Surface Integrals

Here is a summary of how to find surface integrals of functions and vector fields.

If we have a surface S, then we can integrate a function or a vector field over S. To integrate a function or a vector field over S, we first parametrize S. Since S is two-dimensional, we always need two parameters u and v, and we should express x, y and z in terms of our parameters.

$$r(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle.$$

We then compute $r_u \times r_v$.

It might be tricky to find the correct parametrization, but here are a few general rules:

1. Use spherical coordinates only if the surface is a part a sphere.
2. If S is a part of a cylinder, for example $x^2 + y^2 = 1$, then use θ and z to parametrize S. So S is parametrized by

$$r(\theta, z) = \langle \cos(\theta), \sin(\theta), z \rangle.$$

In this case, $r_{\theta} \times r_z = \langle \cos(\theta), \sin(\theta), 0 \rangle$.

3. If S is a part of a plane with equation $ax + by + cz = d$, then use x and y as parameters

$$r(x, y) = \langle x, y, \frac{d}{c} - \frac{a}{c}x - \frac{b}{c}y \rangle.$$

In this case, $r_{x} \times r_y = \langle \frac{a}{c}, \frac{b}{c}, 1 \rangle$.

4. If S is a part of a graph of a function $z = f(x, y)$, we can use x and y as parameters, so

$$r(x, y) = \langle x, y, f(x, y) \rangle.$$

In this case, $r_{x} \times r_y = \langle -f_x, -f_y, 1 \rangle$. If for example, S is the paraboloid $z = x^2 + y^2$, and if we choose x and y as our parameteres, $r_{x} \times r_y = \langle -2x, -2y, 1 \rangle$, and if S is the upper half of the cone $z^2 = x^2 + y^2$, so
\[z = \sqrt{x^2 + y^2}, \] we can choose \(x \) and \(y \) as our parameters and \(\mathbf{r}_x \times \mathbf{r}_y = \frac{\mathbf{r}_x}{\sqrt{x^2 + y^2}}, \frac{\mathbf{r}_y}{\sqrt{x^2 + y^2}}, 1 >, \]

Of course, in each of these case, you should also find the region where the parameters come from. And you may need to change these sometimes a little bit. For example if we have a surface given by an equation like \(y = g(x, z) \), then it is easier to use \(x \) and \(z \) as parameters.

Once you have the parametrization of \(S \), say
\[\mathbf{r}(u, v) = < x(u, v), y(u, v), z(u, v) >, \]
then

- You find the surface area of \(S \) by
\[\text{area} = \int\int_{R} |\mathbf{r}_u \times \mathbf{r}_v| \, dA. \]

- If \(f(x, y, z) \) is a function, then we can take the integral of \(f \) over \(S \). This is called a surface integral, and we have had two different notations: in the book \(\iint_{S} f \, d\sigma \) and in webwork \(\iint_{S} f \, dS \).

\[\text{integral of } f \text{ over } S = \int\int_{R} f |\mathbf{r}_u \times \mathbf{r}_v| \, dA. \]

So the area is equal to the surface integral of the constant function 1.

- If we have a vector field \(\mathbf{F} \), we can also take the integral of \(\mathbf{F} \) over \(S \). But to do so, we need to first fix an orientation of \(S \) say \(\mathbf{n} \). If we look at \(f = \mathbf{F} \cdot \mathbf{n} \), then we get a function whose value at every point is the scalar component of \(\mathbf{F} \) in the direction of \(\mathbf{n} \).
the integral of \(\mathbf{F} \) with respect to \(\mathbf{n} \) is defined to be the integral of the function \(f \). This is sometimes called the flux of \(\mathbf{F} \) with respect to \(\mathbf{n} \), and sometimes simply the surface integral of \(\mathbf{F} \) with respect to \(\mathbf{n} \).

There are two notations for the integral of a vector field over a surface: in the book \(\int_S \mathbf{F} \cdot \mathbf{n} \, d\sigma \), and in the webwork \(\int_S \mathbf{F} \cdot d\mathbf{S} \).

How do you find the integral of \(\mathbf{F} \)? You look at a parametrization, you look at \(\mathbf{r}_u \times \mathbf{r}_v \). This vector is always normal to the surface. if it was in the same direction as the orientation of \(S \), then \(\mathbf{n} = \frac{\mathbf{r}_u \times \mathbf{r}_v}{|\mathbf{r}_u \times \mathbf{r}_v|} \), so

\[
\text{integral of } \mathbf{F} \text{ with respect to } \mathbf{n} = \int \int_R \mathbf{F} \cdot \left(\frac{\mathbf{r}_u \times \mathbf{r}_v}{|\mathbf{r}_u \times \mathbf{r}_v|} \right) |\mathbf{r}_u \times \mathbf{r}_v| \, dA
\]

\[
= \int \int_R \mathbf{F} \cdot (\mathbf{r}_u \times \mathbf{r}_v) \, dA
\]

If \(\mathbf{r}_u \times \mathbf{r}_v \) is in the opposite direction as the orientation of \(S \), then \(\mathbf{n} = -\frac{\mathbf{r}_u \times \mathbf{r}_v}{|\mathbf{r}_u \times \mathbf{r}_v|} \), so

\[
\text{integral of } \mathbf{F} \text{ with respect to } \mathbf{n} = -\int \int_R \mathbf{F} \cdot (\mathbf{r}_u \times \mathbf{r}_v) \, dA.
\]
Finally, Stokes' theorem says that if \(S \) is a surface with an orientation \(\mathbf{n} \), and \(C \) is the boundary of \(S \) which is oriented positively with respect to \(\mathbf{n} \), then for a vector field \(\mathbf{F} \), the line integral of \(\mathbf{F} \) on the boundary is equal to the surface integral of \(\text{curl} \ \mathbf{F} \) over \(S \), with respect to \(\mathbf{n} \).