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Math 2200 Spring 2016, Exam 1

You may use any calculator. You may use ONE “cheat sheet” in the form of a 4” x 6” note
card (the medium size of the standard three sizes).

1. This question and the next two pertain to a University of Texas study in which 626 surveyees were
categorized in two ways. Each surveyee was placed in category CT if he or she had a tattoo obtained
in a commercial tattoo parlor, in category AT if he or she had a tattoo obtained elsewhere (a prison
tattoo, for example), or in category NT if he or she had no tattoo. No surveyee fell into both classes
CT and AT. Each surveyee was also categorized according to whether he or she had hepatitis C. The
joint frequency counts can be found in the following table.

CT AT NT Total

Has hepatitis C 17 8 18 43
Does not have hepatitis C 35 53 495 583

Total 52 61 513 626

What percentage of the surveyees were tattoed?

A) 12.377 B) 15.214 C) 18.051 D) 20.888 E) 23.725
F) 26.562 G) 29.399 H) 32.236 I) 35.073 J) 37.910

Answer: C) 18.051

Solution
There were 52 + 61, or 113, tattooed surveyees. The percentage was 113× 100/626%, or 18.051%.

2. What percentage of the surveyees with hepatitis C were tattoed?

A) 42.929 B) 45.102 C) 47.275 D) 49.448 E) 51.621
F) 53.794 G) 55.967 H) 58.140 I) 60.313 J) 62.486

Answer: H) 58.140

Solution
There were 43 surveyees with hepatitis C. Of these, 17 + 8, or 25, were tattooed. The percentage was
25× 100/43%, or 58.140%.

3. What percentage of the surveyees with tattoos had hepatitis C?

A) 20.051 B) 22.124 C) 24.197 D) 26.270 E) 28.343
F) 30.416 G) 32.489 H) 34.562 I) 36.635 J) 38.708

Answer: B) 22.124

Solution
There were 52+61, or 113, tattooed surveyees. Of these, 17+8, or 25, had hepatitis C. The percentage
was 25× 100/113%, or 22.124%.
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4. Among other questions in the 2008 General Social Survey, 1993 surveyees were asked to describe their
family income with one of the following three levels: Above average, Average, Below average. Surveyees
were also asked to describe their level of happiness with one of the following three levels: Not too happy,
Pretty happy, Very happy. The following contingency table resulted:

Not too happy Pretty happy Very happy

Above average 26 233 164
Average 117 473 293
Below average 172 383 132

This problem and the two that follow pertain to this contingency table. Suppose that the conditional
distributions of the categorical variable Happiness Level were used to determine if the variables Happi-
ness Level and Family Income Level were independent. Which one of the following numbers would be
a percentage arising in the determination?

A) 13.250 B) 16.767 C) 20.284 D) 23.801 E) 27.318
F) 30.835 G) 34.352 H) 37.869 I) 41.386 J) 44.903

Answer: A) 13.250

Solution
The conditional distributions of the categorical variable Happiness Level are the rows of the given
table. The first row is the conditional distribution of Happiness Level conditioned on the value of
Family Income Level being above average. The second row is the conditional distribution of Happiness
Level conditioned on the value of Family Income Level being average. The third row is the conditional
distribution of Happiness Level conditioned on the value of Family Income Level being below average.
To use these conditional distributions to investigate whether the categorical variables Happiness Level
and Family Income Level are independent, we calculate row percentages. There are 423 observations
in the first row. Multiplying each first row cell entry by 100/423, we obtain 6.146, 55.083, 38.771 for
the row percentages. These values are not really close to any of the answer choices, so we proceed to
the second row. There are 883 observations in the second row. Multiplying each first row cell entry
by 100/883, we obtain 13.250, 53.567, 33.182 for the row percentages. The first of these percentages is
an answer choice, so we may stop without considering the third row. At this point we can see, in any
event, that the two categorical variables are not independent.

5. Consider the conditional distribution of Family Income Level for the value Very Happy of the variable
Happiness Level. When this conditional distribution is expressed in terms of relative frequencies, what
number is in the middle cell?

A) 0.163 B) 0.205 C) 0.247 D) 0.288 E) 0.330
F) 0.372 G) 0.414 H) 0.455 I) 0.497 J) 0.539

Answer: I) 0.497

Solution
The conditional distribution of Family Income Level for the value Very Happy of the variable Happiness
Level is, when written horizontally to save space,

Above average Average Below average

Family Income Level 164 293 132
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The sum of the three cell entries is 589. Dividing each cell entry by 589 gives us a distribution of relative
frequencies, of which the middle cell entry, 0.497, is our answer:

Above average Average Below average

Family Income Level 0.278 0.497 0.224

6. Which of the following numbers is a frequency count that appears in the marginal distribution of the
categorical variable Happiness Level?

A) 204 B) 241 C) 278 D) 315 E) 352
F) 389 G) 426 H) 463 I) 500 J) 537

Answer: D) 315

Solution
The frequency of each value of Happiness Level is the total of its joint frequencies with the variable
Family Income Level. Thus, the marginal distribution of Happiness Level is obtained by summing each
column:26 + 117 + 172 = 315, 233 + 473 + 383 = 1089, 164 + 293 + 132 = 589.

Not too happy Pretty happy Very happy

Happiness Level 315 1089 589

Any one of these cell entries would anser the question, but only 315 is an answer choice.

7. A statistics class is divided into two sections. The following (incomplete) table is the contingency table
for the two categorical variables Section and Gender:

F M Total

Section 1 66
Section 2 171

Total 285

What number of female students in Section 2 provides the strongest evidence for the independence of
the variables Section and Gender?

A) 93 B) 94 C) 95 D) 96 E) 97
F) 98 G) 99 H) 100 I) 101 J) 102

Answer: G) 99

Solution
We first complete the marginal column with the missing cell entry, 285 − 171, or 114, in the first row.
This allows us to calculate the missing cell entry, 114− 66, or 48, in the second column of the first row.
Our contingency table is now

F M Total

Section 1 66 48 114
Section 2 171

Total 285

The two categorical variables are independent if the rows of the table are (nearly) proportional (so that
if the frequencies in each row are replaced by their row relative frequencies, then rows that result are
(nearly) identical). Let r1 denote the missing cell entry under 66 and let r2 denote the missing cell
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entry under 48. Then, for some unknown proportionality constant λ, which we will soon eliminate, we
have r1 = 66λ and r2 = 48λ. It follows that r2 = (48/66) r1, or r2 = (8/11) r1. Additionally, because
the second row total is 171, we have r1 + r2 = 171. Substituting for r2 in this last equation, we obtain
r1 + (8/11) r1 = 171, or (19/11) r1 = 171, or r1 = (11/19) 171, or r1 = 11 (171/19), or r1 = 11× 9 = 99.

8. This problem and the next pertain to he following incomplete table, which provides data for the results
of an exam taken by two sections of a calculus class at First President University. The variables NF

and NM represent the numbers of females and males, respectively, per group (Section1, Section 2, or
Sections 1 and 2 combined). The variable AF (respectively AM ) represents the average score attained
by the female (respectively male) students per group (Section1, Section 2, or Sections 1 and 2 combined).

NF AF NM AM

Section 1 40 76 75
Section 2 80 70 33 68
Sections 1 & 2 120

What was the value of AF in the last row?

A) 70.5 B) 71.0 C) 71.5 D) 72.0 E) 72.5
F) 73.0 G) 73.5 H) 74.0 I) 74.5 J) 75.0

Answer: D) 72.0

Solution
The number of points obtained by the female students in Section 1 was 40× 76, or 3040. The number
of points obtained by the female students in Section 2 was 80× 70, or 5600. The total number of points
obtained by the 40 + 80 female students was 3040 + 5600, or 8640. Their average was 8640/120, or 72.

9. According to the data of the preceding problem, the inequality AF > AM is true for each of Sections 1
and 2. However, the unspecified value of NM for Section 1 was such that, had it been filled in so that
the table could have been completed, the values AF and AM for Sections 1 and 2 combined would have
satisfied the reverse inequality AM > AF . What is the smallest value the variable NM might have had
for Section 1?

A) 42 B) 45 C) 48 D) 51 E) 54
F) 57 G) 60 H) 63 I) 66 J) 69

Answer: B) 45

Solution
Let n be the value of NM for Section 1. Then the total number of points obtained by the male students
in the class was n × 75 + 33 × 68 and the value of AM for the combination of both sections was
(n × 75 + 33 × 68)/(n + 33). The given inequality, AM > AF for combined sections 1 and 2, together
with the value of AF = 72 for the combined sections (as found in the preceding problem) leads to the
inequality

n× 75 + 33× 68

n+ 33
> 72,

which gives n × 75 + 33 × 68 > 72 (n + 33), or (75 − 72)n > 72 × 33 − 68 × 33, or 3n > 4 × 33, or
n > 4× 11, or n > 44, or n ≥ 45.
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10. This problem and the next three pertain to the following sorted observations, which represent the num-
ber of milligrams of sodium per serving for 24 types of breakfast cereal: 0, 35, 50, 55, 70, 100, 130, 140,
140, 150, 160, 180, 180, 180, 190, 200, 200, 200, 210, 210, 220, 290, 320, 340. Determine the range of

the given data and bin the data so that the class width is equal to 1 +
1

10
range. What is the largest

upper class limit if the least lower class limit is 0 and the rightmost bin is not empty?

A) 340 B) 341 C) 342 D) 343 E) 344
F) 345 G) 346 H) 348 I) 350 J) 351

Answer: I) 350

Solution
The range is 340−0, or 340. The class width is 1+340/10, or 35. If the least lower class limit is 0 and the
rightmost bin is not empty, then the bins are [0, 35), [35, 70), [70, 105), [105, 140), [140, 175), [175, 210), [210, 245), [245, 280), [280, 315), [315, 350).
The largest upper class limit is 350.

11. In this problem we will use the term “mode” in the sense that has been adapted to histograms, but not
in its loosest sense. When the data in problem 10 is binned according to the specifics stated in problem
10, and according to the general conventions we have adopted for the course, what is the height of the
bar with base that is the mode?

A) 4 B) 5 C) 6 D) 7 E) 8
F) 9 G) 10 H) 11 I) 12 J) 13

Answer: D) 7

Solution
The counts for the 10 bins listed in the preceding problem are 1, 3, 2, 1, 4, 7, 3, 0, 1, 2. The largest of
these numbers is the answer to the question.

12. The distribution of the sodium observations in problem 10 is

A) unimodal and skewed left B) unimodal and symmetric
C) unimodal and skewed right D) bimodal and skewed left
E) bimodal and symmetric F) bimodal and skewed right
G) multimodal and symmetric H) multimodal and asymmetric
I) uniform J) none of the preceding shapes

Answer: H) multimodal and asymmetric

Solution
The bin counts given in the preceding problem suffice to lead us to an answer, but one picture is worth
n words for any value of n, so here is the picture generated by hist(NaCl, breaks = nodes, right

= FALSE, col = "peachpuff") where NaCl is the vector of data, nodes is the vector of class limits,
and "peachpuff" is the lovely color you are looking at, if your display is not monochrome. (Note: the
terms unimodal, bimodal, and multimodal refer to mode in its least strict sense: that of a local maximum.
There are three modes when that definition is used.)
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13. The average NaCl of the sodium observations in problem 10 is 164.5833. If we did not have a list of
the 24 observations but had instead only the histogram specified in problem 10, then we could estimate
NaCl by assuming that, for each bin, the average of the observations that fell in that bin was equal to
the class mark of that bin. Then we could easily sum the observations in each bin, sum these bin totals,
and divide the last sum by 24 to obtain an estimate of NaCl. Using this method of estimation, what
would be the bin total for the fifth bin, counting from the left?
A) 610 B) 614 C) 618 D) 622 E) 626
F) 630 G) 634 H) 638 I) 642 J) 646

Answer: F) 630

Solution
Going back to the solution of Problem 10, we see that the fifth bin when counting from the left is
[140, 175). Its class mark is (140 + 175)/2, or 157.5. Going back to the solution of Problem 11, we see
that 4 observations fall into the fifth bin from the left. So the contribution from bin 5 to the total is
4×157.5, or 630. (Not that it was asked, but the actual contribution from bin 5 is 140+140+150+160,
or 590.)

14. Suppose that X is a numerical variable with N data values x1, x2, . . . , xN . Let X be the mean of X
and set Y = X − X. This means that the data values y1, y2, . . . , yN of Y are given by the formula
yj = xj −X for 1 ≤ j ≤ N . Which of the 8 statistical measures among the answer choices must be the
same for X and Y ? (At least one of the listed measures s the same for X and Y, but no more than three
of the measures are the same. Read all answer choices. If only one of the statistical measures is a cor-
rect answer, then choose the appropriate letter from (A) to (H). Otherwise, answer with either (I) or (J).)
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A) mean B) median
C) mode D) lower quartile
E) upper quartile F) IQR
G) the variance H) the standard deviation
I) Exactly two of the cited measures J) Exactly three of the cited measures

Answer: J) Exactly three of the cited measures

Solution
Notice that the word “must” has been emphasized in the statement of the problem. It may happen that
for a special value of the mean of X the given statistic has the same value for X and Y. Clearly, if the
mean of X is 0 then X and Y are one and the same, hence every statistic has the same value for X and
Y. But knowing only what you are given, which means that you do not know the mean of X is 0, you
cannot say that every statistic must have the same value for X and Y. From what we have been told,
we cannot dispute that the mean of X can have any value. But the mean of Y must be 0. In particular,
X and Y need not have the same mean. The observation or observations of X that yield the median of
X transform to the observation or observations of Y that yield the median of Y. But, in general, the
transformation from X to Y results in a different location for each observation, so X and Y need not
have the same median. Any value that gives a mode for X results in a transformed value of Y that gives
a mode for Y. But the transformed value of Y is, in general, not equal to the value in X that generated
it. Thus, the mode is out. So are the lower and upper quartiles, for the same reason the median is
eliminated. However the lower and upper quartiles of Y are obtained by shifting the lower and upper
quartiles of X by the same amount X. When the difference Q3 −Q1 is calculated, the shifts cancel in
the subtraction, so IQR must be the same for X and Y. Similarly, when we calculate a deviation yj −Y ,
we have yj − Y =

(
xj −X

)
− 0, or xj − X. So X and Y have the same deviations from their means.

Hence, X and Y have the same standard deviations and variances. Count ’em: IQR, standard deviation,
variance. That makes three.

But these

15. Let X denote the distribution 1, 3, 4, 6, 7, 11, 12, 13, x[9], x[10], x[11] (given in nondecreasing order). If
the IQR of X is 10, then what is x9?

A) 13.5 B) 14 C) 14.5 D) 15 E) 15.5
F) 16 G) 16.5 H) 17 I) 17.5 J) 18

Answer: H) 17

Solution
The size of the distribution is 11, which is odd. Hence, there is a middle value, x[6], that is the median:
Q2 = x[6] = 11. The lower quartile Q1 is the median of 1, 3, 4, 6, 7, 11, which is the average of 4 and
6, namnely 5. The upper quartile Q3 is the median of 11, 12, 13, x[9], x[10], x[11], which is the average

of 13 and x[9]. On the other hand, Q3 = Q1 + IQR = 5 + 10 = 15. It follows that
1

2

(
13 + x[9]

)
= 15,

or x[9] = 2× 15− 13 = 17.

16. This problem and the next one pertain to a distribution of size 6 for which five of the deviations from
the mean are -8, -3, 0, 1, and 1. What is the sixth deviation from the mean?

A) 1 B) 2 C) 3 D) 4 E) 5
F) 6 G) 7 H) 8 I) 9 J) 10
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Answer: I) 9

Solution
The sum of all deviations from the mean is 0. Always. The sum of the given deviations from the mean
is -9. So the missing deviation from the mean must be +9.

17. ) What is the standard deviation of the distribution described in problem 16?

A) 3.662 B) 4.143 C) 4.624 D) 5.105 E) 5.586
F) 6.067 G) 6.548 H) 7.029 I) 7.510 J) 7.991

Answer: E) 5.586

Solution
We calculate

sd =

√
1

6− 1
((−8)2 + (−3)2 + (0)2 + (1)2 + (1)2 + (9)2) = 5.586.

18. The mean of the first 50 observations of a distribution X is 20 and the mean of the remaining 30 obser-
vations of X is 12. What is the mean of X?

A) 16.25 B) 16.5 C) 16.75 D) 17 E) 17.25
F) 17.5 G) 17.75 H) 18 I) 18.25 J) 18.5

Answer: D) 17

Solution
Because

x1 + x2 + · · ·+ x50

50
= 20 and

x51 + x52 + · · ·+ x80

30
= 12,

we see that x1 + x2 + · · ·+ x50 = 50× 20 = 1000 and x51 + x52 + · · ·+ x80 = 30× 12 = 360. The mean
of X is given by

X =
x1 + x2 + · · ·+ x80

80
=

(x1 + x2 + · · ·+ x50) + (x51 + x52 + · · ·+ x80)

80
=

1000 + 360

80
= 17.

19. This problem and the next pertain to the horizontal Tukey boxplot for the data set 17, 22, 27, 28, 29,
30, 31, 33, 34, 34. At what number is the fence on the right drawn?

A) 37.5 B) 38 C) 38.5 D) 39 E) 39.5
F) 40 G) 40.5 H) 41 I) 41.5 J) 42

Answer: J) 42

Solution
The median of 17, 22, 27, 28, 29, 30, 31, 33, 34, 34 is (29 + 30)/2, or 29.5. The lower quartile, Q1,
is the middle value, 27, of the smallest five observations. The upper quartile, Q3, is the middle value,
33, of the largest five observations. The interquartile range is given by IQR = Q3 −Q1 = 33− 27 = 6.
The right fence is drawn at Q3 + 1.5× IQR, or 33 + 1.5× 6, or 42.
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20. For the Tukey boxplot of the preceding problem, how long is the whisker on the left?

A) 5 B) 5.5 C) 6 D) 6.5 E) 7
F) 7.5 G) 8 H) 8.5 I) 9 J) 9.5

Answer: A) 5

Solution
The left fence is at Q1 − 1.5× IQR, or 27− 1.5× 6, or 18. The whisker extends leftward from Q1 to the
smallest observation that is not smaller than 18. That observation is 22. The length of the left whisker
is 27− 22, or 5.

21. One evening Alison, who has an interest in mood-altering drugs, and Cosima, a biology geek, each took
an exam. They obtained identical class percentiles. Alison’s grade in her pharmacology class was 22 on
an exam with mean 17.7 and standard deviation 6.43. The mean and standard deviation on Cosima’s
evo-devo exam were 76.4 and 10.02 respectively. Assuming that both exam results could be modelled
by a normal distribution, what was Cosima’s exam grade?

A) 80 B) 81 C) 82 D) 83 E) 84
F) 85 G) 86 H) 87 I) 88 J) 89

Answer D) 83

Solution
Alison’s z-score was (22−17.7)/6.43, or 0.6687403. Because Cosima’s exam result x has the same z-score,
it satisfies the equation 0.6687403 = (x− 76.4)/10.02, or x = 76.4 + (0.6687403)(10.02), or x = 83.1.

22. This problem and the next two pertain to the fuel efficiency of a large fleet of vehicles that is modelled by
the normal distribution with mean 28 mpg and standard deviation 6 mpg. What percentage of vehicles
in the fleet have a fuel efficiency greater than 20 mpg?

A) 86.5 B) 87.4 C) 88.3 D) 89.2 E) 90.0
F) 90.9 G) 91.8 H) 92.6 I) 93.5 J) 94.4

Answer: F) 90.9

Solution
The z-score of 20 is (20 − 28)/6, or -1.333. The fraction of the fleet with greater fuel efficiency is
1− Φ(−1.333), or 1−

(
1− Φ(1.333)

)
, or Φ(1.333). Using the given table, we calculate

Φ(1.333) = Φ

(
1.33 +

3

10
(0.01)

)
= Φ

(
1.33 +

3

10
(1.34− 1.33)

)
≈ Φ(1.33) +

3

10
(Φ(1.34)− Φ(1.33))

= 0.9082 +
3

10
(0.9099− 0.9082)

= 0.90871.
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In R, the command pnorm( (20 - 28)/6, lower.tail = FALSE)*100 returns 90.87888.

23. What percentage of vehicles in the fleet have a fuel efficiency between 26 mpg and 32 mpg?

A) 36.061 B) 36.934 C) 37.807 D) 38.680 E) 39.553
F) 40.426 G) 41.299 H) 42.172 I) 43.045 J) 43.918

Answer: C) 37.807

Solution
The z-scores of 26 and 32 are (26− 28)/6, or -0.3333, and (32 − 28)/6, or 0.6667. The answer we seek
is Φ(0.6667)− Φ(−0.3333). Let us calculate Φ(0.6667) first:

Φ(0.6667) = Φ

(
0.66 +

67

100
(0.01)

)
= Φ

(
0.66 +

67

100
(0.67− 0.66)

)
≈ Φ(0.66) +

67

100
(Φ(0.67)− Φ(0.66))

= 0.7454 +
67

100
(0.7486− 0.7454)

= 0.747544.

Next, let us calculate Φ(0.3333):

Φ(0.3333) = Φ

(
0.33 +

33

100
(0.01)

)
= Φ

(
0.33 +

33

100
(0.34− 0.33)

)
≈ Φ(0.33) +

33

100
(Φ(0.34)− Φ(0.33))

= 0.6293 +
33

100
(0.6331− 0.6293)

= 0.630554.

The requested percentage is the percentage corresponding to the proportion Φ(0.6667) − Φ(−0.3333),
or Φ(0.6667)−

(
1−Φ(0.3333)

)
, or 0.747544−

(
1− 0.630554

)
, or 0.378098. The answer is 37.81% In R,

the command ( pnorm( (32 - 28)/6 ) - pnorm( (26 - 28)/6) )*100 returns 37.80661.

24. In mpg, what is the fuel efficiency of a vehicle that is more efficient than 70% of the vehicles in the fleet?

A) 30.630 B) 31.146 C) 31.662 D) 32.178 E) 32.694
F) 33.210 G) 33.726 H) 34.242 I) 34.758 J) 35.274

Answer: B) 31.146

Solution
First we find the z-score of such a vehicle by solving Φ(z) = 0.70. From the table, we see that Φ(0.52) =
0.6985 and Φ(0.53) = 0.7020. From a practical point of view, the answer choices are spread far enough
apart that we could just split the difference between these two z-scores and take z = 0.525 for our
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estimated z-score. That would lead to a raw score x that satisfies (x - 28)/6 = 0.525, or x = 31.15.
Answer B rounds to this number. If we wanted to be more accurate, we would get a better approximation
to the z-score by interpolating:

z = 0.52 +
0.7000− 0.6985

0.7020− 0.6985
(0.01) = 0.5242857.

This more precise z-score leads to (x - 28)/6 = 0.5242857, or x = 31.14571. In R, the appropriate call,
qnorm(0.70, mean = 28, sd = 6) returns 31.1464 with a minimum of fuss.

25. For a standard normal distribution and any real number z, let Φ(z) denote the fraction of observations
in the distribution that do not exceed z. Suppose that X is a large distribution that follows a normal
model with mean 16 and standard deviation 1/2. Using Φ(z) for an appropriate value of z (or for
appropriate values of z), what fraction of observations in X fall between 14 and 18?

A) Φ(1/2) B) 1− Φ(1/2) C) 2Φ(1/2)− 1 D) Φ(2) E) 1− Φ(2)
F) 2Φ(2)− 1 G) Φ(4) H) 1− Φ(4) I) 2Φ(4)− 1 J) Φ(18)− Φ(14)

Answer: I) 2Φ(4)− 1

Solution
The z-scores of 14 and 18 are (14−16)/(1/2), or -4 and (18−16)/(1/2), or 4. The fraction of observations
within 4 standard deviations of the mean is 2Φ(4)− 1.
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