## Math 2200 Spring 2017, Final Exam

## You may use any calculator. You may use one $4 \times 6$ inch notecard as a cheat sheet.

1. Let X be the weight in mg of an adult female housefly (Musca domestica, L.) and let Y be the weight in mg of an adult male housefly. Let $\mu_{\mathrm{X}}$ and $\mu_{\mathrm{Y}}$ denote the unknown means of X and Y . Do not assume that X and Y are normally distributed. In a study of the effect of a sublethal dose of sodium arsenite on adult houseflies, 457 females and 402 males were weighed prior to treatment. The sample statistics were $\overline{\mathrm{X}}=27.650, S_{\mathrm{X}}=2.530, \overline{\mathrm{Y}}=18.075$, and $S_{\mathrm{Y}}=1.997$ (GAINES, J. C.,CLARE, S., RICHARDSON, C. H., Journal of Economic Entomology 1937 Vol. 30 No. 2 pp.363-366). Find a $99 \%$ confidence interval for $\mu_{\mathrm{X}}-\mu_{\mathrm{Y}}$. What is the lower limit of the interval?
A) 8.7701
B) 8.8514
C) 8.9327
D) 9.0140
E) 9.0953
F) 9.1766
G) 9.2579
H) 9.3392
I) 9.4205
J) 9.5018

## Solution f) 9.1766

Because there is no assumption of normality, the student-t distribution cannot be used. However, the large sizes, $\mathrm{n}=457$ and $\mathrm{m}=402$, of both samples allow us to use normal approximations. Moreover, the large samples allow us to approximate the unknown population means with the sample means. Thus, the margin of error ME is

$$
\mathrm{ME}=z_{0.005} \sqrt{\frac{S_{\mathrm{X}}^{2}}{n}+\frac{S_{\mathrm{Y}}^{2}}{m}}=2.575829 \sqrt{\frac{(2.530)^{2}}{457}+\frac{(1.997)^{2}}{402}}=0.3984364
$$

The $99 \%$ confidence interval is

$$
\overline{\mathrm{X}}-\overline{\mathrm{Y}} \pm \mathrm{ME}=27.650-18.075 \pm 0.3984364=9.575 \pm 0.3984364
$$

or [9.176564, 9.973436].
Here is the R code for the answer:

```
> n.X = 457; n.Y = 402
>m.X = 27.650; m.Y = 18.075
>S.X = 2.530; S.Y = 1.997
> SE = sqrt(S.X^2/n.X + S.Y^2/n.Y)
> SE
[1] 0.1546828
> z.99 = qnorm(0.995)
> z.99
[1] 2.575829
> ME = z.99*SE
> ME
[1] 0.3984365
> conf.int.99 = c(m.X - m.Y - ME , m.X - m.Y + ME)
> conf.int.99
[1] 9.176564 9.973436
```

2. As in the preceding problem, let X be the weight in mg of an adult female housefly and let Y be the weight in mg of an adult male housefly. Let $\mu_{\mathrm{X}}$ and $\mu_{\mathrm{Y}}$ denote the unknown means of X and Y . In this problem, do assume that X and Y are normally distributed. Suppose that a hypothetical random sample of 17 females and 12 males had resulted in the same sample statistics that were actually observed and reported in the preceding problem: $\overline{\mathrm{X}}=27.650, S_{\mathrm{X}}=2.530, \overline{\mathrm{Y}}=18.075$, and $S_{\mathrm{Y}}=1.997$. Using the hypothetical sample statistics, what would be the margin of error for a $99 \%$ confidence interval for $\mu_{\mathrm{X}}-\mu_{\mathrm{Y}}$ ? Follow all course conventions. Do not pool. In fact, the authors of the article noted that the variance of female weights could be expected to be larger than that of males because of differing egg developments.
A) 0.4216
B) 0.6653
C) 0.9090
D) 1.1527
E) 1.3964
F) 1.6401
G) 1.8838
H) 2.1275
I) 2.3712
J) 2.6149

## Solution J) 2.6149

In this problem the sample sizes, $n=17$ and $m=12$, are too small to use the normal approximation. Moreover, the sizes are too small to expect that the sample variances are good estimates of the unknown population variances. In short, the method of the preceding problem is not appropriate. However, the assumption of normality of X and Y allows us to use a student-t distribution. According to course conventions we will use $\mathrm{df}=\min (n-1, m-1)=11$ as a conservative choice for the degrees of freedom. Thus

$$
\mathrm{ME}=t_{0.005,11} \sqrt{\frac{S_{\mathrm{X}}^{2}}{n}+\frac{S_{\mathrm{Y}}^{2}}{m}}=3.105807 \sqrt{\frac{(2.530)^{2}}{17}+\frac{(1.997)^{2}}{12}}=2.614893 .
$$

Here is the R code for the answer:

```
> n.X = 17; n.Y = 12
> S.X = 2.530; S.Y = 1.997
> alpha = 0.01; d.f. = min(17,12)-1
> t.99 = qt(alpha/2, df = d.f., lower.tail=FALSE)
> t. }9
[1] 3.105807
>SE = sqrt(S.X^2/n.X + S.Y^2/n.Y)
> SE
[1] 0.8419368
> ME = t.99*SE
> ME
[1] 2.614893
```

3. The political landscape was different when your examiner arrived at First President University. Let us travel back in time to January 1980, just before the inauguration of Ronald Reagan, and to April 1981, one year into the Reagan presidency. At both those historical moments, New York TimesCBS News Polls asked 1400 randomly sampled Americans if they identified themselves as Democrats or Republicans. (The size of each poll was 1400 and the two polls were independent.) In January 1980, only 462 of the 1400 surveyees identified themselves as either Republicans or Republican-leaning independents. In April 1981, the number of such surveyees had grown but was still only 574 of 1400 . Let $p_{1981}$ be the population proportion of Republicans or Republican-leaning independents in April 1981. Let $p_{1980}$ be the corresponding proportion in January 1980. What is the upper limit of a $99 \%$ confidence interval for $p_{1981}-p_{1980}$ ?
A) 0.1021
B) 0.1144
C) 0.1268
D) 0.1392
E) 0.1515
F) 0.1639
G) 0.1763
H) 0.1887
I) 0.2010
J) 0.2134

## Solution <br> C) $\mathbf{0 . 1 2 6 8}$

Let $n=1400$ denote the sample size in 1981 and $m=1400$ the sample size in 1980. The standard error of $\widehat{p_{1981}}-\widehat{p_{1980}}$ is

$$
\begin{aligned}
\mathrm{SE} & =\sqrt{\frac{p_{1981}\left(1-p_{1981}\right)}{n}+\frac{p_{1980}\left(1-p_{1980}\right)}{m}} \\
& =\sqrt{\frac{574(1400-574)}{1400^{3}}+\frac{462(1400-462)}{1400^{3}}} \\
& =0.01818555 .
\end{aligned}
$$

The z-multiplier $z_{0.005}$ is 2.575829 . The margin of error ME is $\mathrm{ME}=z_{0.005} \mathrm{SE}=2.575829 \times 0.01818555=$ 0.04684287 . The upper limit of a $99 \%$ confidence interval is

$$
\frac{574}{1400}-\frac{462}{1400}+0.04684287, \quad \text { or } \quad 0.1268429
$$

Here is the R code for the answer:

```
> n. 1981=1400; n. 1980= = 1400
> p.1981 = 574/1400; p.1980=462/1400
> SE = sqrt( p.1981*(1-p.1981)/n.1981 + p.1980*(1-p.1980)/n.1980) # standard error
> SE
[1] 0.01818555
> z.99 = qnorm(0.995) # The z-multiplier
> z.99
[1] 2.575829
> ME.99 = z.99*SE # margin of error
> conf.int.99 = c(p.1981-p.1980 - ME.99 , p.1981-p.1980 + ME.99) # 99\% conf. int.
> conf.int.99
[1] 0.03315712 0.12684288
```

4. The amperage drawn by a circular saw is normally distributed with mean $\mu$ and standard deviation $\sigma$. Find the lower endpoint of a $95 \%$ confidence interval for the variance $\sigma^{2}$ based on the following observations of a random sample of amperage drawn: 5.6384, 6.2152, 5.5988, 6.3004, 5.6364, 5.4509. (The next problem will use some of the calculations needed for this problem.)
A) 0.0497
B) 0.0600
C) 0.0703
D) 0.0806
E) 0.0909
F) 0.1012
G) 0.1115
H) 0.1218
I) 0.1321
J) 0.1424

## Solution A) 0.0497

If X is normally distributed with variance $\sigma^{2}$, and if $S^{2}$ is the sample variance of a random sample of size $n$ drawn from X, then a $100(1-\alpha) \%$ confidence interval for $\sigma^{2}$ is

$$
\left[\frac{(n-1) S^{2}}{\chi_{\alpha / 2, n-1}^{2}}, \frac{(n-1) S^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}\right]
$$

Here we calculate $S^{2}=0.127551$ and look up $\chi_{0.05 / 2,6-1}^{2}=\chi_{0.025,5}^{2}=12.8325$ and $\chi_{1-0.05 / 2,6-1}^{2}=\chi_{0.975,5}^{2}=$ 0.8312116 . The requested confidence interval is

$$
\left[\frac{5 \times 0.127551}{12.8325}, \frac{5 \times 0.127551}{0.8312116}\right]=[0.04969842,0.76725950]
$$

Here is the R code for the answer:

```
> X = c(5.6384, 6.2152, 5.5988, 6.3004, 5.6364, 5.4509)
> S = sd(X)
> S # the sample standard deviation
[1] 0.3571428
> S^2 # the sample variance
[1] 0.127551
> chisq.divisor.left = qchisq(0.025, df = 5)
> chisq.divisor.left
[1] 0.8312116
> chisq.divisor.right = qchisq(0.975, df = 5)
> chisq.divisor.right
[1] 12.8325
> conf.int. 95 = c( (6-1)*S^2/chisq.divisor.right , (6-1)*S^2/chisq.divisor.left)
> conf.int.95
[1] 0.04969841 0.76725945
```

5. What is the upper endpoint of the $95 \%$ confidence interval described in the preceding problem?
A) 0.1954
B) 0.2771
C) 0.3588
D) 0.4405
E) 0.5222
F) 0.6039
G) 0.6856
H) 0.7673
I) 0.8490
J) 0.9307

## Solution H) 0.7673

See preceding solution.
6. Standing and supine systolic blood pressures were compared for 5 subjects. The blood pressure of each subject was measured in both positions.

| Subject | 1 | 2 | 3 | 4 | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Standing | 162 | 128 | 139 | 145 | 151 |
| Supine | 160 | 137 | 138 | 149 | 158 |

Test the null hypothesis that standing and supine systolic blood pressure have the same mean against the alternative that mean supine systolic blood pressure is greater than mean standing systolic blood pressure. Assume that the difference between supine and standing blood pressure is normally distributed. Report the p-value.
A) 0.0193
B) 0.0446
C) 0.0699
D) 0.0952
E) 0.1205
F) 0.1458
G) 0.1711
H) 0.1964
I) 0.2217
J) 0.2470

## Solution D) 0.0952

Let X be supine systolic blood pressure and let Y be standing systolic blood pressure. The paired data results in the following differences $\mathrm{X}_{i}-\mathrm{Y}_{i}$ for $1 \leq i \leq 5: \quad-2,9,-1,4,7$. The sample mean of these differences is 3.4 and the sample standard deviation is 4.827007 . The p-value is

$$
\mathrm{P}\left(t_{5-1} \geq \frac{3.4}{4.827007 / \sqrt{5}}\right)=\mathrm{P}\left(t_{4} \geq 1.57502\right)=0.09518603 .
$$

Here is the R code for the answer:

```
> X = c(160,137,138,149,158); Y = c(162,128,139,145,151); X.minus.Y = X - Y
> X.minus.Y
[1] -2 9 -1 4 7
> n = length(X.minus.Y)
> mu.obs = mean(X.minus.Y)
> mu.obs
[1] 3.4
> S.obs = sd(X.minus.Y)
> S.obs
[1] 4.827007
> mu.obs/(S.obs/sqrt(n))
[1] 1.57502
> pt(mu.obs/(S.obs/sqrt(n)), df = n-1, lower.tail = FALSE)
[1] 0.09518608
```

7. "In the movies and in certain kinds of romantic literature, we sometimes come across a deathbed scene in which a dying person holds onto life until some special event has occurred. For example, a mother might stave off death until her long-absent son returns from the wars. Do such feats of will occur in real life?"

Those sentences were the introduction to a paper that statistician David Phillips published in 1972. He studied the question, Do some people postpone their deaths until after their birthdays? Phillips randomly selected 1251 deceased persons from a datbase of prominent Americans. For each such person, Phillips observed his or her birth and death months. He then assigned the person to one of three groups we will refer to as groups A, B, and C. If a person died in the month prior to his or her birth month, then Phillips placed that person in group A. If the person died in either his or her birth month or one of the next three months, then Phillips placed that person in group B. A person who was not placed in either group A or group B was placed in group C. The observed counts are tabulated below. Phillips asked, Does the observed distribution of the counts fit the distribution in which deaths are equally distributed by month (i.e., $1 / 12$ of all deaths occur in any specified month, $2 / 12$ of all deaths occur in any specified two months, $3 / 12$ of all deaths occur in any specified 3 months, and so on)? We will test the null hypothesis that the observed distribution of deaths, as tabulated below, fits the proposed distribution against the alternative that the observed distribution does not fit.

| Group | A | B | C | Total |
| :--- | :---: | :---: | :---: | :---: |
| Observed Count | 86 | 472 | 693 | 1251 |

If the null hypothesis were true, what would be the expected count for group C? (The next problem continues with this hypothesis test.)
A) 681.75
B) 687.75
C) 693.75
D) 699.75
E) 705.75
F) 711.75
G) 717.75
H) 723.75
I) 729.75
J) 735.75

## Solution I) 729.75

Group A counts deaths in one month. That would be $1 / 12$ of all deaths in the proposed distribution. Group B counts deaths in 4 months, or $4 / 12$ of all deaths in the proposed distribution. Group C counts deaths in the remaining 7 months, or $7 / 12$ of all deaths in the proposed distribution. The expected counts are obtained by multiplying 1251 by each of the proportions $1 / 12,4 / 12,7 / 12$. The results of these multiplications are tabulated below.

| Group | A | B | C | Total |
| :---: | :---: | :---: | :---: | :---: |
| Observed Count | 86 | 472 | 693 | 1251 |
| Expected | 104.25 | 417.00 | 729.75 | 1251 |

8. To continue the death month hypothesis test of the preceding problem, calculate the test statistic and the critical value using 0.01 as the significance level. By how much does the test statistic exceed the critical value?
A) 2.7273
B) 2.8480
C) 2.9687
D) 3.0894
E) 3.2101
F) 3.3308
G) 3.4515
H) 3.5722
I) 3.6929
J) 3.8136

## Solution D) 3.0894

From the preceding problem, we have the appropriate $\chi^{2}$ goodness of fit table of observed counts and expected counts under null hypothesis:

| Group | A | B | C | Total |
| :---: | :---: | :---: | :---: | :---: |
| Observed Count | 86 | 472 | 693 | 1251 |
| Expected | 104.25 | 417.00 | 729.75 | 1251 |

The observed value $v$ of the $\chi_{5}^{2}$ test statistic is given by

$$
v=\frac{(86-104.25)^{2}}{104.25}+\frac{(472-417)^{2}}{417}+\frac{(693-729.75)^{2}}{729.75}=12.29976
$$

The crtical value is $\chi_{0.01,2}^{2}=9.21034$. Thus, the test statistic exceeds the critical value by $12.29976-9.21034$, or 3.08942 .

Here is the solution in R :

```
>E = 1251*c(1/12,4/12,7/12)
>E
[1] 104.25 417.00 729.75
> Obs = c (86,472,693)
> (Obs-E)^2/E
[1] 3.194844 7.254197 1.850719
> sum((Obs-E)^2/E)
[1] 12.29976
> pchisq(12.29976, df = 2, lower.tail=FALSE) # p-value (not required)
[1] 0.002133738
> qchisq(0.01, df = 2, lower.tail=FALSE) # classical hypothesis test critical value
[1] 9.21034
> 12.29976 - 9.21034 # answer
```

[1] 3.08942
9. A survey of drivers under 65 years old counted those drivers who had 0 or 1 accidents in the year prior to the survey. The accidents were divided into two types: major or minor. The categorical variable Type of Accident (with three values: None, Major, Minor) and the categorical variable Age Group are cross-tabulated below.

|  | None | Major | Minor | Total |
| :--- | ---: | ---: | ---: | :---: |
| $[16,18)$ | 67 | 10 | 5 | 82 |
| $[18,26)$ | 42 | 6 | 5 | 53 |
| $[26,40)$ | 75 | 8 | 4 | 87 |
| $[40,65)$ | 56 | 4 | 6 | 66 |
| Total | 240 | 28 | 20 | 288 |

Are the conditional distributions of Type of Accident homogeneous across the age groups? In a classical chi-squared hypothesis test, what is the value of the test statistic? (A conclusion is not requested so a significance level need not be given. The next problem asks for the p-value of a contemporary hypothesis test.)
A) 3.0599
B) 3.1730
C) 3.2861
D) 3.3992
E) 3.5123
F) 3.6254
G) 3.7385
H) 3.8516
I) 3.9647
J) 4.0778

## Solution E) 3.5123

The fraction of all table entries that are found in the first column is $240 / 288$. Under the null hypothesis of homogeneity, this fraction would, for each row, be the fraction of the row entries found in the first column of the row. Thus, the first column entries would be $(82)(240 / 288),(53)(240 / 288),(87)(240 / 288)$, and (66)(240/288) in the 1st, 2 nd , 3 rd , and 4 th rows respectively. Generalizing this isdea, we see that, under the null hypothesis, the expected value in the ith row jth column is equal to (ith row total)(jth column total)/(table total). The table of expected counts is:

|  | None | Major | Minor | Total |
| :--- | ---: | ---: | ---: | ---: |
| $[16,18)$ | 68.33333 | 7.972222 | 5.694444 | 82 |
| $[18,26)$ | 44.16667 | 5.152778 | 3.680556 | 53 |
| $[26,40)$ | 72.50000 | 8.458333 | 6.041667 | 87 |
| $[40,65)$ | 55.00000 | 6.416667 | 4.583333 | 66 |
| Total | 240 | 28 | 20 | 288 |

The test statistic is

$$
\begin{aligned}
\frac{(67-68.33333)^{2}}{68.33333}+\frac{(10-7.972222)^{2}}{7.972222}+ & +\frac{(5-5.694444)^{2}}{5.694444} \\
+ & \frac{(42-44.16667)^{2}}{44.16667}+\frac{(6-5.152778)^{2}}{5.152778}+\frac{(5-3.680556)^{2}}{3.680556} \\
& +\frac{(75-72.50000)^{2}}{72.50000}+\frac{(8-8.458333)^{2}}{8.458333}+\frac{(4-6.041667)^{2}}{6.041667} \\
& +\frac{(56-55.00000)^{2}}{55.00000}+\frac{(4-6.416667)^{2}}{6.416667}+\frac{(6-4.583333)^{2}}{4.583333}
\end{aligned}
$$

which evaluates to 3.512298 .

Here is the solution in R :

```
> Obs = matrix(c(67,10,5,42,6,5,75,8,4,56,4,6),ncol=3,byrow = TRUE)
> Obs
        [,1] [,2] [,3]
[1,] 67 10 5
[2,] 42 6 5
[3,] 75 8 4
[4,] 56 4 6
> E = matrix(rep(NA,12),ncol=3,byrow = TRUE)
> row.sums = rep(NA,4)
> for(i in 1:4){row.sums[i] = sum(Obs[i,])}
> col.sums = rep(NA,3)
> for(j in 1:3){col.sums[j] = sum(Obs[,j])}
> table.sum = sum(row.sums)
> table.sum == sum(col.sums)
[1] TRUE
> for(i in 1:4){for(j in 1:3){E[i,j]=row.sums[i]*col.sums[j]/table.sum}}
> E
    [,1] [,2] [,3]
[1,] 68.33333 7.972222 5.694444
[2,] 44.16667 5.152778 3.680556
[3,] 72.50000 8.458333 6.041667
[4,] 55.00000 6.416667 4.583333
> test.stat = sum( (Obs-E)^2/E )
> test.stat
[1] 3.512298
```

10. With regard to the test of homogeneity described in the preceding problem, what is the p-value of a contemporary test?
A) 0.1479
B) 0.2222
C) 0.2965
D) 0.3708
E) 0.4451
F) 0.5194
G) 0.5937
H) 0.6680
I) 0.7423
J) 0.8166

## Solution I) 0.7423

There are 4 rows and 3 columns in the table. Therefore, the p-value is

$$
P\left(\chi_{(4-1)(3-1)}^{2} \geq 3.512298\right)=0.7423
$$

The chi-squared table that is provided shows that $P\left(\chi_{6}^{2} \geq 3.4546\right)=0.75$ and $P\left(\chi_{6}^{2} \geq 3.8276\right)=0.70$. From these values you can deduce that the requested p-value is between 0.75 and 0.70 (and much closer to the former than to the latter). Because 0.7423 is the only answer choice bracketed by 0.70 and 0.75 , an interpolation for a more precise evaluation of the p-value is unnecessary.

Here is the solution in R:

```
> pchisq(test.stat, df = (4-1)*(3-1), lower.tail=FALSE)
```

[1] 0.7423328
11. In an investigation of treatments that might prevent prostate cancer, 34,887 men were randomly assigned treatments of selenium, vitamin E, both selenium and vitamin E, or placebo. The men were followed and the incidences of prostate cancer in the four treatment groups were counted. The results are presented in the table below.

|  | No Cancer | Prostate Cancer | Total |
| :---: | :---: | :---: | :---: |
| Selenium | 8177 | 575 | 8752 |
| Vitamin E | 8117 | 620 | 8737 |
| Selenium and E | 8147 | 555 | 8702 |
| Placebo | 8167 | 529 | 8696 |
| Total | 32608 | 2279 | 34887 |

In a test of the null hypothesis that Treatment and Development of Prostate Cancer are inependent, the null hypothesis is retained at significance level 0.05 . By how much does the test statistic fall short of the critical value? (The next problem asks for a p-value.)
Source: Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT), Klein, E.A. and 20 co-authors, Journal of the American Medical Association 306 (2011), 1549-1556.
A) 0.0143
B) 0.0316
C) 0.0489
D) 0.0662
E) 0.0835
F) 0.1008
G) 0.1181
H) 0.1354
I) 0.1527
J) 0.1700

## Solution B) 0.0316

Here is the table of expected counts under the null hypothesis:

|  | No Cancer | Prostate Cancer |
| :---: | :---: | :---: |
| Selenium | 8180.274 | 571.7261 |
| Vitamin E | 8166.254 | 570.7462 |
| Selenium and E | 8133.540 | 568.4598 |
| Placebo | 8127.932 | 568.0679 |

Here is the solution in R :

```
> Obs = matrix(c(8177,575, 8117, 620, 8147, 555, 8167, 529), ncol = 2, byrow = TRUE)
> Obs
    [,1] [,2]
[1,] 8177 575
[2,] 8117 620
[3,] }8147\quad55
[4,] 8167 529
> E = matrix(rep(NA,8), ncol = 2)
> row.sums = rep(NA,4)
> for(i in 1:4){row.sums[i] = sum(Obs[i,])}
> row.sums
[1] 8752 8737 8702 8696
> col.sums = c(sum(Obs[,1]),sum(Obs[,2]))
> col.sums
[1] 32608 2279
> for(i in 1:4){for(j in 1:2){E[i,j]=row.sums[i]*col.sums[j]/34887}}
> E
```

```
    [,1] [,2]
[1,] 8180.274 571.7261
[2,] 8166.254 570.7462
[3,] 8133.540 568.4598
[4,] 8127.932 568.0679
> test.stat = sum( (Obs-E)^2/E )
> test.stat
[1] 7.783171
> test.stat = 0 # temporary value
> # Start of alternative calculation, in case sum( (Obs-E)^2/E ) looks weird
> for(i in 1:4){for(j in 1:2){test.stat = test.stat + (Obs[i,j]-E[i,j])^2/E[i,j] }}
> test.stat
[1] 7.783171
> crit.val = qchisq(0.95, df = (4-1)*(2-1))
> crit.val
[1] 7.814728
> answer = crit.val - test.
> answer
[1] 0.031557
```

12. Like the preceding problem, this problem concerns a test of the null hypothesis that Treatment and Development of Prostate Cancer are independent. In a contemporary test of the null hypothesis, what is the p-value?
A) 0.0507
B) 0.0820
C) 0.1133
D) 0.1446
E) 0.1759
F) 0.2072
G) 0.2385
H) 0.2698
I) 0.3011
J) 0.3324

## Solution A) 0.0507

There are 4 rows and two columns. The test statistic is 7.783171 . The p-value is

$$
P\left(\chi_{(4-1)(2-1)}^{2} \geq 7.783171\right)=P\left(\chi_{3}^{2} \geq 7.783171\right)=0.05071204
$$

Here is the solution in R:

```
> p.value = pchisq( test.stat, df = (4-1)*(2-1), lower.tail=FALSE)
> p.value
[1] 0.05071204
```

13. The table below records bivariate data for 8 women of Pima Indian heritage: the plasma glucose concentration Y and the diastolic blood pressure X.

| X | 102 | 78 | 58 | 74 | 85 | 64 | 56 | 76 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Y | 133 | 154 | 99 | 136 | 95 | 119 | 109 | 92 |

In terms of unknown coefficients $\beta_{0}, \beta_{1}$, and $\rho$, the true linear model is $y=\beta_{0}+\beta_{1} x$ with linear correlation $\rho$. The regression line calculated from the 8 tabulated observations is $y=b_{0}+b_{1} x$ with sample Pearson correlation $r$. Sample statistics are: $\overline{\mathrm{X}}=74.125, \overline{\mathrm{Y}}=117.125, \mathrm{~S}_{\mathrm{X}}=15.14159, \mathrm{~S}_{\mathrm{Y}}=22.31871$, $r=0.3026205, b_{0}=84.0606$, and $b_{1}=0.4460627$. In a classical one-sided hypothesis test of $\mathrm{H}_{0}: \beta_{1} \leq 0$ versus the alternative $\mathrm{H}_{\mathrm{a}}: \beta_{1}>0$, what is the endpoint of the critical region if $b_{1}$ is the test statistic and 0.05 is the significance level? (The next problem continues with this data.)
A) 0.7230
B) 0.8013
C) 0.8796
D) 0.9579
E) 1.0362
F) 1.1145
G) 1.1928
H) 1.2711
I) 1.3494
J) 1.4277

## Solution F) 1.1145

With $n=8$, we calculate $\mathrm{SST}=(n-1) S_{Y}^{2}=7 \cdot(22.31871)^{2}=3486.874, \mathrm{SSR}=r^{2} \mathrm{SST}=(0.3026205)^{2}(3486.874)=$ $319.325, \mathrm{SSE}=\mathrm{SST}-\mathrm{SSR}=3167.549, \mathrm{~S}_{e}=\sqrt{\mathrm{SSE} /(n-2)}=\sqrt{280.2857 / 5}=22.97661$, and $\mathrm{SE}\left(b_{1}\right)=$ $(1 / \sqrt{n-1}) \mathrm{S}_{e} / \mathrm{S}_{\mathrm{X}}=0.5735423$. The endpoint of the critical region is $\mathrm{t}_{0.05, n-2} \times \mathrm{SE}\left(b_{1}\right)$, or $1.94318 \times$ 0.5735423 , or 1.114496 . (Because $b_{1}=0.4460627<1.114496$, the null hypothesis would be retained.)
14. What is the lower endpoint of the $95 \%$ confidence interval for the slope of the regression line?
A) -1.2654
B) -1.1627
C) -1.0600
D) -0.9573
E) -0.8546
F) -0.7519
G) -0.6492
H) -0.5465
I) -0.4438
J) -0.3411

## Solution D) -0.9573

We calculated SE $\left(b_{1}\right)=0.5735423$. We look up $t_{0.025,8-2}=2.446912$. The lower endpoint of the $95 \%$ confidence interval for $\beta_{1}$ is $b_{1}-t_{0.025,8-2} \times \mathrm{SE}\left(b_{1}\right)$, or $0.4460627-2.446912 \times 0.5735423$, or -0.9573448 . (That the lower bound is negative is expected as a consequence of the preceding problem. In that problem a hypothesis test at significance level 0.05 retained the null hypothesis that $\beta_{1} \leq 0$.)
15. The table below records bivariate data for 8 women of Pima Indian heritage: the body mass index Y and the diastolic blood pressure X . (The women are the same as in the preceding two problems, but from your point of view that is neither here nor there.)

| X | 102 | 78 | 58 | 74 | 85 | 64 | 56 | 76 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Y | 32.8 | 32.4 | 25.4 | 37.4 | 37.4 | 34.9 | 25.2 | 24.2 |

In terms of unknown coefficients $\beta_{0}, \beta_{1}$, and $\rho$, which are all different from the corresponding coefficients of the preceding two problems, the true linear model is $y=\beta_{0}+\beta_{1} x$ with linear correlation $\rho$. The regression line calculated from the 8 tabulated observations is $y=b_{0}+b_{1} x$ with sample Pearson correlation $r$. Sample statistics are $S_{\mathrm{X}}=, \mathrm{SST}=213.2087$, and $\mathrm{SSR}=44.61597$. Also, $b_{1}$ and $r$ are positive. In the next problem you will be asked for the p-value of a one-sided hypothesis test of $\mathrm{H}_{0}: \beta_{1}=0$ versus the alternative $\mathrm{H}_{\mathrm{a}}: \beta_{1}>0$. To answer that question, you will need, among other sample statistics, the value of $b_{1}$. Answer this question with the value of $b_{1}$. (Suggestion: start by finding the observed values of the sample statistics $r$ and $S_{\mathrm{Y}}$.)
A) 0.0215
B) 0.0578
C) 0.0941
D) 0.1304
E) 0.1667
F) 0.2030
G) 0.2393
H) 0.2756
I) 0.3119
J) 0.3482

## Solution E) 0.1667

First we calculate the sample linear correlation:

$$
r^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=\frac{44.61597}{213.2087}=0.2092596
$$

It follows that $r=\sqrt{0.2092596}=0.457449$. (Note: we are using the positive square root because we have been given $r>0$.)

Next, we calculate $S_{\mathrm{Y}}$ :

$$
S_{\mathrm{Y}}=\sqrt{\frac{1}{n-1} \mathrm{SST}}=\sqrt{\frac{1}{7}(213.2087)}=5.518912
$$

The next sample statistic we calculate is $b_{1}$ :

$$
b_{1}=r \frac{S_{\mathrm{Y}}}{S_{\mathrm{X}}}=(0.457449) \frac{5.518912}{15.14159}=0.1667342
$$

16. Refer to the preceding problem in which X is diastolic blood pressure and Y is body mass index. In terms of unknown coefficients $\beta_{0}, \beta_{1}$, and $\rho$, the true linear model is $y=\beta_{0}+\beta_{1} x$ with linear correlation $\rho$. The regression line calculated from the 8 tabulated observations is $y=b_{0}+b_{1} x$ with sample Pearson correlation $r$. As previously stated, given sample statistics are $S_{\mathrm{X}}=15.14159$, $\mathrm{SST}=213.2087$, and $\mathrm{SSR}=44.61597$. Also, given were the inequalities $b_{1}>0$ and $r>0$. In the previous problem you were asked for the value of the sample statistic $b_{1}$. What is the p-value of a one-sided hypothesis test of $\mathrm{H}_{0}: \beta_{1}=0$ versus the alternative $\mathrm{H}_{\mathrm{a}}: \beta_{1}>0$ ?
A) 0.247
B) 0.277
C) 0.307
D) 0.337
E) 0.067
F) 0.097
G) 0.127
H) 0.157
I) 0.187
J) 0.217

## Solution G) 0.127

First we calculate the sample linear correlation:

$$
r^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=\frac{44.61597}{213.2087}=0.2092596
$$

It follows that $r=\sqrt{0.2092596}=0.457449$. (Note: we are using the positive square root because we have been given $r>0$.)

Next, we calculate $S_{\mathrm{Y}}$ :

$$
S_{\mathrm{Y}}=\sqrt{\frac{1}{n-1} \mathrm{SST}}=\sqrt{\frac{1}{7}(213.2087)}=5.518912
$$

The next sample statistic we calculate is $b_{1}$ :

$$
b_{1}=r \frac{S_{\mathrm{Y}}}{S_{\mathrm{X}}}=(0.457449) \frac{5.518912}{15.14159}=0.1667342 .
$$

Three more sample statistics to go. We have SSE $=$ SST - SSR $=213.2087-44.61597=168.5927$. Therefore,

$$
S_{e}=\sqrt{\frac{1}{n-2} \mathrm{SSE}}=\sqrt{\frac{1}{6}(168.5927)}=5.300829
$$

It follows that

$$
\mathrm{SE}\left(b_{1}\right)=\frac{1}{\sqrt{n-1}} \frac{S_{e}}{S_{\mathrm{X}}}=\frac{1}{\sqrt{7}} \frac{5.300829}{15.14159}=0.1323193
$$

At last, the p-value can be calculated:

$$
\begin{aligned}
p \text {-value } & =\mathrm{P}\left(\mathrm{t}_{n-2}>\frac{b_{1}}{\mathrm{SE}\left(b_{1}\right)}\right) \\
& =\mathrm{P}\left(\mathrm{t}_{6}>\frac{0.1667342}{0.1323193}\right) \\
& =\mathrm{P}\left(\mathrm{t}_{6}>1.260089\right) \\
& =0.1272142 .
\end{aligned}
$$

17. The preceding two problems concerned a hypothesis test to decide whether the slope of a linear model is zero (the null hypothesis) or positive (the alternative). Because the sign of the correlation coefficient is the same as the sign of the slope of the regression line, another approach is to test whether $\mathrm{H}_{0}: \rho=0$ or $\mathrm{H}_{a}: \rho>0$. Using significance level $\alpha=0.05$, a classical one-sided hypothesis test of $\mathrm{H}_{0}: \rho=0$ against $\mathrm{H}_{a}: \rho>0$ retains $\mathrm{H}_{0}$. By how much does the test statistic fall short of the critical value?
A) 0.6252
B) 0.6831
C) 0.7410
D) 0.7989
E) 0.8568
F) 0.9147
G) 0.9726
H) 1.0305
I) 1.0884
J) 1.1463

## Solution B) 0.6831

The test statistic is $r \sqrt{n-2} / \sqrt{1-r^{2}}$, or, using values for $r$ and $r^{2}$ that have already been calculated, $(0.457449) \sqrt{8-2} / \sqrt{1-0.2092596}$, or 1.260089 . The critical value of a one-sided test with significance level 0.05 is $t_{0.05,8-2}=1.94318$. The answer is $1.94318-1.260089$, or 0.683091 .
18. A random sample of 4 batteries was drawn from each of three battery types (the type being the "treatment"). The lifetimes of the batteries operating under low temperature conditions were recorded.

|  |  |  |  |  | $\overline{\mathrm{X}_{i}}$ | $S_{i}{ }^{2}$ |
| :--- | :--- | ---: | ---: | ---: | :--- | :--- |
| Treatment 1 | 130 | 155 | 74 | 180 | 134.75 | 2056.9173 |
| Treatment 2 | 150 | 188 | 159 | 126 | 155.75 | 656.25 |
| Treatment 3 | 138 | 110 | 168 | 160 | 144 | 674.6667 |

At significance level 0.05, a classical ANOVA test of the null hypothesis that the treatment means are all equal retains the null hypothesis. By how much does the critical value exceed the test statistic?
A) 3.3213
B) 3.4570
C) 3.5927
D) 3.7284
E) 3.8641
F) 3.9998
G) 4.1355
H) 4.2712
I) 4.4069
J) 4.5426

## Solution E) 3.8641

The number of treatments is $m=3$ and the number of samples is $n=4$ for each treatment. The overall mean is $\overline{\mathrm{X} . .}=(134.75+155.75+144) / 3=144.8333$. The null hypothesis estimate of the population variance is

$$
\begin{aligned}
\mathrm{MSB} & =S_{0}^{2} \\
& =\frac{n}{m-1} \sum_{i=1}^{3}\left(\overline{\mathrm{X}_{i .}}-\overline{\mathrm{X} . .}\right)^{2} \\
& =\frac{4}{2}\left((134.75-144.8333)^{2}+(155.75-144.8333)^{2}+(144-144.8333)^{2}\right) \\
& =443.0833
\end{aligned}
$$

The average treatment group sample variance is

$$
\begin{aligned}
\mathrm{MSW} & =\overline{S^{2}} \\
& =\frac{1}{3}\left(S_{1}^{2}+S_{2}^{2}+S_{3}^{2}\right) \\
& =\frac{1}{3}(2056.9173+656.25+674.6667) \\
& =1129.278
\end{aligned}
$$

The test statistic is

$$
\frac{\mathrm{MSB}}{\mathrm{MSW}}=\frac{S_{0}^{2}}{\overline{S^{2}}}=\frac{443.0833}{1129.278}=0.3923598
$$

The critical value is $f_{0.05,2,9}=4.256495$. The critical value exceeds the test statistic by $4.256495-0.3923598$, or 3.864135 .

Here is the solution using R. The R-session not only solves the problem, it also obtains the values presented in the two marginal columns of the data table given in the statement of the problem.

```
> B1 = c(130, 155, 74, 180)
> B1.obs.mean = mean(B1)
> B1.obs.mean
```

[1] 134.75
> B1.obs.var $=\operatorname{sd}(\mathrm{B} 1)^{\wedge} 2$
> B1.obs.var
[1] 2056.917
$>\mathrm{B} 2=\mathrm{c}(150,188,159,126)$
> B2.obs.mean $=$ mean (B2)
> B2.obs.mean
[1] 155.75
> B2.obs.var $=$ sd(B2) ~2
> B2.obs.var
[1] 656.25
$>\mathrm{B} 3=\mathrm{c}(138,110,168,160)$
$>$ B3.obs.mean $=$ mean(B3)
> B3.obs.mean
[1] 144
> B3.obs.var $=\operatorname{sd}(\mathrm{B} 3)^{\wedge} 2$
> B3.obs.var
[1] 674.6667
> battery.lifetimes $=c(B 1, B 2, B 3)$
> treatment = c(rep("B1",4),rep("B2",4),rep("B3",4))
> batt.life.data.frame = data.frame(battery.lifetimes,treatment)
> batt.life.data.frame
battery.lifetimes treatment
$1 \quad 130 \quad$ B1
$2 \quad 155 \quad$ B1
$3 \quad 74 \quad$ B1
$4 \quad 180 \quad$ B1
$5 \quad 150 \quad$ B2
$6 \quad 188 \quad$ B2
$7 \quad 159 \quad$ B2
$8 \quad 126 \quad$ B2
$9 \quad 138 \quad$ B3
$10 \quad 110 \quad$ B3
$11 \quad 168$ B3

12160 B3
> \# The test statistic is found in the "F value" column of the next return.
> summary (aov(battery.lifetimes ${ }^{\sim}$ treatment, data=batt.life.data.frame))
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{llllll}\text { treatment } & 2 & 886 & 443.1 & 0.392 & 0.686\end{array}$
Residuals $9 \quad 10163 \quad 1129.3$
> crit.val $=\mathrm{qf}(0.05, \mathrm{df} 1=3-1, \mathrm{df} 2=3 *(4-1)$, lower.tail=FALSE)
> crit.val
[1] 4.256495
> answer = crit.val - 0.392 \#The 0.392 is from the " F val" column of the ANOVA table.
> answer \#The accuracy of the answer is limited by the $F$ value
[1] 3.864495
> \# As an alternative, we can do the calculations ourselves
> m = 3 \# number of treatments
$>\mathrm{n}=4$ \# sample size per treatment
$>$ grand.mean $=$ mean(batt.life.data.frame[,1])

```
> grand.mean
[1] 144.8333
> MSB = (n/(m-1))*( (B1.obs.mean-grand.mean)^2 + (B2.obs.mean-grand.mean)^2 + (B3.obs.mean-grand.mean)^2
> MSB
[1] 443.0833
> MSW = (B1.obs.var + B2.obs.var + B3.obs.var)/3
> test.stat = MSB/MSW
> test.stat
[1] 0.3923599
> crit.val - test.stat
[1] 3.864135
```

19. The operating lifetimes of three types of batteries were tested by randomly selecting 3 batteries of each type, and, for each type, operating one battery at low temperature until failure, operating a second battery at medium temperature until failure, and operating the third battery at high temperature until failure. The observed lifetimes are recorded in the table below. Consider the type of battery a treatment and the temperature as a blocking factor.

|  | Low (-10C) | Medium (20C) | High (45C) | $\mathrm{X}_{i}$. |
| :---: | :---: | :---: | :---: | :---: |
| Battery 1 | 130 | 65 | 63 | 258 |
| Battery 2 | 150 | 115 | 56 | 321 |
| Battery 3 | 138 | 139 | 95 | 372 |
| X. $_{j}$ | 418 | 319 | 214 | 951 |

The marginal entries of this table are row and column sums, not means. The sum of the squares of all non-marginal table entries is 111,345 .

There are two questions concerning this dataset. In this problem we are concerned with the treatment effects. In the next problem we will consider the block effects. At significance level 0.05 , a classical hypothesis test retains the null hypothesis that the treatment effects are the same. By how much does the test statistic fall short of the critical value?
A) 0.8651
B) 1.3774
C) 1.8897
D) 2.4020
E) 2.9143
F) 3.4266
G) 3.9389
H) 4.4512
I) 4.9635
J) 5.4758

## Solution H) 4.4512

Here $m=3$ is the number of treatments and $n=3$ is the number of observations per treatment. We calculate $\overline{\mathrm{X} . .}=\frac{1}{m n} \mathrm{X} . .=\frac{1}{9} 951=105.6667$. Therefore,

$$
\begin{aligned}
& \mathrm{SST}=\sum_{i=1}^{m} \sum_{j=1}^{n} \mathrm{X}_{i j}^{2}-m n \overline{\mathrm{X} . .}^{2} \\
&=111345-9(105.6667)^{2} \\
&=10855.94, \\
& \mathrm{SS}(\mathrm{Tr})=n \sum_{i=1}^{m}{\overline{\mathrm{X}_{i .}}}^{2}-m n \overline{\mathrm{X} . .}^{2} \\
&=3\left(\left(\frac{258}{3}\right)^{2}+\left(\frac{321}{3}\right)^{2}+\left(\frac{372}{3}\right)^{2}\right)-9(105.6667)^{2} \\
&=\frac{1}{3}\left((258)^{2}+(321)^{2}+(372)^{2}\right)-9(105.6667)^{2} \\
&=2173.937, \\
& \mathrm{SS}(\mathrm{Bl})=m \sum_{j=1}^{n} \overline{\mathrm{X}}^{2} \\
& \\
& \\
&=3\left(\left(\frac{418}{3}\right)^{2}+\left(\frac{319}{3}\right)^{2}+\left(\frac{214}{3}\right)^{2}\right)-9(105.6667)^{2} \\
&=\frac{1}{3}\left((418)^{2}+(319)^{2}+(214)^{2}\right)-9(105.6667)^{2} \\
&=6937.937, \\
& \mathrm{SSE}=\mathrm{SST}-(\mathrm{SS}(\operatorname{Tr})+\mathrm{SS}(\mathrm{Bl})) \\
&=10855.94-(2173.937+6937.937) \\
&=1744.066 .
\end{aligned}
$$

We next obtain the mean squares by dividing by the appropriate degrees of freedom:

$$
\begin{aligned}
\mathrm{MS}(\operatorname{Tr}) & =\frac{1}{m-1} \mathrm{SS}(\mathrm{Tr}) \\
& =\frac{1}{2}(2173.937) \\
& =1086.968 \\
\mathrm{MS}(\mathrm{Bl}) & =\frac{1}{n-1} \mathrm{SS}(\mathrm{Bl}) \\
& =\frac{1}{2}(6937.937) \\
& =3468.968, \\
\mathrm{MSE} & =\frac{1}{(m-1)(n-1)} \mathrm{SSE} \\
& =\frac{1}{4}(1744.066) \\
& =436.0165 .
\end{aligned}
$$

To test whether there are different treatment effects on the mean lifetimea, we use the observed value for the test statistic MS(Tr)/MSE, namely 1086.968/436.0165, or 2.492952. The critical value is $f_{0.05,2,4}=6.944272$. The amount by which the test statistic falls short of the critical value is $6.944272-2.492952$, or 4.45132 .

The R-code for the solution is found on the next page. (Note: The ANOVA table gives the p-value, 0.19814 , so the calculation continues beyond the table. Notice that the p-value indicates that, in a traditional hypothesis test, the null hypothesis is retained.)

```
> battery.lifetimes = c(130,65,63,150,115,56,138,139,95)
> battery.types = c(rep("B1",3),rep("B2",3),rep("B3",3))
> battery.blocks = c(rep(c("L","M","H"),3))
> battery.data = data.frame(battery.lifetimes,battery.types,battery.blocks)
> colnames(battery.data) = c("lifetimes","treatments","blocks")
> battery.data
    lifetimes treatments blocks
1 130 B1 L
2 65 B1 M
3 63 B1 H
4 150 B2 L
5 115 B2 M
6 56 B2 H
7 138 B3 L
8 139 B3 M
9 95 B3 H
> anova(lm(lifetimes~}\mp@subsup{}{}{\mathrm{ treatments+blocks,data=battery.data))}
Analysis of Variance Table
Response: lifetimes
            Df Sum Sq Mean Sq F value Pr(>F)
treatments 2 2174 1087 2.4931 0.19814
blocks 2 6938 3469 7.9564 0.04035 *
Residuals 4 1744 436
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
> test.stat = 2.4931 # treatment row entry of F-val column
> crit.val = qf(0.05,2,4,lower.tail=FALSE) # numerator Df = 2, denominator Df = 4
> crit.val
[1] 6.944272
> crit.val - test.stat
[1] 4.451172
```

20. With regard to the battery lifetimes discussed in the preceding problem, a classical hypothesis test at significance level 0.05 rejects the null hypothesis that the temperature effects are the same. By how much does the test statistic exceed the critical value?
A) 0.9120
B) 1.0121
C) 1.1122
D) 1.2123
E) 1.3124
F) 1.4125
G) 1.5126
H) 1.6127
I) 1.7128
J) 1.8129

## Solution B) 1.0121

Most of the work has been done. The observed value of the test statistic is MS(Bl)/MSE, or 3468.968/436.0165, or 7.956048 . The critical value is $f_{0.05,2,4}=6.944272$. (This happens to be the same critical value for treatment effects. That is because, in this problem, $n=m$.) The test statistic exceeds the critical value by $7.956048-6.944272$, or 1.011776 . (Note: The p-value in the ANOVA table, 0.04035 , indicates a significant rejection of the null hypothesis that temperature effects on mean battery lifetimes are the same for the three tested temperatures.)

## STANDARD STATISTICAL TABLES

## 1. Areas under the Normal Distribution

The table gives the cumulative probability up to the standardised nornal value 2 i.e.
$P[Z<z]=\int_{-\infty}^{2} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} z^{2}\right) d Z$


|  | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.691 | 0.6950 | 0.6985 | 0.7020 | 0.705 | 0.708 | 0.712 | 0.71 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8 | 0.8 | . 8 | . 8485 | 0.85 | . 8531 | 0.8554 | 0.85 | 0.8599 | 621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8804 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | . 9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2. | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2 | 0.9861 | 0.9865 | 0.9868 | 0.9871 | 0.9874 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9924 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9980 | 0.9980 | 0.9981 |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 2 | 3.00 | 3.10 | 3.20 | 3.30 | 3.40 | 3.50 | 3.60 | 3.70 | 3.80 | 3.90 |
| P | 0.9986 | 0.9990 | 0.9993 | 0.9995 | 0.9997 | 0.9998 | 0.9998 | 0.9999 | 0.9999 | . 0000 |

Values of $\chi_{\alpha, \mathrm{df}}^{2}$
$\mathrm{P}\left(\chi_{\mathrm{df}}^{2} \geqslant \chi_{\alpha, \mathrm{df}}^{2}\right)=\alpha$


| df $\alpha$ | 0.005 | 0.010 | 0.025 | 0.050 | 0.100 | 0.200 | 0.250 | 0.300 | 0.400 | 0.500 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.8794 | 6.6349 | 5.0239 | 3.8415 | 2.7055 | 1.6424 | 1.3233 | 1.0742 | 0.7083 | 0.4549 |
| 2 | 10.5966 | 9.2103 | 7.3778 | 5.9915 | 4.6052 | 3.2189 | 2.7726 | 2.4079 | 1.8326 | 1.3863 |
| 3 | 12.8382 | 11.3449 | 9.3484 | 7.8147 | 6.2514 | 4.6416 | 4.1083 | 3.6649 | 2.9462 | 2.3660 |
| 4 | 14.8603 | 13.2767 | 11.1433 | 9.4877 | 7.7794 | 5.9886 | 5.3853 | 4.8784 | 4.0446 | 3.3567 |
| 5 | 16.7496 | 15.0863 | 12.8325 | 11.0705 | 9.2364 | 7.2893 | 6.6257 | 6.0644 | 5.1319 | 4.3515 |
| 6 | 18 | 16.8119 | 14.4494 | 12.5916 | 10.6446 | 8.5581 | 7.8408 | 7.2311 | 6.2108 | 5.3481 |
| 7 | 20.277 | 18.4753 | 16.0128 | 14.0671 | 12.0170 | 9.8032 | 9.0371 | 8.3834 | 7.2832 | 6.3458 |
| 8 | 21.9550 | 20.0902 | 17.5345 | 15.5073 | 13.3616 | 11.0301 | 10.2189 | 9.5245 | 8.3505 | 7.3441 |
| 9 | 23.5894 | 21.6660 | 19.0228 | 16.9190 | 14 | 12.2421 | 11.3888 | 10.6564 | 9.4136 | 8.3428 |
| 10 | 25 | 23 | 20.4832 | 18.3070 | 15.9872 | 13.4420 | 12.5489 | 11.7807 | 10.4732 | 9.3418 |
| 11 | 26 | 24.7250 | 21.9200 | 19.6751 | 17.2750 | 14.6314 | 13.7007 | 12.8987 | 11.5298 | 10.3410 |
| 12 | 28.2995 | 26.2170 | 23.3367 | 21.0261 | 18.5493 | 15.8120 | 14.8454 | 14.0111 | 12.5838 | 11.3403 |
| 13 | 29.819 | 27.6882 | 24.7356 | 22.3620 | 19.8119 | 16.9848 | 15.9839 | 15.1187 | 13.6356 | 12.3398 |
| 14 | 31 | 2 | 26.1189 | 23.6848 | 21.0641 | 18.1508 | 17.1169 | 16.2221 | 14.6853 | 13.3393 |
| 15 | 32 | 30 | 2 | 24.9958 | 2 | 19.3107 | 18.2451 | 17.3217 | 15.7332 | 14.3389 |
| 16 | 34.2672 | 31.9999 | 28.8454 | 26.2962 | 23.5418 | 20.4651 | 19.3689 | 18.4179 | 16.7795 | 15.3385 |
| 17 | 35.7185 | 33.4087 | 30.1910 | 27.5871 | 24.7690 | 21.6146 | 20.4887 | 19.5110 | 17.8244 | 16.3382 |
| 18 | 37 | 34 | 31.5264 | 28.8693 | 25.9894 | 22.7595 | 21.6049 | 20.6014 | 18.8679 | 9 |
| 19 | 38 | 36 | 32.8523 | 30.1435 | 27.2036 | 23.9004 | 22.7178 | 21.6891 | 19.9102 | 18.3377 |
| 20 | 39.9968 | 37.5662 | 34.1696 | 31.4104 | 28.4120 | 25.0375 | 23.8277 | 22.7745 | 20.9514 | 19.3374 |
| 21 | 41.4011 | 38.9322 | 35.4789 | 32.6706 | 29.6151 | 26.1711 | 24.9348 | 23.8578 | 21.9915 | 20.3372 |
| 22 | 42.7957 | 40.2894 | 36.7807 | 33.9244 | 30.8133 | 27.3015 | 26.0393 | 24.9390 | 23.0307 | 21.3370 |
| 23 | 44.1813 | 41.6384 | 38.0756 | 35.1725 | 32.0069 | 28.4288 | 27.1413 | 26.0184 | 24.0689 | 22.3369 |
| 24 | 45.5585 | 42.9798 | 39.3641 | 36.4150 | 33.1962 | 29.5533 | 28.2412 | 27.0960 | 25.1063 | 23.3367 |
| 25 | 46.9279 | 44.3141 | 40.6465 | 37.6525 | 34.3816 | 30.6752 | 29.3389 | 28.1719 | 26.1430 | 24.3366 |
| 30 | 53.6720 | 50.8922 | 46.9792 | 43.7730 | 40.2560 | 36.2502 | 34.7997 | 33.5302 | 31.3159 | 29.3360 |
| 40 | 66.7660 | 63.6907 | 59.3417 | 55.7585 | 51.8051 | 47.2685 | 45.6160 | 44.1649 | 41.6222 | 39.3353 |
| 50 | 79.4900 | 76.1539 | 71.4202 | 67.5048 | 63.1671 | 58.1638 | 56.3336 | 54.7228 | 51.8916 | 49.3349 |
| 60 | 91.9517 | 88.3794 | 83.2977 | 79.0819 | 74.3970 | 68.9721 | 66.9815 | 65.2265 | 62.1348 | 59.3347 |
| 70 | 104.2149 | 100.4252 | 95.0232 | 90.5312 | 85.5270 | 79.7146 | 77.5767 | 75.6893 | 72.3583 | 69.3345 |
| 80 | 116.3211 | 112.3288 | 106.6286 | 101.8795 | 96.5782 | 90.4053 | 88.1303 | 86.1197 | 82.5663 | 79.3343 |
| 90 | 128.2989 | 124.1163 | 118.1359 | 113.1453 | 107.5650 | 101.0537 | 98.6499 | 96.5238 | 92.7614 | 89.3342 |
| 100 | 140.1695 | 135.8067 | 129.5612 | 124.3421 | 118.4980 | 111.6667 | 109.1412 | 106.9058 | 102.9459 | 99.3341 |

Chi-Squared Values-Right Tails.

$$
\text { Values of } \chi_{\alpha, \text { df }}^{2} \quad \mathrm{P}\left(\chi_{\mathrm{df}}^{2} \geqslant \chi_{\alpha, \mathrm{df}}^{2}\right)=\alpha
$$



| $\text { df } \alpha$ | 0.600 | 0.700 | 0.750 | 0.800 | 0.900 | 0.950 | 0.975 | 0.990 | 0.995 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.2750 | 0.1485 | 0.1015 | 0.0642 | 0.0158 | 0.0039 | 0.0010 | 0.0002 | 0.0000 |
| 2 | 1.0217 | 0.7133 | 0.5754 | 0.4463 | 0.2107 | 0.1026 | 0.0506 | 0.0201 | 0.0100 |
| 3 | 1.8692 | 1.4237 | 1.2125 | 1.0052 | 0.5844 | 0.3518 | 0.2158 | 0.1148 | 0.0717 |
| 4 | 2.7528 | 2.1947 | 1.9226 | 1.6488 | 1.0636 | 0.7107 | 0.4844 | 0.2971 | 0.2070 |
| 5 | 3.6555 | 2.9999 | 2.6746 | 2.3425 | 1.6103 | 1.1455 | 0.8312 | 0.5543 | 0.4117 |
| 6 | 4.5702 | 3.8276 | 3.4546 | 3.0701 | 2.2041 | 1.6354 | 1.2373 | 0.8721 | 0.6757 |
| 7 | 5.4932 | 4.6713 | 4.2549 | 3.8223 | 2.8331 | 2.1673 | 1.6899 | 1.2390 | 0.9893 |
| 8 | 6.4226 | 5.5274 | 5.0706 | 4.5936 | 3.4895 | 2.7326 | 2.1797 | 1.6465 | 1.3444 |
| 9 | 7.3570 | 6.3933 | 5.8988 | 5.3801 | 4.1682 | 3.3251 | 2.7004 | 2.0879 | 1.7349 |
| 10 | 8.2955 | 7.2672 | 6.7372 | 6.1791 | 4.8652 | 3.9403 | 3.2470 | 2.5582 | 2.1559 |
| 11 | 9.2373 | 8.1479 | 7.5841 | 6.9887 | 5.5778 | 4.5748 | 3.8157 | 3.0535 | 2.6032 |
| 12 | 10.1820 | 9.0343 | 8.4384 | 7.8073 | 6.3038 | 5.2260 | 4.4038 | 3.5706 | 3.0738 |
| 13 | 11.1291 | 9.9257 | 9.2991 | 8.6339 | 7.0415 | 5.8919 | 5.0088 | 4.1069 | 3.5650 |
| 14 | 12.0785 | 10.8215 | 10.1653 | 9.4673 | 7.7895 | 6.5706 | 5.6287 | 4.6604 | 4.0747 |
| 15 | 13.0297 | 11.7212 | 11.0365 | 10.3070 | 8.5468 | 7.2609 | 6.2621 | 5.2293 | 4.6009 |
| 16 | 13.9827 | 12.6243 | 11.9122 | 11.1521 | 9.3122 | 7.9616 | 6.9077 | 5.8122 | 5.1422 |
| 17 | 14.9373 | 13.5307 | 12.7919 | 12.0023 | 10.0852 | 8.6718 | 7.5642 | 6.4078 | 5.6972 |
| 18 | 15.8932 | 14.4399 | 13.6753 | 12.8570 | 10.8649 | 9.3905 | 8.2307 | 7.0149 | 6.2648 |
| 19 | 16.8504 | 15.3517 | 14.5620 | 13.7158 | 11.6509 | 10.1170 | 8.9065 | 7.6327 | 6.8440 |
| 20 | 17.8088 | 16.2659 | 15.4518 | 14.5784 | 12.4426 | 10.8508 | 9.5908 | 8.2604 | 7.4338 |
| 21 | 18.7683 | 17.1823 | 16.3444 | 15.4446 | 13.2396 | 11.5913 | 10.2829 | 8.8972 | 8.0337 |
| 22 | 19.7288 | 18.1007 | 17.2396 | 16.3140 | 14.0415 | 12.3380 | 10.9823 | 9.5425 | 8.6427 |
| 23 | 20.6902 | 19.0211 | 18.1373 | 17.1865 | 14.8480 | 13.0905 | 11.6886 | 10.1957 | 9.2604 |
| 24 | 21.6525 | 19.9432 | 19.0373 | 18.0618 | 15.6587 | 13.8484 | 12.4012 | 10.8564 | 9.8862 |
| 25 | 22.6156 | 20.8670 | 19.9393 | 18.9398 | 16.4734 | 14.6114 | 13.1197 | 11.5240 | 10.5197 |
| 30 | 27.4416 | 25.5078 | 24.4776 | 23.3641 | 20.5992 | 18.4927 | 16.7908 | 14.9535 | 13.7867 |
| 40 | 37.1340 | 34.8719 | 33.6603 | 32.3450 | 29.0505 | 26.5093 | 24.4330 | 22.1643 | 20.7065 |
| 50 | 46.8638 | 44.3133 | 42.9421 | 41.4492 | 37.6886 | 34.7643 | 32.3574 | 29.7067 | 27.9907 |
| 60 | 56.6200 | 53.8091 | 52.2938 | 50.6406 | 46.4589 | 43.1880 | 40.4817 | 37.4849 | 35.5345 |
| 70 | 66.3961 | 63.3460 | 61.6983 | 59.8978 | 55.3289 | 51.7393 | 48.7576 | 45.4417 | 43.2752 |
| 80 | 76.1879 | 72.9153 | 71.1445 | 69.2069 | 64.2778 | 60.3915 | 57.1532 | 53.5401 | 51.1719 |
| 90 | 85.9925 | 82.5111 | 80.6247 | 78.5584 | 73.2911 | 69.1260 | 65.6466 | 61.7541 | 59.1963 |
| 100 | 95.8078 | 92.1289 | 90.1332 | 87.9453 | 82.3581 | 77.9295 | 74.2219 | 70.0649 | 67.3276 |

Chi-Squared Values-Central Hump + Right Tails.

Values of $t_{\alpha, d f}$
$P\left(t_{d f} \geqslant t_{\alpha, d f}\right)=\alpha$


| $\mathrm{df} \alpha$ | . 450 | . 400 | . 350 | . 300 | . 250 | . 200 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 1584 | . 3249 | . 5095 | . 7265 | 1.0000 | 1.3764 |
| 2 | . 1421 | . 2887 | . 4447 | . 6172 | . 8165 | 1.0607 |
| 3 | . 1366 | . 2767 | . 4242 | . 5844 | . 7649 | . 9785 |
| 4 | . 1338 | . 2707 | . 4142 | . 5686 | . 7407 | . 9410 |
| 5 | . 1322 | . 2672 | . 4082 | . 5594 | . 7267 | . 9195 |
| 6 | . 1311 | . 2648 | . 4043 | . 5534 | . 7176 | . 9057 |
| 7 | . 1303 | . 2632 | . 4015 | . 5491 | . 7111 | . 8960 |
| 8 | . 1297 | . 2619 | . 3995 | . 5459 | . 7064 | . 8889 |
| 9 | . 1293 | . 2610 | . 3979 | . 5435 | . 7027 | . 8834 |
| 10 | . 1289 | . 2602 | . 3966 | . 5415 | . 6998 | . 8791 |
| 11 | . 1286 | . 2596 | . 3956 | . 5399 | . 6974 | . 8755 |
| 12 | . 1283 | . 2590 | . 3947 | . 5386 | . 6955 | . 8726 |
| 13 | . 1281 | . 2586 | . 3940 | . 5375 | . 6938 | . 8702 |
| 14 | . 1280 | . 2582 | . 3933 | . 5366 | . 6924 | . 8681 |
| 15 | . 1278 | . 2579 | . 3928 | . 5357 | . 6912 | . 8662 |
| 16 | . 1277 | . 2576 | . 3923 | . 5350 | . 6901 | . 8647 |
| 17 | . 1276 | . 2573 | . 3919 | . 5344 | . 6892 | . 8633 |
| 18 | . 1274 | . 2571 | . 3915 | . 5338 | . 6884 | . 8620 |
| 19 | . 1274 | . 2569 | . 3912 | . 5333 | . 6876 | . 8610 |
| 20 | . 1273 | . 2567 | . 3909 | . 5329 | . 6870 | . 8600 |
| 21 | . 1272 | . 2566 | . 3906 | . 5325 | . 6864 | . 8591 |
| 22 | . 1271 | . 2564 | . 3904 | . 5321 | . 6858 | . 8583 |
| 23 | . 1271 | . 2563 | . 3902 | . 5317 | . 6853 | . 8575 |
| 24 | . 1270 | . 2562 | . 3900 | . 5314 | . 6848 | . 8569 |
| 25 | . 1269 | . 2561 | . 3898 | . 5312 | . 6844 | . 8562 |
| 26 | . 1269 | . 2560 | . 3896 | . 5309 | . 6840 | . 8557 |
| 27 | . 1268 | . 2559 | . 3894 | . 5306 | . 6837 | . 8551 |
| 28 | . 1268 | . 2558 | . 3893 | . 5304 | . 6834 | . 8546 |
| 29 | . 1268 | . 2557 | . 3892 | . 5302 | . 6830 | . 8542 |
| 30 | . 1267 | . 2556 | . 3890 | . 5300 | . 6828 | . 8538 |
| 40 | . 1265 | . 2550 | . 3881 | . 5286 | . 6807 | . 8507 |
| 50 | . 1263 | . 2547 | . 3875 | . 5278 | . 6794 | . 8489 |
| 60 | . 1262 | . 2545 | . 3872 | . 5272 | . 6786 | . 8477 |
| 70 | . 1261 | . 2543 | . 3869 | . 5268 | . 6780 | . 8468 |
| 80 | . 1261 | . 2542 | . 3867 | . 5265 | . 6776 | . 8461 |
| 90 | . 1260 | . 2541 | . 3866 | . 5263 | . 6772 | . 8456 |
| 100 | . 1260 | . 2540 | . 3864 | . 5261 | . 6770 | . 8452 |

Student-t Values-Right Tails $\alpha=0.45,0.40,0.35,0.30,0.25,0.20$.

Values of $t_{\alpha, \text { df }}$

$$
P\left(t_{d f} \geqslant t_{\alpha, d f}\right)=\alpha
$$



| df $\alpha$ | .150 | .100 | .050 | .025 | .010 | .005 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1.9626 | 3.0777 | 6.3138 | 12.7062 | 31.8205 | 63.6567 |
| 2 | 1.3862 | 1.8856 | 2.9200 | 4.3027 | 6.9646 | 9.9248 |
| 3 | 1.2498 | 1.6377 | 2.3534 | 3.1824 | 4.5407 | 5.8409 |
| 4 | 1.1896 | 1.5332 | 2.1318 | 2.7764 | 3.7469 | 4.6041 |
| 5 | 1.1558 | 1.4759 | 2.0150 | 2.5706 | 3.3649 | 4.0321 |
| 6 | 1.1342 | 1.4398 | 1.9432 | 2.4469 | 3.1427 | 3.7074 |
| 7 | 1.1192 | 1.4149 | 1.8946 | 2.3646 | 2.9980 | 3.4995 |
| 8 | 1.1081 | 1.3968 | 1.8595 | 2.3060 | 2.8965 | 3.3554 |
| 9 | 1.0997 | 1.3830 | 1.8331 | 2.2622 | 2.8214 | 3.2498 |
| 10 | 1.0931 | 1.3722 | 1.8125 | 2.2281 | 2.7638 | 3.1693 |
| 11 | 1.0877 | 1.3634 | 1.7959 | 2.2010 | 2.7181 | 3.1058 |
| 12 | 1.0832 | 1.3562 | 1.7823 | 2.1788 | 2.6810 | 3.0545 |
| 13 | 1.0795 | 1.3502 | 1.7709 | 2.1604 | 2.6503 | 3.0123 |
| 14 | 1.0763 | 1.3450 | 1.7613 | 2.1448 | 2.6245 | 2.9768 |
| 15 | 1.0735 | 1.3406 | 1.7531 | 2.1314 | 2.6025 | 2.9467 |
| 16 | 1.0711 | 1.3368 | 1.7459 | 2.1199 | 2.5835 | 2.9208 |
| 17 | 1.0690 | 1.3334 | 1.7396 | 2.1098 | 2.5669 | 2.8982 |
| 18 | 1.0672 | 1.3304 | 1.7341 | 2.1009 | 2.5524 | 2.8784 |
| 19 | 1.0655 | 1.3277 | 1.7291 | 2.0930 | 2.5395 | 2.8609 |
| 20 | 1.0640 | 1.3253 | 1.7247 | 2.0860 | 2.5280 | 2.8453 |
| 21 | 1.0627 | 1.3232 | 1.7207 | 2.0796 | 2.5176 | 2.8314 |
| 22 | 1.0614 | 1.3212 | 1.7171 | 2.0739 | 2.5083 | 2.8188 |
| 23 | 1.0603 | 1.3195 | 1.7139 | 2.0687 | 2.4999 | 2.8073 |
| 24 | 1.0593 | 1.3178 | 1.7109 | 2.0639 | 2.4922 | 2.7969 |
| 25 | 1.0584 | 1.3163 | 1.7081 | 2.0595 | 2.4851 | 2.7874 |
| 26 | 1.0575 | 1.3150 | 1.7056 | 2.0555 | 2.4786 | 2.7787 |
| 27 | 1.0567 | 1.3137 | 1.7033 | 2.0518 | 2.4727 | 2.7707 |
| 28 | 1.0560 | 1.3125 | 1.7011 | 2.0484 | 2.4671 | 2.7633 |
| 29 | 1.0553 | 1.3114 | 1.6991 | 2.0452 | 2.4620 | 2.7564 |
| 30 | 1.0547 | 1.3104 | 1.6973 | 2.0423 | 2.4573 | 2.7500 |
| 40 | 1.0500 | 1.3031 | 1.6839 | 2.0211 | 2.4233 | 2.7045 |
| 50 | 1.0473 | 1.2987 | 1.6759 | 2.0086 | 2.4033 | 2.6778 |
| 60 | 1.0455 | 1.2958 | 1.6706 | 2.0003 | 2.3901 | 2.6603 |
| 70 | 1.0442 | 1.2938 | 1.6669 | 1.9944 | 2.3808 | 2.6479 |
| 80 | 1.0432 | 1.2922 | 1.6641 | 1.9901 | 2.3739 | 2.6387 |
| 90 | 1.0424 | 1.2910 | 1.6620 | 1.9867 | 2.3685 | 2.6316 |
|  | 1.0418 | 1.2901 | 1.6602 | 1.9840 | 2.3642 | 2.6259 |
| 100 |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |

Student-t Values-Right Tails $\alpha=0.15,0.10,0.05,0.025,0.010,0.005$.


## Values of $F$-Distributions

| $\alpha$ | df1 | df2 2 | 3 | 4 | 6 | 8 | 9 | 10 | 12 | 15 | 16 | 18 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 100 | 2 | 9.00 | 5.46 | 4.32 | 3.46 | 3.11 | 3.01 | 2.92 | 2.81 | 2.70 | 2.67 | 2.62 | 2.59 |
| . 050 | 2 | 19.00 | 9.55 | 6.94 | 5.14 | 4.46 | 4.26 | 4.10 | 3.89 | 3.68 | 3.63 | 3.55 | 3.49 |
| . 025 | 2 | 39.00 | 16.04 | 10.65 | 7.26 | 6.06 | 5.71 | 5.46 | 5.10 | 4.77 | 4.69 | 4.56 | 4.46 |
| . 010 | 2 | 99.00 | 30.82 | 18.00 | 10.92 | 8.65 | 8.02 | 7.56 | 6.93 | 6.36 | 6.23 | 6.01 | 5.85 |
| . 005 | 2 | 199.00 | 49.80 | 26.28 | 14.54 | 11.04 | 10.11 | 9.43 | 8.51 | 7.70 | 7.51 | 7.21 | 6.99 |
| . 002 | 2 | 499.00 | 92.99 | 42.72 | 20.81 | 14.91 | 13.41 | 12.33 | 10.90 | 9.68 | 9.40 | 8.95 | 8.62 |
| . 001 | 2 | 999.00 | 148.50 | 61.25 | 27.00 | 18.49 | 16.39 | 14.91 | 12.97 | 11.34 | 10.97 | 10.39 | 9.95 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| . 100 | 3 | 9.16 | 5.39 | 4.19 | 3.29 | 2.92 | 2.81 | 2.73 | 2.61 | 2.49 | 2.46 | 2.42 | 2.38 |
| . 050 | 3 | 19.16 | 9.28 | 6.59 | 4.76 | 4.07 | 3.86 | 3.71 | 3.49 | 3.29 | 3.24 | 3.16 | 3.10 |
| . 025 | 3 | 39.17 | 15.44 | 9.98 | 6.60 | 5.42 | 5.08 | 4.83 | 4.47 | 4.15 | 4.08 | 3.95 | 3.86 |
| . 010 | 3 | 99.17 | 29.46 | 16.69 | 9.78 | 7.59 | 6.99 | 6.55 | 5.95 | 5.42 | 5.29 | 5.09 | 4.94 |
| . 005 | 3 | 199.17 | 47.47 | 24.26 | 12.92 | 9.60 | 8.72 | 8.08 | 7.23 | 6.48 | 6.30 | 6.03 | 5.82 |
| . 002 | 3 | 499.17 | 88.45 | 39.27 | 18.34 | 12.84 | 11.44 | 10.45 | 9.15 | 8.03 | 7.78 | 7.38 | 7.07 |
| . 001 | 3 | 999.17 | 141.11 | 56.18 | 23.70 | 15.83 | 13.90 | 12.55 | 10.80 | 9.34 | 9.01 | 8.49 | 8.10 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| . 100 | 4 | 9.24 | 5.34 | 4.11 | 3.18 | 2.81 | 2.69 | 2.61 | 2.48 | 2.36 | 2.33 | 2.29 | 2.25 |
| . 050 | 4 | 19.25 | 9.12 | 6.39 | 4.53 | 3.84 | 3.63 | 3.48 | 3.26 | 3.06 | 3.01 | 2.93 | 2.87 |
| . 025 | 4 | 39.25 | 15.10 | 9.60 | 6.23 | 5.05 | 4.72 | 4.47 | 4.12 | 3.80 | 3.73 | 3.61 | 3.51 |
| . 010 | 4 | 99.25 | 28.71 | 15.98 | 9.15 | 7.01 | 6.42 | 5.99 | 5.41 | 4.89 | 4.77 | 4.58 | 4.43 |
| . 005 | 4 | 199.25 | 46.19 | 23.15 | 12.03 | 8.81 | 7.96 | 7.34 | 6.52 | 5.80 | 5.64 | 5.37 | 5.17 |
| . 002 | 4 | 499.25 | 85.98 | 37.39 | 17.01 | 11.71 | 10.38 | 9.43 | 8.19 | 7.14 | 6.90 | 6.52 | 6.23 |
| . 001 | 4 | 999.25 | 137.10 | 53.44 | 21.92 | 14.39 | 12.56 | 11.28 | 9.63 | 8.25 | 7.94 | 7.46 | 7.10 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| . 100 | 5 | 9.29 | 5.31 | 4.05 | 3.11 | 2.73 | 2.61 | 2.52 | 2.39 | 2.27 | 2.24 | 2.20 | 2.16 |
| . 050 | 5 | 19.30 | 9.01 | 6.26 | 4.39 | 3.69 | 3.48 | 3.33 | 3.11 | 2.90 | 2.85 | 2.77 | 2.71 |
| . 025 | 5 | 39.30 | 14.88 | 9.36 | 5.99 | 4.82 | 4.48 | 4.24 | 3.89 | 3.58 | 3.50 | 3.38 | 3.29 |
| . 010 | 5 | 99.30 | 28.24 | 15.52 | 8.75 | 6.63 | 6.06 | 5.64 | 5.06 | 4.56 | 4.44 | 4.25 | 4.10 |
| . 005 | 5 | 199.30 | 45.39 | 22.46 | 11.46 | 8.30 | 7.47 | 6.87 | 6.07 | 5.37 | 5.21 | 4.96 | 4.76 |
| . 002 | 5 | 499.30 | 84.42 | 36.21 | 16.16 | 11.00 | 9.70 | 8.79 | 7.59 | 6.57 | 6.34 | 5.97 | 5.70 |
| . 001 | 5 | 999.30 | 134.58 | 51.71 | 20.80 | 13.48 | 11.71 | 10.48 | 8.89 | 7.57 | 7.27 | 6.81 | 6.46 |

F Values-Right Tails $\alpha=0.100,0.0 .50,0.025,0.010,0.005,0.002,0.001$ and Selected Degrees of Freedom

