1. Let E be the splitting field of $f(x) = x^4 - 2 \in \mathbb{Q}[x]$ and G the Galois group of E/\mathbb{Q}. Describe the subfields of E corresponding to the following subgroups of G: $< gh >$, $< gh^3 >$, and $< g, h^2 >$ (If $\rho = \sqrt{2}$, then g is the automorphism which fixes ρ and sends i to $-i$, and h is the automorphism which fixes i and sends ρ to $i\rho$.)

2. Find the Galois group of the following polynomials.
 (a) $x^3 + x^2 - 2x - 1$ over \mathbb{Q}
 (b) $x^3 - 10$ over $\mathbb{Q}(\sqrt{2})$

3. Suppose that $f(x) \in F[x]$ is an irreducible separable polynomial and E is the splitting field of f. Then show that the Galois group of E/F acts transitively on the roots of $f(x)$.

4. Let E/F be a finite Galois extension and $G = \text{Gal}(E/F)$. If $H_1 \trianglelefteq H_2 \leq G$, then show that $H_1 \trianglelefteq H_2$ if and only if E^{H_1} is a normal extension of E^{H_2}.

5. Let $f(x) = x^4 + ax^2 + b$ be an irreducible polynomial over \mathbb{Q}, with roots $\pm \alpha, \pm \beta$, and splitting field E.
 (a) Show that $\text{Gal}(E/\mathbb{Q})$ is isomorphic to a subgroup of the Dihedral group of order 8, D_8, and is therefore isomorphic to \mathbb{Z}_4, $\mathbb{Z}_2 \times \mathbb{Z}_2$, or D_8.
 (b) Show that if $\alpha \beta \in \mathbb{Q}$, then $G = \mathbb{Z}_2 \times \mathbb{Z}_2$.
 (c) Show that $\frac{\alpha}{\beta} - \frac{\beta}{\alpha} \in \mathbb{Q}$ if and only if $G = \mathbb{Z}_4$.

6. Show that if the Galois group of an irreducible polynomial of degree 3 in $\mathbb{Q}[x]$ is \mathbb{Z}_3, then all the roots of the polynomial are real.