Math 132

Fall 2015 Exam 1

- Formulas

$$
\begin{aligned}
& \ln (1)=0, \ln (\mathrm{e})=1, \quad \ln (x y)=\ln (x)+\ln (y), \ln \left(x^{p}\right)=p \ln (x) \\
& \sin \left(\frac{\pi}{6}\right)=\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}, \quad \sin \left(\frac{\pi}{3}\right)=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}, \sin \left(\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}, \\
& \sin (0)=\sin (\pi)=\cos \left(\frac{\pi}{2}\right)=0, \sin \left(\frac{\pi}{2}\right)=\cos (0)=\tan \left(\frac{\pi}{4}\right)=1, \sin \left(\frac{3 \pi}{2}\right)=\cos (\pi)=-1 \\
& \int \frac{1}{x} d x=\ln (|x|)+C, \quad \int \ln (x) d x=x \ln (x)-x+C, \quad \int u d v=u v-\int v d u \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C, \quad \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\arcsin \left(\frac{x}{a}\right)+C, \\
& \int \frac{1}{|x| \sqrt{x^{2}-a^{2}}} d x=\frac{1}{a} \operatorname{arcsec}\left(\frac{x}{a}\right)+C \\
& \int \sec (x)^{2} d x=\tan (x)+C, \quad \int \csc (x)^{2} d x=-\cot (x)+C \\
& \int \sec (x) \tan (x) d x=\sec (x)+C, \quad \int \csc (x) \cot (x) d x=-\csc (x)+C \\
& \int \tan (x) d x=\ln (|\sec (x)|)+C, \quad \int \sec (x) d x=\ln (|\sec (x)+\tan (x)|)+C
\end{aligned}
$$

- 1. In the figure below, a function f has been plotted over an interval [a,b].

Approximate $\int_{a}^{b} f(x) d x$ by the Riemann sum $\sum_{j=1}^{3} f\left(s_{j}\right) \Delta x$,
where the sample points at which \mathbf{f} is evaluated are chosen so that the sum is an upper Riemann sum.

a) 9
b) 10
c) 11
d) 12
e) 13
f) $\mathbf{1 4}$
g) 15
h) 16
i) 17
j) 18

Solution (g)

With $a=0, b=\frac{9}{4}$, and $N=3$, we have $\Delta x=\frac{b-a}{N}=\frac{3}{4}$.

The nodes of the partition are $x_{0}=0, x_{1}=\frac{3}{4}, x_{2}=\frac{3}{2}$, and $x_{3}=\frac{9}{4}$.
The specified sample points are $s_{1}=\frac{1}{4}, s_{2}=\frac{3}{2}$, and $s_{3}=2$, with $\mathrm{f}\left(s_{1}\right)=6, \mathrm{f}\left(s_{2}\right)=5$, and $\mathrm{f}\left(s_{3}\right)=9$.


```
requestedRiemannSum =( 6 + 5 + 9)*3/4;
requestedRiemannSum \(=15\)
```

2. If a Riemann sum based on nine equal length subintervals is used to approximate
$\int_{a}^{b} f(x) d x$ for the function f and interval [a,b] shown in the preceding problem, then what approximation of the integral is the worst possible underestimate that might result?
(Note: The question asks for a particular approximation of the integral. The word "underestimate" is Escher-like. Suppose the actual value of the integral were 1000 and we estimated the value to be 800 . Our underestimate of 800 underestimates the integral by 200. This problem refers to the underestimate 800 , not the underestimate 200.)
a) 9
b) $\frac{37}{4}$
c) $\frac{19}{2}$
d) $\frac{39}{4}$
e) 10
f) $\frac{41}{4}$
g) $\frac{21}{2}$
h) $\frac{43}{4}$
i) 11
j) $\frac{45}{4}$

Solution (b)

With $a=0, b=\frac{9}{4}$, and $N=9$, we have $\Delta x=\frac{b-a}{N}=\frac{1}{4}$.
The nodes of the partition are

$$
x_{0}=0, x_{1}=\frac{1}{4}, x_{2}=\frac{1}{2}, x_{3}=\frac{3}{4}, x_{4}=1, x_{5}=\frac{5}{4}, x_{6}=\frac{3}{2}, x_{7}=\frac{7}{4}, x_{8}=2, x_{9}=\frac{9}{4}
$$

The specified sample points are

$$
s_{1}=0, s_{2}=\frac{1}{2}, s_{3}=\frac{3}{4}, s_{4}=1, s_{5}=1, s_{6}=\frac{5}{4}, s_{7}=\frac{3}{2}, s_{8}=\frac{7}{4}, s_{9}=\frac{9}{4}
$$

with
$\mathrm{f}\left(s_{1}\right)=5, \mathrm{f}\left(s_{2}\right)=5, \mathrm{f}\left(s_{3}\right)=2, \mathrm{f}\left(s_{4}\right)=1, \mathrm{f}\left(s_{5}\right)=1, \mathrm{f}\left(s_{6}\right)=2, \mathrm{f}\left(s_{7}\right)=5, \mathrm{f}\left(s_{8}\right)=8, \mathrm{f}\left(s_{9}\right)=8$

$>(5+5+2+1+1+2+5+8+8) *(1 / 4)$;
\#
\# Direct addition to calculate Riemann sum
\# The next three lines repeat this calculation and may be skipped.
$\frac{37}{4}$
$>\mathrm{s}[1]:=0: \mathrm{s}[2]:=1 / 2: \mathrm{s}[3]:=3 / 4: \mathrm{s}[4]:=1: \mathrm{s}[5]:=1:$
$\mathrm{s}[6]:=5 / 4: \mathrm{s}[7]:=3 / 2: \mathrm{s}[8]:=7 / 4: \mathrm{s}[9]:=9 / 4:$
$>y[1]:=f(s[1]): y[2]:=f(s[2]): y[3]:=f(s[3]): y[4]:=$
$\mathrm{f}(\mathrm{s}[4]): \mathrm{y}[5]:=\mathrm{f}(\mathrm{s}[5]): \mathrm{y}[6]:=\mathrm{f}(\mathrm{s}[6]): \mathrm{y}[7]:=\mathrm{f}(\mathrm{s}[7]):$
$y[8]:=\mathrm{f}(\mathrm{s}[8]): \mathrm{y}[9]:=\mathrm{f}(\mathrm{s}[9]):$
$>\operatorname{sum}(y[j], j=1 . .9) *(1 / 4)$;

$$
\frac{37}{4}
$$

Note: The upper Riemann sum for this partition is

$$
[>(6+6+5+2+2+5+8+9+9) *(1 / 4) ;
$$

This is the smallest upper bound we can find. So the worst underestimate, namely 37/4, may under-estimate the integral by 13-37/4, or 15/4.
3. Calculate $\int_{-12}^{-4} \frac{1}{x} d x$
a) $-\ln (12)$
b) $-\ln (8)$
c) $-\ln (6)$
d) $-\ln (4)$
e) $-\ln (3)$
f) $\ln (3)$
g) $\ln (4)$
h) $\ln (6)$
i) $\ln (8)$
j) $\ln (12)$

Solution (e)

$$
\begin{aligned}
& \int_{-12}^{(-4)} \frac{1}{x} d x=\ln (|-4|)-\ln (|-12|)=\ln (4)-\ln (12)=\ln \left(\frac{4}{12}\right)=\ln \left(\frac{1}{3}\right)= \\
& \ln \left(3^{(-1)}\right)=-\ln (3)
\end{aligned}
$$

Remark: Observe that $-\ln (3)<0$. Because the integrand $1 / x$ is negative on the entire interval $[-12,-4]$, and because we are integrating from left to right, we expect a negative value for the integral.

Verification using Maple's builtin integrator:

$$
\begin{aligned}
>\operatorname{Int}(1 / \mathrm{x}, \mathrm{x}=-12 \ldots-4) & =\operatorname{int}(1 / \mathrm{x}, \mathrm{x}=-12 \ldots-4) ; \\
& \int_{-12}^{-4} \frac{1}{x} d x=-\ln (3)
\end{aligned}
$$

a) $\frac{1}{2}$
b) 1
c) $\frac{3}{2}$
d) 2
e) $\frac{5}{2}$
f) $\mathbf{3}$
g) $\frac{7}{2}$
h) 4
i) $\frac{9}{2}$
j) 5

Solution (g)

$>\operatorname{J}:=\operatorname{Int}\left(\left(4 * x^{\wedge} 3-2 * x^{\wedge} 2-1\right) /\left(x^{\wedge} 2\right), x=1 \ldots 2\right) ;$

$$
J:=\int_{1}^{2} \frac{4 x^{3}-2 x^{2}-1}{x^{2}} d x
$$

$>J:=\operatorname{Int}($ expand(integrand(J)), $x=1 \ldots 2) ;$

$$
J:=\int_{1}^{2} 4 x-2-\frac{1}{x^{2}} d x
$$

> F : = unapply (int (integrand(J), x), x);

$$
' F(x)^{\prime}=F(x) ;
$$

$$
\begin{gathered}
F:=x \rightarrow 2 x^{2}-2 x+\frac{1}{x} \\
\mathrm{~F}(x)=2 x^{2}-2 x+\frac{1}{x}
\end{gathered}
$$

$>$ F(2) - F(1);

$$
\frac{7}{2}
$$

Verification using Maple's builtin integrator:
$>\operatorname{Int}\left(\left(4 * x^{\wedge} 3-2 * x^{\wedge} 2-1\right) /\left(x^{\wedge} 2\right), x=1\right.$. 2$)=$ int ($\left(4 * x^{\wedge} 3-2 * x^{\wedge} 2-1\right) /\left(x^{\wedge} 2\right), x=1$.. 2);

$$
\int_{1}^{2} \frac{4 x^{3}-2 x^{2}-1}{x^{2}} d x=\frac{7}{2}
$$

\pm 5. Calculate $\int_{0}^{1} 7 \sqrt{x}(x-1)^{2} d x$
a) $\frac{4}{3}$
b) $\frac{4}{15}$
c) $\frac{8}{3}$
d) $\frac{8}{15}$
e) $\frac{16}{3}$
f) $\frac{16}{15}$
g) $\frac{32}{3}$
h) $\frac{32}{15}$
i) $\frac{64}{3}$
j) $\frac{64}{15}$

Solution (f)

> J1 := $\operatorname{Int}\left(7 * \operatorname{sqrt}(x) *(x-1)^{\wedge} 2, x=0 . .1\right)$;
\#
\# J1 is the inert (unevaluated) form of the given integral
\# In Maple, "Int" prevents the evaluation of the integral,
\# whereas "int" calls for an evaluation, if possible

$$
J 1:=\int_{0}^{1} 7 \sqrt{x}(x-1)^{2} d x
$$

> eqn1 := J1 = map(expand,J1);
\#
\# "expand" does what it says it does to the integrand of J1
\# First it expand the square ($\mathrm{x}-3$)^2, then it multiplies each
\# term of the exapnded square by sqrt (x)

$$
\text { eqn1 }:=\int_{0}^{1} 7 \sqrt{x}(x-1)^{2} d x=\int_{0}^{1} 7 x^{(5 / 2)}-14 x^{(3 / 2)}+7 \sqrt{x} d x
$$

> J1 = value(rhs (eqn1));
\#
\# "value" forces the evaluation of an inert integral

$$
\int_{0}^{1} 7 \sqrt{x}(x-1)^{2} d x=\frac{16}{15}
$$

Verification using Maple's builtin integrator:
$>\operatorname{Int}\left(7 * \operatorname{sqrt}(x) *(x-1)^{\wedge} 2, x=0 . .1\right)=\operatorname{int}\left(7 * \operatorname{sqrt}(x) *(x-1)^{\wedge} 2, x=\right.$ 0 .. 1);

$$
\int_{0}^{1} 7 \sqrt{x}(x-1)^{2} d x=\frac{16}{15}
$$

- 6. Let $F(x)=\int_{1}^{x} \frac{7 t^{3}+t+2}{\sqrt{4+t^{5}}} d t$. Calculate $F^{\prime}(2)$, the derivative of $F(x)$ at $x=2$.
a) 1
b) 2
c) 3
d) 4
e) 5
f) 6
g) 7
h) 8
i) 9
j) 10

Solution (j)

F $:=x \rightarrow \operatorname{Int}\left(\left(7 * t^{\wedge} 3+t+2\right) / \operatorname{sqrt}\left(4+t^{\wedge} 5\right), t=1 \ldots x\right) ;$

$$
F:=x \rightarrow \int_{1}^{x} \frac{7 t^{3}+t+2}{\sqrt{4+t^{5}}} d t
$$

$>\mathrm{D}(\mathrm{F})(\mathrm{x})$;
\#
\# This is calculated using the Fundamental Theorem of Calculus - without any integration

$$
\frac{7 x^{3}+x+2}{\sqrt{4+x^{5}}}
$$

> derivative := D(F) (2);
Answer $=$ simplify (derivative) ;

$$
\begin{aligned}
\text { derivative } & :=\frac{5 \sqrt{36}}{3} \\
\text { Answer } & =10
\end{aligned}
$$

7. Let $F(x)=\int_{x}^{3} \frac{(7-t)^{2}}{(2-t)^{3}} d t$. Calculate $F^{\prime}(4)$, the derivative of $F(x)$ at $x=4$.
a) $\frac{5}{4}$
b) $\frac{9}{8}$
c) 1
d) $\frac{7}{8}$
e) $\frac{3}{4}$
f) $-\frac{3}{4}$
g) $-\frac{7}{8}$
h) -1
i) $-\frac{9}{8}$
j) $-\frac{5}{4}$

Solution (b)

> $\mathrm{F}:=\mathrm{x}$-> $\operatorname{Int}\left((7-t)^{\wedge} 2 /\left((2-t)^{\wedge} 3\right), t=x\right.$.. 3$) ;$

$$
F:=x \rightarrow \int_{x}^{3} \frac{(7-t)^{2}}{(2-t)^{3}} d t
$$

$>\mathrm{F}:=\mathrm{x}$-> $-\operatorname{Int}\left((7-t)^{\wedge} 2 /(2-t)^{\wedge} 3, t=3 \ldots x\right) ;$
\#
\# Before applying the Fundamental Theorem of Calculus we
reverse the direction of integration
\# so that x is the upper limit of integration. (Maple would have done this without our intervention.)

$$
F:=x \rightarrow-\int_{3}^{x} \frac{(7-t)^{2}}{(2-t)^{3}} d t
$$

$>\mathrm{D}(\mathrm{F})(\mathrm{X})$;
\#
\# This is calculated using the Fundamental Theorem of Calculus - without any integration

$$
-\frac{(7-x)^{2}}{(2-x)^{3}}
$$

> derivative := D(F) (4);
Answer = simplify(derivative);

$$
\begin{gathered}
\text { derivative }:=\frac{9}{8} \\
\text { Answer }=\frac{9}{8}
\end{gathered}
$$

8. An alternative name for the inverse sine function is arcsin. Suppose that
$F(x)=\int_{1}^{\arcsin \left(\frac{x}{5}\right)} \sin (t)^{2} d t$. Calculate $F^{\prime}(3)$, the derivative of $F(x)$ at $x=3$.
(You may use one of the given formulas as a shortcut, if you wish.)
a) $\frac{1}{100}$
b) $\frac{1}{25}$
c) $\frac{1}{20}$
d) $\frac{3}{50}$
e) $\frac{2}{25}$
f) $\frac{9}{100}$
g) $\frac{1}{10}$
h) $\frac{3}{25}$
i) $\frac{3}{20}$
j) $\frac{1}{4}$

Solution (f)

$\rightarrow F:=(x) \rightarrow \operatorname{Int}\left(\sin (t)^{\wedge} 2, t=1 \ldots \arcsin (x / 5)\right) ;$

$$
F:=x \rightarrow \int_{1}^{\arcsin (1 / 5 x)} \sin (t)^{2} d t
$$

$>\mathrm{D}(\mathrm{F})(\mathrm{x})$;
\#
\# Note the factor $1 / s q r t\left(25-x^{\wedge} 2\right)$, wich is the derivative of arcsin (x/5)
\# in view of the given formula, int (1/sqrt(25-x^2), x) = $\arcsin (x / 5)+C$.
\# This factor arises from the Chain Rule.
\# The other factor, $x^{\wedge} 2 / 25$, is $\sin \wedge 2(\arcsin (x / 5))$, or $\left(\sin (\arcsin (x / 5))^{\wedge} 2\right.$, or $(x / 5)^{\wedge} 2$

$$
\frac{x^{2}}{25 \sqrt{25-x^{2}}}
$$

$>\mathrm{D}(\mathrm{F})(3)$;

$$
\frac{9 \sqrt{16}}{400}
$$

> simplify (\%);
\#
\# The character \% refers to the last Maple output.
\# This line simplifies 9*sqrt(16)/400

$$
\frac{9}{100}
$$

\square 9. Let $F(x)=\int_{3 x}^{x^{2}} \frac{4-t}{t^{2}+t} d t$. Calculate $F^{\prime}(2)$, the derivative of $F(x)$ at $x=2$.
a) $\frac{1}{7}$
b) $\frac{2}{7}$
c) $\frac{3}{7}$
d) $\frac{4}{7}$
e) $\frac{5}{7}$
f) $\frac{6}{7}$
g) 1
h) $\frac{8}{7}$
i) $\frac{9}{7}$
j) $\frac{10}{7}$

Solution (a)

$$
\begin{gathered}
>\mathrm{F}:=(\mathrm{x})-\mathrm{Int}\left((4-\mathrm{t}) /\left(\mathrm{t}^{\wedge} 2+\mathrm{t}\right), \mathrm{t}=3 * \mathrm{x} \ldots \mathrm{x}^{\wedge} 2\right) ; \\
\\
F:=x \rightarrow \int_{3 x}^{x^{2}} \frac{4-t}{t^{2}+t} d t
\end{gathered}
$$

$>\mathrm{D}(\mathrm{F})(2)$;

$$
\frac{1}{7}
$$

To get this answer, Maple has done something like the following:

$$
\begin{aligned}
&>F:=(x) \rightarrow \operatorname{Int}\left((4-t) /\left(t^{\wedge} 2+t\right), t=0 \ldots x^{\wedge} 2\right)-\operatorname{Int}(\\
&\left.(4-t) /\left(t^{\wedge} 2+t\right), t=0 \ldots 3 * x\right) ;
\end{aligned}
$$

$$
F:=x \rightarrow \int_{0}^{x^{2}} \frac{4-t}{t^{2}+t} d t-\int_{0}^{3 x} \frac{4-t}{t^{2}+t} d t
$$

$>$ derivative := $\mathrm{D}(\mathrm{F})(\mathrm{x})$;

$$
\text { derivative }:=\frac{2 x\left(4-x^{2}\right)}{x^{4}+x^{2}}-\frac{3(4-3 x)}{9 x^{2}+3 x}
$$

> subs (x=2, derivative);

$$
\frac{1}{7}
$$

-10 Calculate $\int_{0}^{1} 76(19 x+8)^{\left(\frac{1}{3}\right)} d x$.
a) 75
b) 90
c) 105
d) 120
e) 135
f) $\mathbf{1 5 0}$
g) 165
h) 180
i) 195
j) $\mathbf{2 1 0}$

Solution (i)

$$
\begin{aligned}
& \text { > J := Int (76* (19*x+8)^(1/3), } x=0 . .1) \text {; } \\
& J:=\int_{0}^{1} 76(19 x+8)^{(1 / 3)} d x \\
& \text { > } \mathrm{F}:=\operatorname{Int}(\text { integrand (J), } \mathrm{x}) \text {; } \\
& F:=\int 76(19 x+8)^{(1 / 3)} d x
\end{aligned}
$$

$$
\begin{aligned}
& G:=\int 4 u^{(1 / 3)} d u
\end{aligned}
$$

> G := value (G);

$$
G:=3 u^{(4 / 3)}
$$

> F := subs (u = 19*x+8, G);

$$
F:=3(19 x+8)^{(4 / 3)}
$$

> answer : $=\operatorname{subs}(\mathrm{x}=1, \mathrm{~F})-\operatorname{subs}(\mathrm{x}=0, \mathrm{~F})$;

$$
\text { answer }:=8127^{(1 / 3)}-248^{(1 / 3)}
$$

> simplify (answer);

Verification using Maple's builtin integrator:

```
> Int(76*(19*x+8)^(1/3), x = 0 .. 1) = simplify(
    int(76*(19*x+8)^(1/3), x = 0 .. 1) );
```

$$
\int_{0}^{1} 76(19 x+8)^{(1 / 3)} d x=195
$$

\square 11. Calculate $\int_{\mathrm{e}}^{\mathrm{e}^{2}} \frac{1}{x \sqrt{\ln (x)}} d x$.
a) $\sqrt{2}-1$
b) $2-\sqrt{2}$
c) $2 \sqrt{2}-1$
d) $2(\sqrt{2}-1)$
e) $2(2-\sqrt{2})$
f) $4 \sqrt{2}-1$
g) $2(2 \sqrt{2}-1)$
h) $\frac{1}{\sqrt{2}}-\frac{1}{2}$
i) $1-\frac{\sqrt{2}}{2}$
j) $\sqrt{2}-\frac{1}{2}$

Solution (d)

> J1 $:=\operatorname{Int}(1 / x / \operatorname{sqrt}(\ln (x)), x=\exp (1) \ldots \exp (2))$;
\#
\# Gives the name $J 1$ to the inert integral of the problem
\# In Maple, "Int" tells Maple to set up an integral that is not
\# to be evaluated immediately. For the eventual evaluation, \# the command "value" will be used

$$
J 1:=\int_{\mathrm{e}}^{\mathrm{e}^{2}} \frac{1}{x \sqrt{\ln (x)}} d x
$$

> J2 : = changevar $(\mathrm{u}=\ln (\mathrm{x}), \mathrm{J} 1, \mathrm{u})$;

$$
J 2:=\int_{1}^{2} \frac{1}{\sqrt{u}} d u
$$

> J1 = value (J2);
\#
\# Forces the evaluation of the inert integral

$$
\int_{\mathrm{e}}^{\mathrm{e}^{\mathrm{e}^{2}}} \frac{1}{x \sqrt{\ln (x)}} d x=2 \sqrt{2}-2
$$

Verification using Maple's builtin integrator:

```
> J1 = simplify( value(J1) );
```

$$
\int_{\mathrm{e}}^{\mathrm{e}^{2}} \frac{1}{x \sqrt{\ln (x)}} d x=2 \sqrt{2}-2
$$

\square 12. Calculate $\int_{-1}^{0} 35 x^{2} \sqrt{x+1} d x$.
a) $\frac{4}{3}$
b) $\frac{4}{15}$
c) $\frac{8}{3}$
d) $\frac{8}{15}$
e) $\frac{16}{3}$
f) $\frac{16}{15}$
g) $\frac{32}{3}$
h) $\frac{32}{15}$
i) $\frac{64}{3}$
j) $\frac{64}{15}$

Solution (e)

$>$ J1 $:=\operatorname{Int}\left(35 * x^{\wedge} 2 * \operatorname{sqrt}(x+1), x=-1 \ldots 0\right)$;

$$
J 1:=\int_{-1}^{0} 35 x^{2} \sqrt{x+1} d x
$$

> J2 $:=$ changevar $(u=x+1, J 1, u)$;
\#
\# This line says, Make the substitution $u=x+1$ in $J 1$ and set J2 to be the resulting integral wrt u
\# Note that the new limits of integration for u are calculated

$$
J 2:=\int_{0}^{1} 35(-1+u)^{2} \sqrt{u} d u
$$

> J3 $:=\operatorname{map}($ expand, J2) ;
\#
\# This expands everything in J2: First the square is expanded, then each term is multiplied by sqrt(u)

$$
J 3:=\int_{0}^{1} 35 \sqrt{u}-70 u^{(3 / 2)}+35 u^{(5 / 2)} d u
$$

The next line evaluates this integral:

```
> J1 = value(J3);
```

$$
\int_{-1}^{0} 35 x^{2} \sqrt{x+1} d x=\frac{16}{3}
$$

Verification using Maple's builtin integrator:
> J1 = simplify (value (J1));

$$
\int_{-1}^{0} 35 x^{2} \sqrt{x+1} d x=\frac{16}{3}
$$

13. Calculate the area of the region R that is bounded by $x=y^{2}-4 y$ and $x=2 y-y^{2}$, as shown in the figure below.

a) 5
b) 6
c) 7
d) 8
e) 9
f) $\mathbf{1 0}$
g) 11
h) 12
i) 13
j) 14

Solution (e)

```
> f := y -> 2*y - y^2;
```

 \(\mathrm{g}:=\mathrm{y} \rightarrow \mathrm{y}^{\wedge} 2\) - 4*y;
 $$
\begin{aligned}
& f:=y \rightarrow 2 y-y^{2} \\
& g:=y \rightarrow y^{2}-4 y
\end{aligned}
$$

> solve(f(y) = g(y) ,y);
\#
\# There are exactly two points of intersection
0,3
$>\mathrm{f}(1), \mathrm{g}(1)$;
\#
\# These evaluations at a point between $\mathrm{x}=1$ and $\mathrm{x}=2$ show us that $g(y)<f(y)$ for $0<y<3$

1,-3

Area $=$ int $(f(y)-g(y), y=0 \ldots 3)$;

$$
\text { Area }=9
$$

Verification by integrations with respect to x :
> completesquare ($\mathrm{f}(\mathrm{y}), \mathrm{y})$;
completesquare ($\mathrm{g}(\mathrm{y}), \mathrm{y})$;
\#
\# Shows that the x-interval is [-4,1]

$$
\begin{gathered}
-(y-1)^{2}+1 \\
(y-2)^{2}-4
\end{gathered}
$$

> $\mathrm{f}(3)$;
solve ($\mathrm{f}(\mathrm{y})=\mathrm{x}, \mathrm{y})$;

$$
1+\sqrt{1-x}, 1-\sqrt{1-x}
$$

> solve ($g(y)=x, y)$;

$$
2+\sqrt{4+x}, 2-\sqrt{4+x}
$$

int $\left.\left(\left(2+(4+x)^{\wedge}(1 / 2)\right)-\left(2-(4+x)^{\wedge}(1 / 2)\right)\right), x=-4 \ldots-3\right)$ $\left.+\operatorname{int}\left(\left(1+(1-x)^{\wedge}(1 / 2)\right)-\left(2-(4+x)^{\wedge}(1 / 2)\right)\right), x=-3 \ldots 0\right)$

$$
+\operatorname{int}\left(\left(\left(1+(1-x)^{\wedge}(1 / 2)\right)-\left(1-(1-x)^{\wedge}(1 / 2)\right)\right), x=0 \ldots\right.
$$

1);
\square 14. Functions $f(x)$ and $g(x)$ satisfy $g(x) \leq f(x)$ for $1 \leq x \leq \frac{4}{3}$ and $f(x) \leq g(x)$ for $\frac{4}{3} \leq x \leq 2$. In the table below, the number in an $f(x)$ or $g(x)$ cell is the value of f or g at the value of x in the x cell above it. For example, $f(1)=2.7$ and $\mathrm{g}(2)=2.4$.

x	$\\|$	1	$7 / 6$	$8 / 6$	$9 / 6$	$10 / 6$	$11 / 6$

Use a Riemann sum with equal length subintervals and with midpoints for sample points to estimate the area between the graphs of $y=f(x)$ and $y=g(x)$ for $1 \leq x \leq 2$.
a) 0.2
b) 0.3
c) 0.4
d) 0.5
e) 0.6
f) 0.7
g) 0.8
h) 0.9
i) 1.0
j) 1.1

Solution (c)

The.
> Delta := ((2-1)/6)*2;

$$
\begin{gathered}
\Delta:=\frac{1}{3} \\
>((3.1-2.9)+(3.4-3.0)+(3.1-2.5)) * \text { Delta; } \\
0.4000000000
\end{gathered}
$$

- 15. Let R be the region that lies below $y=\sqrt{x}$, above the x-axis, and to the left of $x=6$. Calculate the volume of the solid that results when R is rotated about the x-axis.
a) 3π
b) 6π
c) 8π
d) 10π
e) 12π
f) 15π
g) 16π
h) 18π
i) 20π
j) 24π

Solution (h)

Method of Disks (Method of Discs in British Commonwealth countries) (An excellent choice)
> Volume_by_disks := Pi*Int (sqrt (x)^2, $x=0$.. 6);

$$
\text { Volume_by_disks }:=\pi \int_{0}^{6} x d x
$$

> value(Volume_by_disks);

$$
18 \pi
$$

Method of Shells (A reasonably good choice)

```
> Volume_by_shells := 2*Pi*Int (y* (6-y^2), y = 0 .. sqrt (6));
    Volume_by_shells}:=2\pi\mp@subsup{\int}{0}{\sqrt{}{6}}y(6-\mp@subsup{y}{}{2})d
> value(Volume_by_shells);
```

16. Let R be the region that lies above $y=\sqrt{x}$ and below $y=2$. The boundary of \mathbf{R} on the left is the \mathbf{y}-axis. for \boldsymbol{x} between $\mathbf{2}$ and 3 . What is the volume of the solid that results when R is rotated about the y-axis?
a) $\frac{64 \pi}{3}$
b) $\frac{64 \pi}{5}$
c) $\frac{32 \pi}{3}$
d) $\frac{32 \pi}{5}$
e) $\frac{16 \pi}{3}$
f) $\frac{16 \pi}{5}$
g) $\frac{8 \pi}{3}$
h) $\frac{8 \pi}{5}$
i) $\frac{4 \pi}{3}$
j) $\frac{4 \pi}{5}$

Solution

Method of Disks (a fine choice)

```
> Volume_by_discs := Pi*Int( ( y^2 )^2 , y = 0 .. 2);
    Volume_by_discs:=\pi \int}\mp@subsup{\int}{0}{2}\mp@subsup{y}{}{4}d
> value(Volume_by_discs);
\[
\frac{32 \pi}{5}
\]
```

Method of Shells (another fine choice)

```
> Volume_by_shells := 2*Pi*Int(x*(2-sqrt(x)), x = 0 . . 4);
```

 Volume_by_shells \(:=2 \pi \int_{0}^{4} x(2-\sqrt{x}) d x\)
 > value(Volume_by_shells);

$$
\frac{32 \pi}{5}
$$

17. Let R be the region that lies to the right of the arc of the parabola $y=x^{2}, \quad 1 \leq x \leq \sqrt{2}$, to the left of the line segment $y=x-2,3 \leq x \leq 4$, above $y=1$, and below $y=2$. Using washers, the volume of the solid that results when R is rotated about the axis $x=5$
is

$$
\pi \int_{1}^{2} \mathrm{~W}(y) d y
$$

for a function W. Find an expression for $W(y)$. What is the value of that expression when $y=4$?
a) 8
b) 9
c) 10
d) 11
e) 12
f) 13
g) 14
h) 15
i) $\mathbf{1 6}$
j) 17

Solution (a)

The figure below shows the region R and the axis of rotation.

The solid of revolution in see-through rendering, with washer:

Method of Washers

> Volume_by_washers $:=P i * \operatorname{lnt}\left((5-s q r t(y))^{\wedge} 2-(5-(y+2))^{\wedge} 2, y=\right.$ 1..2);

$$
\text { Volume_by_washers }:=\pi \int_{1}^{2}(5-\sqrt{y})^{2}-(3-y)^{2} d y
$$

> value(Volume_by_washers);
evalf(Volume_by_washers);
$\pi\left(\frac{185}{6}-\frac{40 \sqrt{2}}{3}\right)$
37.62733431

Verification using cylindrical shells

$$
\begin{aligned}
& >2 * P i * i n t(5-x) *\left(x^{\wedge} 2-1\right), x=1 \text {. sqrt (2)) + 2*Pi*int (} \\
& (5-x) *(2-1), x=\operatorname{sqrt}(2) . .3)+2 * P i * i n t((5-x) *(2-(x-2)), x= \\
& 3 \text {.. 4); } \\
& 2 \pi\left(\frac{37}{12}-\frac{5 \sqrt{2}}{3}\right)+2 \pi\left(\frac{23}{2}-5 \sqrt{2}\right)+\frac{5 \pi}{3}
\end{aligned}
$$

> evalf(\%);
$>W:=Y \rightarrow\left(5-y^{\wedge}(1 / 2)\right)^{\wedge} 2-(3-y)^{\wedge} 2 ;$

$$
\mathrm{W}:=y \rightarrow(5-\sqrt{y})^{2}-(3-y)^{2}
$$

$>$ expand $(W(y))$;

$$
16-10 \sqrt{y}+7 y-y^{2}
$$

> expand (W(4));

$$
28-10 \sqrt{4}
$$

> simplify (\%);

Method of Shells

The Method of Shells provides a more efficient calculation:
$>$ Volume_by_shells $:=2 * P i * \operatorname{Int}\left((5-x) *\left(x^{\wedge} 2-1\right), x=1 \ldots\right.$
sqrt (2))
$+2 * P i * \operatorname{Int}((5-x) *(2-1), x=\operatorname{sqrt}(2)$. 3$)$ $+2 * P i * \operatorname{Int}((5-x) *(2-(x-2)), x=3 . .4)$;

Volume_by_shells :=

$$
2 \pi \int_{1}^{\sqrt{2}}(5-x)\left(x^{2}-1\right) d x+2 \pi \int_{\sqrt{2}}^{3} 5-x d x+2 \pi \int_{3}^{4}(5-x)(4-x) d x
$$

> value(Volume_by_shells);
evalf (value (Volume_by_shells)) ;

$$
\begin{gathered}
2 \pi\left(\frac{37}{12}-\frac{5 \sqrt{2}}{3}\right)+2 \pi\left(\frac{23}{2}-5 \sqrt{2}\right)+\frac{5 \pi}{3} \\
37.62733432
\end{gathered}
$$

- 18. Let R be the "triangular" region that is bounded above by $y=x+\frac{8}{x^{3}}$ for $1 \leq x \leq 2$, bounded below by $y=3$, and bounded on the left by $x=1$.

Using cylindrical shells, the volume of the solid that results when \mathbf{R} is rotated about the axis $x=-2$ is

$$
2 \pi \int_{1}^{2} \mathrm{~S}(x) d x
$$

for some function S. What is the value $36 S\left(\frac{4}{3}\right)$?
a) 165
b) 170
c) 175
d) 180
e) 185
f) $\mathbf{1 9 0}$
g) 195
h) 200
i) 205
j) 210

Solution
 (i)

> 2*Pi*Int ($\left.(x+2) *\left(x+8 / x^{\wedge} 3-3\right), x=1 . .2\right)$;

$$
2 \pi \int_{1}^{2}(x+2)\left(x+\frac{8}{x^{3}}-3\right) d x
$$

> S := x -> $(x+2)$ * $\left(x+8 / x^{\wedge} 3-3\right)$;

$$
S:=x \rightarrow(x+2)\left(x+\frac{8}{x^{3}}-3\right)
$$

> S (4/3);

$$
\frac{205}{36}
$$

> a := 3: b := 9: N := 1000:
Delta :=
(b-a)/N:for j from 1 to N do
$\mathbf{x}[\mathrm{j}]$:= fsolve(3+(j-1/2)*Delta $=\mathrm{x}+8 / \mathrm{x}^{\wedge} 3, \mathrm{x}, 1 . .2$):
end do:

```
Approximation_by_washers := pi*sum( (x['j']+2)^2 - 9 , 'j' =
1 .. N )*Delta:
evalf(Approximation_by_washers, 5);
2*Pi*Int ( (x+2)*(x + 8/x^3 - 3),x=1..2) = 2*Pi*int( (x+2)*(x
+ 8/x^3 - 3), x=1..2);
evalf(29*pi/3, 5);
#
# To verify the setup of the cylindrical shell volume
integral,
# the integral is calculated (middle outout) and numerically
# evaluated (final output). Additionally, the volume is
# calculated by using washers (first output). Agreement of
the
# two values is a good sign that no error has been made.
                                    9.6666 \pi
                                    2\pi}\mp@subsup{\int}{1}{2}(x+2)(x+\frac{8}{\mp@subsup{x}{}{3}}-3)dx=\frac{29\pi}{3
                                    9.6667 \pi
```

19. A spring is stretched 2 m beyond equilibrium, at which point a force of 80 N maintains its position. The spring is then allowed to return to equilibrium. From that position at rest, the spring is stretched a second time. How many meters beyond equilibrium has it been stretched that second time if 120 J of work were expended in the course of the second stretching?
a) $\sqrt{2}$
b) $\sqrt{3}$
c) $\sqrt{6}$
d) $2 \sqrt{2}$
e) $2 \sqrt{3}$
f) $2 \sqrt{6}$
g) $3 \sqrt{2}$
h) $3 \sqrt{3}$
i) $3 \sqrt{6}$
j) $4 \sqrt{2}$

Solution (c)

We will use b to denote the unknown number of meters beyond equilibrium of the second stretch.

```
> HookesLaw := F = k*x;
    HookesLaw := F=kx
> eqn1 := subs({F=80, x=2}, HookesLaw);
    #
    # This substitutes the given data, F = 80 N and x = 2m, into
    Hooke's Law,
    # resulting in an equation involving the spring constant k.
```

$$
e q n 1:=80=2 k
$$

$>$ eqn2 $:=k=$ solve (eqn1, k);
\#
\# This gives the value for the spring constant
eqn $2:=k=40$
$>$ eqn3 $:=W=120$;
\#
\# The value of work for the second stretching

$$
e q n 3:=\mathrm{W}=120
$$

$>$ eqn4 $:=W=\operatorname{Int}\left(k^{*} x, x=0 . . b\right)$;
\#
\# The equation that relates W, k, and b

$$
e q n 4:=\mathrm{W}=\int_{0}^{b} k x d x
$$

$>$ eqn5 $:=$ subs $(\{$ eqn2, eqn3\}, eqn4);
\#
\# Substitutes the known values of W and k into preceding equation

$$
e q n 5:=120=\int_{0}^{b} 40 x d x
$$

$>$ eqn6 $:=$ lhs (eqn5) $=$ value (rhs (eqn5));
\#
\# Calculates integral on right hand side of preceding equation

$$
e q n 6:=120=20 b^{2}
$$

$>$ eqn $7:=\operatorname{map}(z \rightarrow z / 20$, eqn6);
\#
\# Divides each side of preceding equation by 20

$$
e q n 7:=6=b^{2}
$$

> b = sqrt (6);
\#
\# The positive solution of the preceding equation

$$
b=\sqrt{6}
$$

20. A tank has the shape that results when the curve $y=x^{2}, 0 \leq x \leq 2 m$, is rotated about the y-axis. It is partially filled to a depth of 3 m with pibegone, a fluid that
has a weight density of $\frac{3}{\pi} \frac{N}{m^{3}}$. The fluid is pumped over the top of the tank until the remaining depth is $\mathbf{1 m}$. How many Joules of work have been performed?
a) 4
b) 6
c) 8
d) 10
e) 12
f) 14
g) 16
h) 18
i) 20
j) 22

Solution (j)

The tank is shown in the figure below.

The radius of the disk at the top is 2 m . The height of the tank is 4 m .

In the next figure, a "slice" of pibegone at height y is added" in the next figure.

The radius of the disk shown is $x=\sqrt{y}$, and the thickness is $d y$. The volume of the disk is $\pi \sqrt{y}^{2} d y$, or $\pi y d y$.
The weight of the disk shown is $\frac{3}{\pi} \pi y d y$, or $3 y d y$.

Because the slice is at height y and must be pumped to height 4 , the distance it is pumped is $4-y$. The work done on the
slice is therefore $3(4-y) y d y$. The total work done is

$$
\int_{1}^{3} 3(4-y) y d y
$$

```
Int(3*(4-y)*y,y = 1 .. 3) = int(3*(4-y)*y,y = 1 .. 3);
```

$$
\int_{1}^{3} 3(4-y) y d y=22
$$

+ Code

