1. Do the following exercises from the book:

- Exercises 6: 16, 53
- Exercises 7: 3
- Exercises 8: 18

2. Show that the greatest common divisor (gcd) of any two integers a and b can be written as a linear combination of a and b

$$\text{gcd}(a, b) = xa + yb, \quad x, y \in \mathbb{Z}.$$

(Consider the set of all positive numbers which can be written as linear combination of a and b. Show this set is non-empty, and its smallest element is $\text{gcd}(a, b)$ by showing that it divides both a and b and is a multiple of any common divisor of a and b).

3. The order of an element g in a group G is the smallest positive integer m such that $g^m = e$. If there is no such m, then g is said to be of infinite order.

(a) Show that for any two elements $a, b \in G$, ab and ba have the same order.

(b) Give an example of a group G and two elements a and b of finite order such that ab has infinite order. (Hint: you can find an example using matrices with multiplication)