1. A subgroup of a cyclic group is cyclic (the group is not necessarily finite).

2. If G is a group and H is a subgroup of G, then $aH = bH$ if and only if $a^{-1}b \in H$.

3. If G is a finite group, then the order of every subgroup of G divides $|G|$ (you need to show that every two cosets have the same number of elements, the union of all the cosets is G, and two cosets are either equal or disjoint).

4. If G is a group whose order is a prime number, then G is cyclic.

5. $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic if and only if m and n are relatively prime.

6. If N is a subgroup of G, then N is a normal subgroup if and only if $gN = Ng$ for every $g \in G$.

7. If $\phi : G \to G'$ a group homomorphism, then ϕ is one-to-one if and only if $\text{Ker}(\phi) = \{e\}$.

8. The commutator subgroup of every group is a normal subgroup.

9. If $\phi : G \to G'$ is a group homomorphism, then
 \[G/\text{Ker}(\phi) \cong \text{image}(\phi). \]

10. If G is a group of finite order, then for subgroups H and K of G,
 \[|HK| = \frac{|H| |K|}{|H \cap K|}. \]