, t1,t6) = 3/ (t5ts)-
Proof. Tt is easy to show that ¢ is an involution of (R¥)? restricted to S; consequently, we
need only verify that o(S5) C S.

Assume that t = (to,t1,t6) € 9, i.e., that ¢ satisfies

F(t)=0, and X(¢t),Y(t), Z(t) € [-2,2].
A direct computation yields that
F(T)=g*"F(t)=0, Z(T) = Z(t) € [-2,2].
Note that the last equation of gives

Viits = 3\/EatseY "1 OrH05=0) _ o, [ oV =1(0+04—01)

Set ¢ = eV—1(02+65—05—01)  Then a similar argument to that deriving ((7.12) leads to
¢®—Qq+1=0, where

Q(t) & (—tits + Otots + Atsty)/(6+/Eatstats).
Since |q| = 1, it forces Q(t) € [—2,2]. It is straightforward to show that Y (T) = Q(t) €
[—2,2]. Therefore, combining Remark we obtain that the norm of X(7') is also less
than or equal to 2. This completes the proof that T'= o(t) lies in S.
We are left with showing that the real dimension of the semialgebraic set S is 2. At the
generic point pg = (1, %, %) € S (for the choice of pg, see Example below for details). A
calculation gives

VF(po) = (OF dto, OF |9t1, OF [0ts) (po) = (0, —13125/256,4375/64) # 0.

Owing to the implicit function theorem, near pg, S is locally a graph of ¢y and t¢1; hence,
its real dimension is 2. [l

Remark 8.1. We point out that the involution o comes from the reciprocal transformation
of CP? (see the proof of the following Theorem).

Now, we are in a position to present our main theorem. Denote by M the mod-
uli space of constantly curved holomorphic 2-spheres belonging to the generally ramified
family in G(2,5), modulo the extrinsic ambient U (5)-equivalence and the internal M&bius
reparametrization.

Theorem 8.1. M = 5/Zy, so that it is a 2-dimensional semialgebraic set.

Proof. Our first goal is to show that a holomorphic 2-sphere of the diagonal family is also
determined by its coefficients of z*, k = 2,3,4 in (7.2). Consider the quotients of them
respectively to define a map

appa33 appd44 a11044
T: S — (R+)37 (t07t1>t6) = (A,B,C) é ( ) ) ) (82)
a11G22 11033 A22033

It follows from ([7.8) that (A4, B,C) = (\/%u/%gth t(%gtl)' It is straightforward to

show that tg = A2, t; = A*C?/B?, tg = A'9C*/BY; therefore 7 is injective.
The next step is to describe our moduli space. Let ¢1(z) and ¢3(2) be two holomorphic 2-
spheres of the diagonal family corresponding to t = (to, t1,t6) and t = (o, t1, tg), respectively.
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If there exists a U € U(5) such that the image of U - ¢; agrees with that of g, then U
induces a Mobius transformation Z = f(z) on CP!. Since the ramified points of ¢; and ¢
are both {0,000} by Lemma this set is invariant under ¢. Hence Z = pz or £, where
p € C*. Our aim is to establish that ¢ =t or ¢t = o(¢), which suffices to complete the proof.
We divide the argument into two cases.

Case (1): Suppose that Z = pz. Comparing the first two and last two terms of ¢; and

2, we obtain that (see ([7.2))
U-egANU-e1 =0 mod (eg,e1), U-eg AU -e3 =0 mod (eq, e2),
U-eaANU-e4=0 mod (ez,eq), U-e3AU-e4 =0 mod (es,eq).

Hence, U = diag{ugp, . .., u44} is diagonal as U is unitary. As a result, they share the same
quotients in (8.2), i.e., 7(t) = (), so that ¢ = ¢ by the injectivity of 7.

Case (2): Suppose that Z = £. Following a similar argument as in Case (1), we see
that U is anti-diagonal. Consequently, the quotlents in (8.2) satisfy A(t ) C(t), B(t) =
B(t), C(t) = A(t). By the exposition below (8.2)), it is easy to show that ¢t = o(t).

Now, the conclusion follows from Theorem O

The end of this section is devoted to the construction of several interesting individual as
well as 1-parameter families of examples.

Recall the involution ¢ : S — S and its invariant subset S7 defined by setting g = 1, so
that 1 = g = t3/(t3t6). It is a piecewise smooth simple closed curve. Indeed, substitute
te = t3/t3 into and ignore the non-zero denominator and the non-zero factors. The
level set S7 is the semialgebraic set defined by the three inequalities in and

(4415 — 420 +t§ — 7215t — 5136 £t — 1592¢5t; + T056 5t — 672¢0t; + 16¢7) -
(to— 1) (285 — 3tito + 1) = 0.

In the tgt;-coordinate plane, S; is plotted in Figure 3. The branch corresponding to (¢g —
1) = 0 is the blue vertical line segment. The second branch described by (2 t% — 3t1tp + tl) =
0 is the end point (1, 1) of the blue line segment. The third branch corresponds to the union
of the (upper) brown and (lower) green curves parametrized by

1 ={(s, F1(s)) | s € [1,11/6]}, 4o = {(s, F2a(s)) | s € [1,11/6]}, (8.3)

respectively, where Fy = (£3(199 + 642ty + 9t3 + 30A)) /(4(21tg — 1)?), F» = (£3(199 + 642t + 9t3 —
30A)/(4(21tg — 1)2), and A £ (3t +2) /(4to + 1) (11 — 6t).

It follows from Theorem that the moduli space is M = S/o with the simple closed
curve S; on its boundary. By applying the coordinate transformation (to, t1,t¢) — (to,t1, \)
with A = 1/g, we can plot M as in Figure 4. It looks like a horn, with S; marked in red,
and the level sets of ¢ = 2 and g = 3 marked in green and blue, respectively. The figure
seems to suggest that the moduli space M is a topological disk. It would be interesting to
see whether this is indeed the case.

Example 8.2. We point out that examples on the blue line segment coincide with the
1-parameter family ([7.7) in Remark In fact, it follows from (7.9)) that

to=1, ty =ty, t3 =5t3/(4ty + 1), ty =12, t5 =13, tg = t3,

apo =1, a1y =1, age = agz = 1/Vt1, asa =1/t
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FiGURE 3. The level set Sp FIGURE 4. The moduli space M

Moreover, substituting all the data into ([7.4]), we obtain that

(1 0 _\/geﬁ@ZQ _4 %eﬁegzs _36ﬁ94z4>

8.4
0 1 Jéeﬁelz 3eV—102,2 2\{—?6‘/?19323 &4

Set t1 2 (5+3cos)/(20 —12cosh), then cos® = (20t; —5)/3(4t; +1). Then 6y =

0, 6 £ 0, and
91é0_505517 6,20, 93é9+50;51

satisfy ([7.10]), where

34Vl 3— V10
Bo=Arg| ——= |, Bi=A1g | ——r= |-
/10 + 6 cos 0 v/10 — 6 cos 0

It is straightforward to verify that differs from by multiplying its third and
fourth columns by eV~1(F1=Fo+0) " its last column by eV—12(F1=F)+0) and performing a
reparameterization z +— eV=1(60=£1)/2 5 Note that +6 give the same t;; they correspond to
the two complex-conjugated solutions.

Bo — B

0320, 0520 - =

Proposition 8.2. The second fundamental form A of a constantly curved holomorphic 2-
sphere of degree 6 belonging to the generally ramified family is not of constant norm, except
for the standard Veronese curve (1.1).

Proof. Tt follows from the Gauss equation that
|AJ[? = 20/3 — [|0F /02 NOF /0|2 /(9(1 + |2[*)®), (8.5)

where F is the Pliicker embedding of the holomorphic 2-sphere in G(2,5) into CP? (see
[21, p.6, p.9] for details). Note that ||0F/0z A OF /0z||?> only vanishes at ramified points.
Therefore, using Lemma [6.2] we can derive that the second term on the right-hand side of
||A||? is not constant. O

Example 8.3. On the level set S1, choose tp = 11/6. Then we can solve for ¢; = 1331/864.
It gives an exact solution to ([7.15)),

LW 131 MG4L 73205 1771561 19487171
0= g T 276 T 414720 YT 11197447 T 0 T 17915904

6 864’

It is checked that X =Y = 5v/5/4/33 and Z = 2. from which the angles {6;,--- ,605} can
be solved.
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Example 8.4. On the level set S1, choose tg = (2\/ 79 + 20) /21. Then we can solve for
t1 = (279 + 20) /21. It gives an exact solution to (7.15),

to=t) = ts = tg — (2\/ﬁ+ 20) 21, by =ty = (23\/ﬁ+ 209) /189,
ts = (9+V79)/8,

from which the angles {61, -, 65} can be solved. Note that for this example, the diagonal
matrix A has two distinct eigenvalues agy = a44 # a11 = age = ass.

Example 8.5. Start with the equations P2 X?—-4=0,Q2Y?—-4=0,R27%2-4=0,
with X,Y, Z given in to express them in terms of the variables tg,t1,g, with tg =
t3/(t2g) by . Continue to compute the derived resultants of the refined numerators
P',Q',R of P,Q,R, in terms of tg,t1, g, after removing powers of g — 1 and those single-
variable factors without positive solutions by, e.g., Sturm’s algorithm for counting the exact
number of distinct positive roots of a real polynomial, while setting aside possible candidate
polynomials before proceeding with the next level of resultant computation; along the way,
we heed the constraint that (gtg, gt1,1/g) is a set of solution if (¢, 1, g) is, by Proposition
to further narrow down the candidates. We end up with the exact equations for possible
th tla g:

p 2 3004245721g°% — 139634316726g° — 67838574585¢9% — 3187869588209° — 678385745852

— 1396343167269 + 3004245721 = 0,

Y

q £ 2537649t5 — 40347234t] + 36454860t4 — 19711080t] + 26076060t2 — 17915544t + 3452164 = 0,

1>

r £ 6861904453295341780216896t% — 57789440847499427495680896t° — 3541432129528999644182160t]
1 1 1

+ 26957875487158271699236801&‘;’ — 2425918438750430615250601&? — 261056339362401426814176t,
+ 53689575410338079139841 = 0.

Compute the Grobner basis of the ideal (P, Q, R',p,q,r) to obtain the basis consisting
of six elements of which we only record the two essential ones,

E £ 30407219135534569920865279281¢°%t; — 56843966313504419224864040844°>

+ 4826381508202691775218328738gt1 + 8781109390742136392820835978g

+ 22087970177286319548246901485t¢ — 37952752504503427337193407559t

— 10129670167010754418270796864 = 0,

G £ 323983664320381367395969030814241¢% — 15097919249633508113716536736052777g>
+ 24001947052912436490532391777190000gt; — 10297270579570244241163795555112489¢g

— 21160216103727154670480065729425120t¢ + 38155570002907589892718590589124280t 1
— 10753529104240427995602453394128335 = 0.

We obtain tg £ R/S and t; = T/U in closed form of g, where

R £ 3239836643203813673959690308142419° — 15046494988853004912329176221825959¢"
— 8611085577295995251867740593198034¢° + 66580173076038669256777232696883664°
+ 8122830950478969874129540484608001g + 26132918116090821757236925434099385,
5 £ 211602161037271546704800657294251209° + 20793797801629220801560324794395760g
+ 1305303435283084266467628002760120,
T £ _423618308217230277983078980100353¢° + 268613123953869096710992847894178654°
+ 2464682459146076205358051 7302467299 -+ 26749087059945119323559494796984559,
U £ 380883889867088784068641183129652169° + 37428836042932597442808584629912368¢
+ 2349546183509551679641730404968216.
It is then checked that all the remaining equations in the basis are compatible with p = 0.
Now, p = 0 has two positive real roots reciprocal to each other as the coefficients of p are
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symmetric, which are approximately g ~ 0.0212731522 and 47.0076078738 (Since all the
above polynomial equations are exact, the listed numerical values are accurate up to the
last digit, checked by the intermediate value theorem, for instance.) We then derive the
corresponding values for tg and ¢; through R, S, T,U to yield

(to,t1, g) ~ (0.3184944933,0.1803379951, 47.0076078738), or
~ (14.9716642533, 8.4772577609, 0.0212731522),

accurate up to the last digit, in accord with Proposition 8.1 both give X =Y = Z = 2.
The second set gives the pointed end of the horn in Figure 2.
This is the third and the last example, aside from the two given in Remark [7.6 with g = 1,

for which there is only one constantly curved 2-sphere belonging to the generally ramified
family in the corresponding Fano 3-fold A(H3), where A is computed by (7.8)).

Example 8.6. Set t; £ t2/6 in F given in (7.15]) and factor out positive terms to yield

f(g,to) £ 190512g*t5 + 207369% t] + 952569°t5 + 27g%t5 — 205416¢°t5 — 40130162
— 10432875 — 6264¢°t5 — 59319974 + 168282¢°t5 + 32913¢t8 + 202140¢°t2 + 35388gt5
+ 6720gt2 + 2034t 4+ 195049t 4 2460t02 + 688ty — 32 = 0.

It defines a plane algebraic curve C. We claim that C* C C falling in the rectangle R
given by 8/15 <ty < 5, 1475/10000 < g < 3, is a smooth, connected closed curve contained
in S, the double of the moduli space M.

Firstly, observe that (tg,g) = (1,1) solves f = 0 so that that C* is not empty. It is also
directly checked that g—g; / % = 2 at (tg,g9) = (1,1), so that the implicit function theorem
implies that f = 0 is locally a curve (to, g(to)) around (tg,g) = (1,1) with negative slope.

Setting to = 8/15 or 5, and g £ 1475/10000 or 3, respectively, we solve f(g,to) = 0 to
attain (accurate up to the last digit for the exact polynomials)

for ty = 8/15, freal g, while for ty = 5, g ~ —0.4687373438, or — 0.0109931977;
for g = 1475/10000, to ~ 0.0088038166, while for g = 3,
to ~ —0.5591240674, —0.4272041173, —0.0337884110, 0.0005317397.

This means that the set C* never leaves the rectangle R, so that by analytic continuation
of an algebraic curve, C* consists of closed curves and, a priori, a few isolated points. The
latter can be ruled out since these finitely many points must satisfy f = df/0tg = 0f/0g =0
and the Grobner basis associated with the ideal (f,df/0to,0f/0g) is {g — 1, 3to + 2} whose
zero locus (to,g) = (—2/3,1) does not fall in the domain R. As a result, it also implies that
the finitely many closed curves constituting C* are smooth and disconnected in R.

By calculating the resultants of f = 0f/Jty = 0 against g and ty and solving for the
roots, we verify that none of the possible pairs of (tg, g) satisfy (see the remark below
for the engaged computational error analysis for rational functions), except possibly for two
points (g, g) approximately at

(0.6547026351,2.9099350324), or (4.5794327836,0.1475263321), (8.6)

accurate up to the last digit. Since there exist at least two such points, this proves that C* is

only tangent to the horizontal lines, g = constants, precisely at the two points; likewise, this

is also true for the vertical line test. In particular, C* has only one connected component

as, otherwise, we would have more than two points tangent to horizontal or vertical lines.
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We calculate the resultants of f and the numerator of R £ Z? — 4 against ¢g and tg and
solve for the roots, to confirm that the only point of intersection of the curve C* and the
boundary of Z? < 4 occurs with tangency at

(to, g) ~ (1.5271772661,0.4663765333),

with the corresponding X =Y ~ 1.8718004195 and Z = 2. It follows that C* lies completely
in Z? < 4 since (to,g) = (1, 1) satisfies Z2? < 4. In particular, the three constraints in ([7.16])
are satisfied by Remark [7.5]

Figure 5 depicts the curve C* (in red) in S. Since it extends into the region with g > 1, we
apply the involution ¢ to flip it back into M with g < 1. Figure 6 shows the resulting self-
crossing, flipped C* (in red), which opens at g = 1 for which ¢y = 1 or ¢ty ~ 1.4542230103.
The region bounded by the three constraints is colored yellow.

FIGURE 5. The curve C* in S FIGURE 6. Folded C* in M

Remark 8.2. Let f(z,y) = Z%”TJLV:O A £ y" and I(x,y) 2 EZI]JZO bij x'y? over a rectangle
R : [a,b]x[c,d] with a,c > 0. Assumel(z,y) > 0 and define the positive function || f||(z,y) =
E%}JLV:O |@mn | 2™y™ over R. Given (zo,y0), (x,y) € R with 0 < |zg — x|, |yo — y| < h, where
h > 0 is so small that nh << 1 forn = M, N, I, or J, then p(z,y) £ f(x,y)/l(z,y) satisfies
the error estimate

(w0, y0) — p(z,y)| < (C(M, N) + C(I, J))( s%pR(HfH(ﬂ%y)/l(x,y))’ (8.7)
x,y)€E

where, for n € N with nh < 1, we define v, = nh/(1 —nh), and

C(p,g) 2 (e = Dy + (€ = Dy + (e = 1) (" = Dy

for p,q € N. (We leave it to the reader to verify.)
In Ezample 5, x = g and y = to, R is the rectangle [1475/10000, 3] x [8/15, 5], and f(g,to)
is given in Example 5. Write, for H in (7.14]),

Since M = 4,N = 6,A = 3, and B = 5, if we take h = 10720, the error estimate
gives that C(M, N) + C(A, B) is in the magnitude of 10717, and an elementary mini-
maz estimate deriwes ||f||(x,y)/g(z,y) < 1 for all (z,y) € R, so that the error is in the
magnitude of 1077, Consequently, all the engaged computations for the data satisfying
H # 0 to obtain, e.g., are accurate up to the tenth decimal place if we set the last
significant decimal place to be the twentieth; all the undesired values above, in fact, are such
that their third decimal digits are nonzero to satisfy H # 0.
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