
THE ISOPARAMETRIC STORY

QUO-SHIN CHI

This is a slightly revised and updated version of the notes for the
summer mini-course on isoparametric hypersurfaces I gave at National
Taiwan University, June 25-July 6, 2012.

Due to the request of the participants of the summer course, I placed
the emphasis on the homogeneous isoparametric hypersurfaces in the
sphere. For this purpose, I outlined in Section 2, in considerable details,
the classification of symmetric spaces before looking at the isotropy
representation of a symmetric space of rank two, whose orbits form a
1-parameter family of homogeneous isoparametric hypersurfaces and
its two focal manifolds, in the unit sphere of the tangent space of the
symmetric space at the origin. Since the classification of symmetric
spaces is so comprehensive that it can be overwhelming to a beginning
student, the outline in these notes serves, I hope, as a clear overview
of the ingredients, both algebraic and geometric with emphasis more
on the latter, entailed in the classification.

As of this writing, the classification of isoparametric hypersurfaces
has been completed [13]. The survey article [12] may be a good intro-
duction to the background commutative algebra central to the classifi-
cation.

1. Early History of Isoparametric Hypersurfaces

Wikipedia. In physics, a wavefront is the locus of points having the
same phase: a line or curve in 2-d or a surface for a wave propagating
in 3-d.

A typical example is the crests of ocean waves forming wave fronts.
A skillful surfer, on the other hand, knows how to ride a wavefront
below the crest.

Question 1. (Laura, 1918 [24]): What are the wavefronts whose front
speed remains constant on each front surface?

The wave equation is

∆φ =
∂2φ

∂t2
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Wave fronts are level surfaces of φ, at each moment, which propagate
along the normal directions of the level surfaces. That the front speed
remains constant on each level surface means

|∇φ| = change per unit length of φ along the normal = a(φ),

ds/dt = b(φ),

for some smooth functions a and b, where s is the distance a front
travels. Therefore,

∂φ

∂t
=
∂φ

∂s

ds

dt
= a(φ)b(φ) := c(φ),

∆φ =
∂2φ

∂t2
= c′(φ)c(φ).

Definition 2. A smooth function f over R3 is transnormal if

|∇f | = A(f)

for some smooth function A. A transnormal function is isoparametric
if

∆f = B(f).

Let c be a regular value of an isoparametric function f . The level
surface f−1(c) (i.e., a regular level surface) is called an isoparametric
surface.

Theorem 3. (Somigliana, 1918-1919 [40]) A transnormal function
f is isoparametric if and only if each regular level surface of f has
constant mean curvature.

Proof. For each regular level surface M := f−1(c) of a transnormal
function f ,

n = ∇f/|∇f | = ∇f/A(f)

is a unit normal field to M . The shape operator S of the surface M is

S(X) := −dn(X)

for a tangent vector X of M . However,

d(∇f)(X)

= d(A(f)n)(X)

= A′(f)df(X)n + A(f)dn(X), (Leibniz Rule)

= A(f)dn(X), (df = 0 over M)

= −A(f)S(X).
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On the other hand, as a linear operator,

d(∇f) : X 7→ Hessian(f)X,

where Hessian(f) = (∂2
ijf). Taking trace, we obtain

∆f

= trace(d(∇f))

= −A(f) trace(S)+ < d(∇f)(n),n >

= −2A(f)H + A′(f)A(f), H is the mean curvature of M.

That is,
H = −(B(f)− A′(f)A(f))/2A(f)

is a constant along M if the transnormal f is also isoparametric. Con-
versely, if H is constant along regular level surfaces of the transnormal
f , then H is a function of f and so ∆f is a function of f so that f is
isoparametric. �

Theorem 4. (Somigliana) The regular level surfaces of a isoparamet-
ric function must be either all spheres, all cylinders or all planes.

Remark 5. This theorem was rediscovered later by Segre in 1924 [38]
and Levi-Civita in 1937 [25]. The approach Levi-Civita gave is what
we will look at next.

Lemma 6. (Levi-Civita, 1937) A transnormal f is isoparametric if
and only if the two principal curvatures of each regular level surface are
constant.

Proof. Observe first that the integral curves of the unit normal field
n = ∇f/|∇f | are just line segments. In fact, an integral curve c of n
from f = a to f = b assumes the length

Length of c =

∫ b

a

df

|∇f |
=

∫ b

a

df

A(f)
.

On the other hand, for any curve γ(t), 0 ≤ t ≤ 1, beginning and ending
at the two end points of the given integral curve, we have

|df(γ(t))

dt
| = |〈∇f(γ(t)), γ′(t)〉| ≤ A(f(γ(t))|γ′(t)|,

so that

Length of γ =

∫ 1

0

|γ′(t)|dt ≥
∫ 1

0

1

A(f)

df

dt
dt =

∫ b

a

df

A(f)
.

In other words, the given integral curve c assumes the shortest distance
among all curves beginning and ending at its end points. That is, the
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integral curve is a line segment. In view of this observation, instead of
using f to parametrize the level surfaces, we might as well use the arc
length s of the normal lines of an initial level surface to parametrize
other level surfaces:

Ms := M + sn

is now the 1-parameter family of level surfaces of the transnormal f ,
where M is the initial level surface with unit normal field n.

Let us calculate the mean curvature Hs of Ms by using the fact that
n is still the unit normal to Ms. The upshot is [36, p. 209]

Hs =
H − sK

1− 2sH + s2K
,

where k1 and k2 are the eigenvalues (the principal curvatures) of the
shape operator S of M , so that H = (k1 + k2)/2, and K = k1k2 is
the Gaussian curvature of M . Therefore, the mean curvature Hs is
constant on Ms for all s, i.e., the transnormal f is isoparametric, if and
only if H,K are constant on M , if and only if the principal curvatures
k1, k2 are constant.
Case 1. k1 = k2 6= 0. M is a sphere.
Case 2. k1 = k2 = 0. M is a plane.
Case 3. k1 6= k2. One employs dk1 = dk2 = 0 and a bit more surface
geometry to conclude k1k2 = 0 [36, p. 255], so that one of k1, k2 is zero.
Then M is a cylinder. �

Theorem 7. (Segre, 1938 [39]) The same conclusion holds on Rn.
That is, an isoparametric hypersurface, which is a regular level hyper-
surface of an isoparametric function f over Rn satisfying

|∇f | = A(f), ∆f = B(f),

is either a hypersphere, a hyperplane, both are totally umbilic (one prin-
cipal curvature), or a cylinder Sk × Rn−1−k.

Theorem 8. (Cartan, 1938 [5]) The same conclusion holds on the
hyperbolic space Hn of constant curvature −1. That is, an isoparamet-
ric hypersurface in Hn must be either a sphere, a hyperbolic Hn−1, a
Euclidean Rn−1 (called a horosphere), all three are totally umbilic, or
a cylinder Sk ×Hn−k−1.

Proof. (sketch) Show again that there are at most two (constant) prin-
cipal values of the shape operator. Indeed, let λ1, · · · , λn−1 be the
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principal curvatures of an isoparametric hypersurface in a standard
space form of dimension n with constant curvature C. Then we have

(1)
∑
j 6=k

mj
C + λkλj
λk − λj

= 0, summed on j,

referred to by Cartan as the ”Fundamental Formula”, which was proved
by Segre in the Euclidean case and by Cartan in general [4, p. 84]. Here,
mj is the multiplicity of λj and λi 6= λj if i 6= j.

C = 0. Let λk be the smallest positive principal curvature. Note that
each term, if nontrivial, in the fundamental formula must be negative,
which is a contradiction. Therefore, there are at most two principal
curvatures, one of them is zero if there are two.

C = −1. It is easy to see that

(2)
C + λkλj
λk − λj

< 0

if λj ≤ 0 and λk > 0. Consider those positive principal values. If there
is a 0 < λl ≤ 1 such that (λj)

−1 ≤ λl for all λj > 1, we let λk be the
largest positive principal value ≤ 1. It follows that (2) is negative for
all those 0 < λj < 1 and for those λj > 1 not reciprocal to λk. We
conclude that none of the positive λj other than the reciprocal of λk
exist. Otherwise, there exists some λj > 1 such that its reciprocal is
greater than the above λk, which we replace by the smallest principal
value > 1. Once more, (2) is negative for all positive λj not reciprocal
to λk. We arrive at the same conclusion as in the preceding case. So,
we have at most two principal curvatures reciprocal to each other. In
the case of two distinct principal curvatures λ and µ, the isoparametric
hypersurface is the product of two simply connected space forms of
constant curvatures λ2 − 1 and µ2 − 1. �

Remark 9. Say, C = 1. That is, the ambient space is the unit sphere
in which the isoparametric hypersurface sits. Write

λj = cot(θj).

Then the fundamental formula is nothing but∑
j 6=k

cot(θk − θj) = 0,

which carries a significant geometric meaning. Namely, in the spher-
ical case, wavefronts, that is, the 1-parameter family of isoparametric
hypersurfaces, eventually degenerate to two subspaces of smaller dimen-
sions whose mean curvatures are zero.
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The case C = 1 is remarkably deep! At this point, 94 years after
Laura first investigated isoparametric surfaces, there remains the last
case (out of infinitely many) to be classified:

Classify the isoparametric hypersurfaces in S31 with four principal cur-
vatures of multiplicities 7, 7, 8, 8.

Different fields of mathematics, such as differential geometry, alge-
braic geometry, algebraic topology, homotopy theory, K-theory, repre-
sentation theory, etc., interplay in this arena.

Definition 10. g is the number of principal curvatures of an isopara-
metric hypersurface in Sn.

Theorem 11. (Cartan, 1939-1940 [6], [8])

g = 1. This is the 1-parameter family of parallel hyperspheres degener-
ating to the North and South Poles, called the focal manifolds
of the family.

g = 2. This is the 1-parameter family of generalized tori Sk × Sn−k−1,
whose points are

(x0, · · · , xk, xk+1, · · · , xn), x2
0+· · ·+x2

k = r2, x2
k+1+· · ·+x2

n = s2, r2+s2 = 1,

which degenerates to two focal manifolds Sk and Sn−k−1 of ra-
dius 1 as r approaches 0 or 1.

g = 3. I. The three principal values have equal multiplicity m = 1, 2, 4,
or 8.

II. In the ambient Euclidean space Rn+1 ⊃ Sn, there is a ho-
mogeneous polynomial F of degree 3, satisfying

|∇F |2 = 9r2, r is the Euclidean radial distance, and,

∆F = 0,

whose restriction to Sn is exactly the isoparametric func-
tion f . The range of f is [−1, 1]. Then ±1 are the only
critical values. Thus f−1(c),−1 < c < 1, form a 1-parameter
family of isoparametric hypersurfaces that degenerates to
the two focal manifolds f−1(1) and f−1(−1).

III. The two focal manifolds are the real, complex, quaternionic,
or octonion projective plane corresponding to the principal
multiplicity m = 1, 2, 4, or 8. Each isoparametric hyper-
surface in the family is a tube around the projective plane.

IV. Let F be one of the normed algebras R,C,H, and O. Let
X, Y, Z ∈ F and a, b ∈ R. Then
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F = a3 − 3ab2

+
3a

2
(XX + Y Y − 2ZZ)

+
3
√

3b

2
(XX − Y Y )

+
3
√

3

2
((XY )Z + (XY )Z)

(3)

g = 4. He assumed equal multiplicity m and classified the cases when
m = 1 or 2.

Question 12. (Cartan, 1940 [8])

(i) What are the possible g?
(ii) Is equal multiplicity of principal values always true?
(iii) Are all isoparametric hypersurfaces homogeneous?

2. Development in the early 1970s, the homogeneous case

Nomizu wrote two papers in the early 1970s [34], [35] that revived the
interest in isoparametric hypersurfaces. At about the same time Takagi
and Takahashi [42] classified homogeneous isoparametric hypersurfaces
in spheres. We next report on Takagi and Takahashi’s work, which is
based on the comprehensive work of Cartan on the classification of
symmetric spaces.

2.1. General structure theory of symmetric spaces.

Definition 13. Let G be a topological group and X a topological space.
G is called a topological transformation group on X if there is a con-
tinuous map

φ : G×X → X,

where we denote φ(g, x) by g · x for simplicity, such that

(gh) · x = g · (h · x), e · x = x,

for all g, h ∈ G and all x ∈ X; here e is the identity of G.
We say the action of G on X is effective if g · x = x for all x ∈ X

implies g = e, i.e., every nontrivial g ∈ G moves at least some x ∈ X.
We say X is a homogeneous space of G if G acts transitively on X,

i.e., for any two x, y ∈ X there is a g ∈ G such that g · x = y.

Definition 14. Let X be a homogeneous space of G. For x ∈ X let

Kx := {g ∈ G : g · x = x}.
Kx is called the isotropy subgroup of G at x.
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Example 15. Let G be a topological group and let K ⊂ G be a sub-
group. The coset space X := G/K equipped with the quotient topology
with respect to the (open) projection map

π : G→ G/K, x 7→ xK,

is a topological space. The transitive action of G on G/K is

g · xK := (gx)K.

Furthermore, we know G/K is Hausdorff if and only if K is closed.
Moreover, since π : G→ G/K is an open map, G/K is locally compact
if G is.

Note that the action is effective if and only if the only normal sub-
group of G contained in Kx is the identity group.

Theorem 16. ([20, p. 121]) Let X be a locally compact Hausdorff
space which is a homogeneous space of a locally compact topological
group with a countable base. Let Kx be the isotropy subgroup of G at
x ∈ X. Then

(4) f : G/Kx → X, f : gKx 7→ g · x,
is a homeomorphism from G/H onto X.

In our applications, G is a compact connected Lie group and X
contained in a smooth manifold Y is a homogeneous space of G. It
follows that G and X are both locally compact. Therefore, X can be
homeomorphically identified with G/Kx.

Corollary 17. Let G be a compact connected Lie group and let G be a
smooth transformation group on Y . For each x ∈ Y , the orbit through
x,

Ox := {g · x} ⊂ Y,

is diffeomorphic to the smooth manifold G/Kx as a regular submanifold
of Y .

Proof. The isotropy group Kx is closed in G and so Kx is also a Lie
group [20, p. 115]. Therefore, G/Kx can be given a standard smooth
structure, which is the unique one that makes π : G → G/Kx a prin-
cipal bundle; Ox then inherits a smooth structure through the homeo-
morphism f in (4). We need to establish that this smooth structure of
Ox is the one induced from Y , i.e., that Ox is a regular submanifold of
Y . To this end, consider

π : G→ G/Kx

as a principal bundle with fiber Kx, and let

F : G→ Ox, F : g 7→ g · x.
8



Let s : G/Kx → G be a section of the principal bundle G. Then

f = f ◦ id = f ◦ π ◦ s = F ◦ s.

It follows that the homeomorphism f is in fact a smooth map into Y .
Let us check that f∗ is one-to-one at the origin ◦ := eKx ∈ G/Kx.
Suppose this is not the case; let v 6= 0 be such that f∗(v) = 0 at ◦.
Denote by Lg the left translation by g on both G/Kx and Ox. That is,

Lg(hKx) = (gh)Kx, Lg(h · x) = (gh) · x.

Then the fact that

f ◦ Lg = Lg ◦ f
implies that f∗ annihilates the vector field X := Lg ∗ (v). Let γ(t) be
the integral curve of X with γ(0) = ◦. We obtain f(γ(t)) ∈ Y is a
constant and so f(γ(t)) = x, which implies that f : G/Kx → Ox is
not one-to-one. This is a contradiction to f being a homeomorphism.
Hence, f is an immersion. The compactness of G then implies that f
is an embedding and Ox is a proper submanifold of Y . �

Remark 18. Ox need not be a regular submanifold of Y if G is not
compact. For instance, let T 2 be the torus R2/ ∼ obtained by modding
out the integral lattice. Denote a point in T 2 by [x, y] to indicate it is
the projection of (x, y) ∈ R2. Consider the action

R× T 2 → T 2, (t, [x, y]) 7→ [x+ t, y + τt],

for some irrational number τ . Each orbit of the action is dense in T 2

and so cannot be a regular submanifold.

Definition 19. A connected hypersurface M in a smooth manifold X is
called homogeneous if I(X,M), the group of isometries of X leaving
M invariant, acts transitively on M .

It is clear that for such a hypersurface, the principal curvatures of
its shape operator are everywhere constant, counting multiplicities.

Definition 20. A hypersurfaces in Rn, Sn or Hn, is called isopara-
metric if its principal curvatures are everywhere constant, counting
multiplicities.

Theorems 7 and 8 classify all isoparametric hypersurfaces in Rn and
Hn to be exactly the homogeneous hypersurfaces in these space forms.
What is interesting is then the spherical case.

Question 21. Classify all isoparametric hypersurfaces in spheres.
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We start with understanding the homogeneous ones. Let I(M) be
the group of isometries of M and let ι : I(Sn,M) → I(M) be the re-
striction map. Let I0(Sn,M) be the connected component of I(Sn,M)
and let G := ι(I0(Sn,M)).

Proposition 22. [37, II, p. 15] ι : I0(Sn,M)→ G is an isomorphism,
so that ι−1 : G ↪→ SO(n+ 1) is an effective representation (action) on
Rn+1 with M an orbit. Furthermore, M is compact, and so in particular
G is compact and hence is a Lie group.

Definition 23. An effective representation ρ : G ↪→ SO(n+ 1) acting
on Rn+1 is said to be of cohomogeneity r if the smallest codimension
of all orbits of ρ is r in Rn+1.

In particular, the representation ι above of a homogeneous hyper-
surface in Sn is of cohomogeneity 2.

Definition 24. Given an effective representation ρ : G ↪→ SO(n + 1)
of cohomogeneity r, then ρ is called maximal if there is no effective
representation ρ1 : G1 :↪→ SO(n + 1) of cohomogeneity r such that G
is a proper subgroup of G1 with ρ(g) = ρ1(g) for all g ∈ G.

Proposition 25. [37, p. 16]

(1) The effective representation ι : G ↪→ SO(n + 1) in Proposi-
tion 22 is a maximal effective representation of cohomogeneity
2.

(2) Let ρ : G ↪→ SO(n + 1) be a maximal effective representation
of cohomogeneity 2. Let M be a G-orbit of codimension 2 in
Rn+1. Then ρ(G) = I0(Sn,M).

(3) In particular, any maximal effective representation ρ : G ↪→
SO(n + 1) is obtained as the representation of a homogeneous
hypersurface in Sn, and

(4) Two homogeneous hypersurfaces M and N in Sn are equivalent,
i.e., N = f(M) for an f ∈ O(n+1), if and only if I0(Sn,M) '
I0(Sn, N) through the isomorphism g 7→ fgf−1.

Therefore, the classification of homogeneous hypersurfaces in Sn is
equivalent to first classifying maximal effective orthogonal representa-
tions ρ : G ↪→ SO(n+ 1) of cohomogeneity 2 and then classifying their
orbits of codimension 2. Hsiang and Lawson classified all maximal or-
thogonal representations in [21]. They are closely tied with what are
called the s-representations of symmetric spaces, which is what we will
look at next. We will return to Hsiang and Lawson’s work later.
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Definition 26. A Riemannian manifold M is called a symmetric space
if for any p ∈ M , there is an isometry sp of M that extends the local
geodesic symmetry at p.

Proposition 27. A Riemannian symmetric space is homogeneous and
complete.

Proof. By successive “reflections” of the form sp. �

Convention 28. Let M be a Riemannian symmetric space. Let G be
the identity component of the isometry group of M and let K be the
isotropy subgroup of G at a point ◦ of M , fixed once and for all, to be
called the origin of M . Then M = G/K. From now on we will assume
implicitly this setup when we mention a Riemannian symmetric space.

Note that K is compact [20, p. 204]. Moreover, if M is simply
connected, then K is also connected by the homotopy exact sequence

→ π1(M)→ π0(K)→ π0(G)→ π0(M)→ 0.

Note also that since G is part of the isometry group, G must act on
M effectively.

Definition 29. Let G/K be a Riemannian symmetric space, we define
the involution

σ : G→ G, σ(g) := s◦gs◦.

Proposition 30. Let M = G/K be a Riemannian symmetric space.
Let Gσ be the element of G left fixed by σ. Then

(Gσ)0 ⊂ K ⊂ Gσ,

where (Gσ)0 denotes the identity component of Gσ.

Proof. σ fixes K, because for k ∈ K, in a geodesic coordinate system,
s◦ sends k(x) to −k(x) = k(−x), while k sends s◦(x) = −x to k(−x),
so that s◦k(x) = ks◦(x). Thus, K ⊂ Gσ.

On the other hand, for a 1-parameter group exp(tX) ∈ (Gσ)0, we
have

s◦(exp(tX) · ◦) = exp(tX)(s◦(◦)) = exp(tX) · ◦,
so that exp(tX) · ◦ = ◦, which gives exp(tX) ∈ K. Hence (Gσ)0 ⊂
K. �

Proposition 31. Let G/K be a Riemannian symmetric space. Let G
and K be their Lie algebras. Then there is a decomposition

G = K ⊕M,

such that

[K,M] ⊂M, [M,M] ⊂ K, [K,K] ⊂ K,
11



called the Cartan decomposition of G.

Proof. By Proposition 30, the Lie algebra of Gσ is K. Therefore,

dσ : k ∈ K 7→ k ∈ K,
where dσ denotes the Jacobian map σ∗ at ◦. So, K is contained in the
eigenspace E+ of dσ with eigenvalue 1. Conversely, if X ∈ E+, then
σ(exp(tX)) is a 1-parameter subgroup of G whose tangent vector at
e is X. It follows that σ(exp(tX)) = exp(tX) since exp(tX) is also
a 1-parameter subgroup of G whose tangent vector at e is X, which
means exp(tX) ∈ (Gσ)0 ⊂ K. So, X ∈ K. That is, we have arrived at

E+ = K.
Since (dσ)2 = Id, We have

G = E+ ⊕ E−,
where E− denotes the eigenspace of dσ with eigenvalue −1. Set

M := E−.

We thus have G = K ⊕M.
Now,

dσ([K,M]) = [dσ(K), dσ(M)] = [K,−M] = −[K,M],

so that [K,M] ⊂ K. Likewise, we have the other two properties. (The
last property is also a consequence of K being a Lie algebra.) �

Proposition 32. Let G/K be a Riemannian symmetric space. Then
there is an inner product 〈·, ·〉 on G such that

〈[X, Y ], Z〉+ 〈Y, [X,Z]〉 = 0

for all X ∈ K and Y, Z ∈ G.

Proof. Let us first recall the adjoint map. For any Lie group G, consider
the map

τg : x ∈ G 7→ gxg−1 ∈ G.
The Jacobian map (τg)∗ at e is denoted by Ad(g) : G → G. The adjoint
map

Ad : G→ GL(G)

defines an action of G on G. We have the identity [20, p. 128]

(5) Ad(exp(X)) = eadX

for X ∈ G, where adX := [X, ·]. The intersection of the kernel of Ad
and the identity component G0 of G is the center of G0.
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Via the projection π : G→ G/K, π(e) = ◦, we identifyM at e with
the tangent space T◦ of G/K at ◦ by

(6) Y =
d

dt
|t=0 exp(tY ) ∈M 7→ Y◦ =

d

dt
|t=0 exp(tY ) · p ∈ T◦,

and so M inherits the inner product 〈·, ·〉M from T◦. We claim that
〈·, ·〉M is Ad(K)-invariant. Indeed, for k ∈ K and Y ∈M, we have

τk(exp(tY ))(◦) = k(exp(tY ) · ◦),

so that
d

dt
|t=0τk(exp(tY ))(◦) = dk(Y◦),

where dk denotes the Jacobian map (τk)∗ at ◦, which is an orthogonal
map as k is an isometry fixing ◦. However, by the definition of Ad

d

dt
|t=0τk(exp(tY )) = Ad(k)(Y ).

That is, via the identification (6), we have that Ad(k) : M → M is
orthogonal and so 〈·, ·〉M is Ad(K)-invariant.

Since Ad(K) ∈ GL(K) is compact, we can define an Ad(K)-invariant
inner product 〈·, ·〉K on K. Set

〈·, ·〉 := 〈·, ·〉K ⊕ 〈·, ·〉M.

〈·, ·〉 is Ad(K)-invariant. The proposition follows when we take the
derivative of

〈Ad(exp(tX)(Y )), Ad(exp(tX)(Z))〉 = 〈Y, Z〉

at t = 0. �

Definition 33. Let G be a Lie algebra. The symmetric bilinear form

B(X, Y ) = tr(adXadY )

is called the Killing form of G.

Proposition 34.

B([X, Y ], Z) +B(Y, [X,Z]) = 0

for all X, Y, Z ∈ G.

Proof. B(σ(X), σ(Y )) = B(X, Y ) for an automorphism of G. Observe
that Ad(exp(tX)) is an automorphism. �

Corollary 35. Let G/K be a Riemannian symmetric space. Then the
Killing form is negative-definitive on K.
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Proof. Choose an inner product < ·, · > on G as given in Proposition 32.
Then adX is skew-symmetric for X ∈ K. Write adX as a matrix (aij).
We have

B(X,X) = tr(adXadX) = −
∑
ij

(aij)
2 ≤ 0

with equality if and only if aij = 0 for all i, j, if and only if X ∈ Z,
the center of G, if and only if exp(X) lies in the center of G by (5), if
and only if exp(X) = e since the action of G is effective, if and only if
X = 0. �

We have derived enough motivation to give the following.

Definition 36. Let G be a connected Lie group and K a closed sub-
group of G. The pair (G,K) is called a Riemannian symmetric
pair if there is an involutive automorphism σ of G with the following
properties.

(i) (Gσ)0 ⊂ K ⊂ Gσ, where Gσ is the set of fixed points of σ and
(Gσ)0 is its identity component.

(ii) Ad(K) is compact, where Ad is the adjoint map of G.

Furthermore, the symmetric pair is called effective if K contains no
nontrivial normal subgroup of G.

The Lie algebra version of the above definition is the following.

Definition 37. An orthogonal symmetric Lie algebra is a pair
(G, θ) satisfying the following three properties.

(a) G is a Lie algebra over R.
(b) θ is an involutive automorphism of G.
(c) K, the set of fixed points of θ, is compactly embedded subalgebra

of G, i.e., Int(K) (see the remark below) is compact in GL(G).

If furthermore K∩Z = 0, where Z is the center of G, then the orthog-
onal symmetric pair is called effective.

Remark 38. Let G be a real Lie algebra. Then the Jacobi identity
implies

adXadY − adY adX = ad[X,Y ],

so that ad(G) form a Lie subalgebra of gl(G). The connected Lie sub-
group of GL(G) whose Lie algebra is ad(G) is denoted by Int(G), which
is generated by elements of the form eadX , X ∈ G. Now ad(K) is a Lie
subalgebra of ad(G) for a Lie subalgebra K of G. The connected Lie sub-
group of Int(G) whose Lie algebra is ad(K) is denoted by Int(K), which
is generated by elements of the form eadX , X ∈ K. This is compatible
with (5).
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A Riemannian symmetric space gives rise to an effective Riemannian
symmetric pair (G,K) as detailed above. Its associated orthogonal
symmetric algebra is (G, θ), where θ := dσ, the Jacobian map of σ at
◦. The converse is also true.

Theorem 39. Given a Riemannian symmetric pair (G,K) with its
associated symmetric algebra (G, θ) with θ = dσ. As in Proposition 32,
let us choose an inner product 〈·, ·〉 on M which is Ad(K)-invariant,
where M is the eigenspace of θ with eigenvalue −1. Identify M at
e ∈ G with the tangent space T◦ at ◦ := eK ∈ G/K, so that 〈·, ·〉 is the
inner product on T◦. Extend the inner product to a global one on G/K
by

〈(Lg)∗(X◦), (Lg)∗(Y◦)〉 = 〈X◦, Y◦〉;
here Lg(xK) := (gx)K is the left translation by g ∈ G. The Ad(K)-
invariance of 〈·, ·〉 warrants that 〈·, ·〉 is globally well-defined.

We define a “reflection” s◦ about ◦ on G/K by setting

s◦ : gK 7→ σ(g)K,

while for any p := gK ∈ G/K, we define a “reflection” about p by
setting

sp := Lgs◦(Lg)
−1.

Then sp preserves the inner product 〈·, ·〉 and turns (G/K, 〈·, ·〉) into a
Riemannian symmetric space, so that it is an isometry.

Proof. We show sp is an isometry. To see this, it suffices to look at s◦.
It is readily checked that

ds◦ = −Id,
where ds◦ denotes the Jacobian map of s◦ at ◦. Let p := gK. It is
straightforward to see

s◦Lg = Lσ(g)s◦.

Hence, for X = (Lg)∗(X◦), Y = (Lg)∗(Y◦) at Tp, we have

〈(s◦)∗(X), (s◦)∗(Y )〉
= 〈(Lσ(g))∗(s◦)∗(X◦), (Lσ(g))∗(s◦)∗(Y◦)〉
= 〈(s◦)∗(X◦), (s◦)∗(Y◦)〉 = 〈−X◦,−Y◦〉
= 〈X◦, Y◦〉.

Therefore, G/K is a Riemannian symmetric space. �

Remark 40. Note that G/K in Theorem 39 need not be an effective
Riemannian symmetric pair for the above construction to go through.
However, let N be the largest normal subgroup of G contained in K.
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Then (G/N,K/N) is an effective symmetric pair. The involutive auto-
morphism σ of G induces an automorphism on G/N in a natural way
since σ(N) = N .

Theorem 39 is the recipe by which we construct examples of Rie-
mannian symmetric spaces. Before we do that let us understand the
curvature of a Riemannian symmetric space.

Theorem 41. Let G/K be a Riemanian symmetric space. The curva-
ture at ◦ is given by

(7) R(X, Y )Z = −[[X, Y ], Z]

for X, Y, Z ∈M. Moreover, ∇R = 0.

Proof. We claim that if we let γ(t) be a geodesic emanating from ◦,
then ft := sγ(t/2)s◦ has the property that Y (t) := (ft)∗(Y◦) is a parallel
vector field along γ(t). To see this, let Z be the parallel vector field
along γ such that Z = Y◦ at t = 0. Since sγ(t/2) is an isometry,
W := (sγ(t/2))∗(Z) is a parallel vector field along γ, which is equal
to −Z at t/2. It follows that W = −Z everywhere. In particular,
(sγ(t/2))∗(Y◦) = −Z(t). That is, (ft)∗(Y◦) = Z(t), proving the claim.

Now it is easy to see that ft+s = ft ◦ fs. So ft is a 1-parameter
group of isometries; ft = exp(tX) for some X ∈ G. Consider the
automorphism σ : g 7→ s◦gs◦ of G. We find σ(ft) = f−t = (ft)

−1.
Taking derivative at t = 0, we see θ(X) = dσ(X) = −X, so that we
conclude X ∈M.

In conclusion, we have shown that the orbit of the 1-parameter group
exp(tX) through ◦, for X ∈ M, is a geodesic and (exp(tX))∗ parallel
translates any initial vector along the geodesic to form a parallel vector
field on it.
X ∈ M generates the right-invariant vector field X̃ on G which

projects to a Killing vector field X∗ on G/K. We claim that

AX∗(V ) := (∇VX
∗)(◦) = 0

for all V ∈M. To see this, consider the 2-parameter family of curves

c(t, s) = exp(tX) exp(sV ) · ◦.
c(0, s) is a geodesic by the preceding paragraph. X∗ restricted to c(0, s)
is ∂c/∂t(0, s). We have

(∇VX
∗)(◦) =

D

ds

∂c

∂t
(0, 0) =

D

dt

∂c

∂s
(0, 0) = 0

because c(t, 0) is a geodesic through ◦ and ∂c/∂s(t, 0) is exactly the
parallel transport of V along c(t, 0) by the preceding paragraph.
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As a consequence, for X, Y ∈M, the formula [23, I, p. 236]

R(X, Y )|◦ = [AX∗ , AY ∗ ]− A[X∗,Y ∗]

reduces the calculation of the curvature to

(∇V [X∗, Y ∗])(◦) = ∇V [X, Y ]∗(◦)

for V ∈M.
Note that [X, Y ] ∈ K. Since K fixes ◦, we see [X, Y ]∗ vanishes at ◦.

We replace X in c(t, s) by [X, Y ] so that now c(t, 0) = ◦ for all t. A
similar analysis as above shows that, in view of (5),

(∇V [X, Y ]∗)(◦) =
d

dt
|t=0 exp(t[X, Y ])∗(V ) = ad[X,Y ](V ) = [[X, Y ], V ].

Therefore,

R(X, Y )V = −[[X, Y ], V ].

Since ∇R is a tensor of type (1, 4) of odd degree, which is preserved
by ds◦ = −Id, it follows that ∇R = 0. �

Example 42. Let Rn+1 be equipped with the Lorentzian form

〈X, Y 〉 = −x0y0 + x1y1 + · · ·+ xnyn.

Let O(1, n) be the Lorentzian group that preserves the Lorentzian form

O(1, n) = {A ∈ GL(n+ 1,R) : AtrSA = S, S :=

(
−1 0
0 In

)
},

where In is the n by n identity matrix. Its Lie algebra is

o(1, n) := {M ∈ gl(n+ 1,R) : M trS + SM = 0}.

〈p, p〉 = −1 is a hyperboloid of two sheets. We choose the branch x0 ≥ 1
and call it Hn. The tangent space at p ∈ Hn is

Tp = {x ∈ Rn+1 : 〈p, x〉 = 0}.

Hn with the restriction of 〈·, ·〉 on it, which is positive-definitive, is the
n-dimensional non-Euclidean (hyperbolic) space.

Let G be the identity component of O(1, n), which acts transitively
on Hn. We find the isotropy subgroup of G at e0 to be

K = {
(

1 0
0 A

)
, A ∈ SO(n)}.

Then Hn = G/K. We define the involutive automorphism σ on G by

σ : Y 7→ SY S−1.
17



It is then seen that the fixed points of σ is exactly K. Therefore, Theo-
rem 39 gives that Hn is a symmetric space, whose Cartan decomposition
is

(8) o(1, n) = K ⊕M,

where

M := {
(

0 vtr

v 0

)
, v is a column vector ∈ Rn}.

The action of K on M is the adjoint representation(
0 vtr

v 0

)
7→
(

1 0
0 A

)(
0 vtr

v 0

)(
1 0
0 A

)−1

=

(
0 (Av)tr

Av 0

)
,

which is the standard orthogonal representation on Rn. The Killing
form is

B(X, Y ) = −(n− 1)tr(XY ).

The curvature tensor is, by (7),

R(X, Y ) = −X ∧ Y : Z 7→ 〈X,Z〉Y − 〈Y, Z〉X,
so that the sectional curvatures are all = −1.

Remark 43. With a slight modification, the setup in the preceding
example works for Sn as well. The only change is that we now have
a positive-definite inner product on Rn+1, S = Id in the definition of
O(1 + n), and −vtr is in place of vtr in the definition of M. The
involution σ is identical with the one for Hn. The Killing form and the
curvature are negative of those of Hn.

This is not accidental, as we will see a duality later.
See more examples in [23, II, pp. 264-289], especially, for the complex

Grassmann manifolds and the bounded symmetric domains, which are
dual to each other.

Definition 44. Let G be a real (or complex) Lie algebra and let B(X, Y )
be its Killing form. G is called semisimple if B(X, Y ) is nonde-
generate. A semisimple symmetric Lie algebra G is called compact
(noncompact) type if B|M is negative-definite (positive-definite) in
the Cartan decomposition G = K ⊕M.

For instance, the symmetric Lie algebra in (8) for Hn is of noncom-
pact type and is of compact type for Sn.

Theorem 45. [20, p. 231] Let (G,K, θ) be an effective orthogonal
symmetric Lie algebra. Then it is decomposed into the direct sum of
three effective orthogonal symmetric Lie algebras

(G,K, θ) = (G0,K0, θ0)⊕ (G+,K+, θ+)⊕ (G−,K−, θ−)
18



such that

(1) [M0,M0] = 0 in the Cartan decomposition G0 = K0⊕M0 (the
Euclidean type), and

(2) G+ (resp., G−) is semisimple of compact (resp., noncompact)
type, and [M+,M+] = K+ (resp., [M−,M−] = K−) in the
Cartan decomposition of G+ (resp., G−).

Proof. (Idea) Choose an inner product on G as given in Proposition 32,
with respect to which we diagonalize the Killing form restricted toM,

B = α1(x1)2 + · · ·+ αn(xn)2,

relative to an orthonormal basis E1, · · · , En. Set

M0 = spanαj=0 < Ej >, M+ = spanαj<0 < Ej >, M− = spanαj>0 < Ej >,

and set

K+ = [M+,M+], K− = [M−,M−], K0 = (K+ ⊕K−)⊥.

�

Theorem 46. Let (G,K, θ) be an orthogonal semisimple symmetric Lie
algebra. Then it can be decomposed into the direct sum

⊕kj=1(Gj ⊕ G ′j,Kj, θj)
⊕
⊕rj=k+1(Gj,Kj, θj),

where

G ′j = θ(Gj), θi = θ|Gj⊕G′j , Kj = {(X, θ(X)) ∈ Gj ⊕G ′j}, 1 ≤ j ≤ k,

and
θj = θ|Gj , Kj = Gj ∩ K, j ≥ k + 1.

Proof. (Idea) G is decomposed into simple ideals and θ permutes them.
Either an ideal is mapped to another one, then we group them into one
of the first k orthogonal symmetric Lie algebra, or the ideal is mapped
into itself, which belongs to the remaining symmetric Lie algebras in
the decomposition. �

Corollary 47. A fundamental building block of orthogonal semisimple
Lie algebras belongs to one the following two types.

(1) (G,K, θ), where G is simple and K is a compactly embedded
subalgebra of G (see Remark 38). The Killing form can be either
positive or negative definite on M.

(2) (G ⊕ G,∆G, θ), where G is simple of compact type,

K = ∆G = {(X,X) : X ∈ G}, θ(X, Y ) = (Y,X).

In both cases ad(K) acts irreducibly on M.
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Proof. For Item (1), choose an inner product 〈, 〉 as in Proposition 32.
Define T by

B(X, Y ) = 〈TX, Y 〉.
Then T has only one eigenvalue, because if Mi is the i-th eigenspace
of T , then [Mi,Mi] +Mi is an ideal of G, whose simplicity implies
Mi =M.

For Item (2),

B((X, Y ), (X, Y )) = B(X,X) +B(Y, Y )

for (X, Y ) ∈ G ⊕ G. However, since K = ∆(G ⊕ G) is a compactly
embedded subalgebra of G ⊕ G, Corollary 35 says that B is negative-
definite on K = ∆(G ⊕ G). That is

0 > B((X,X), (X,X)) = 2B(X,X).

Therefore, the Killing forms of G and G ⊕G are both negative-definite.
�

As a consequence, we obtain

Theorem 48. The irreducible orthogonal symmetric Lie algebras of
compact type are divided into the following two types.

Type I. (G,K, θ), where G is simple of compact type.
Type II. (G ⊕ G,∆G, θ), where G is simple of compact type.

Definition 49. Let (G,K, θ) be a symmetric Lie algebra with the Car-
tan decomposition G = K ⊕M. Let GC be the complexification of G:

GC := {X +
√
−1Y : X, Y ∈ G}.

Set
G∗ := K ⊕

√
−1M,

and
θ∗ = θC|G∗ ,

where
θC(X +

√
−1Y ) := θ(X) +

√
−1θ(Y ).

(G∗,K, θ∗) is called the dual of (G,K, θ).

Example 50. Hn is dual to Sn. In fact, the identification(
0 0
0 B

)
∈ o(n) 7→

(
0 0
0 B

)
∈ o(n) = K

√
−1

(
0 −vtr
v 0

)
∈
√
−1M 7→

(
0 vtr

v 0

)
∈M∗

from Sn to Hn is an symmetric Lie algebra isomorphism.
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The duality sets up a one-to-one correspondence between compact
and noncompact types. Therefore,

Theorem 51. The irreducible orthogonal symmetric Lie algebras of
noncompact type are divided into the following two types.

Type IV. (GC,G, θ), where G is simple of compact type.

θ : X +
√
−1Y 7→ X −

√
−1Y.

It is dual to Type II.
Type III. (G,K, θ), where G is simple of noncompact type and does not ad-

mit any compatible complex structure, i.e., any J : G → G, J2 =
−Id, such that

adJX = J ◦ adX = adX ◦ J.
It is dual to Type I.

Proof. We display the duality between Type II and Type IV:

(G ⊕ G)∗ = K ⊕
√
−1M→ GC

given by
(X,X)⊕

√
−1(Y,−Y ) 7→ X +

√
−1Y

is an isomorphism. �

Theorem 52. Let (G,K, σ) be a Riemannian symmetric pair such that
(G,K, θ) is irreducible.

(1) If (G,K, θ) is of Type I or II, then G/K is compact, Einstein
with nonnegative sectional curvatures and positive Ricci tensor.

(2) If (G,K, θ) is of Type III or IV, then G/K is diffeomorphic to a
Euclidean space, Einstein with nonpositive sectional curvature
and negative Ricci tensor.

Proof. The irreducibility of K onM implies by Schur’s lemma that the
Riemannian inner product is a constant multiple of the Killing form

〈·, ·〉 = aB(·, ·),
where a < 0 for compact type and a > 0 for noncompact type. By
Proposition 34 and (7), we conclude that the sectional curvatures are
given by

(9) 〈R(X, Y )Y,X〉 = aB([X, Y ], [X, Y ]).

Note that [X, Y ] ∈ K on which B is negative-definite by Proposition 35.
It follows that the sectional curvatures are ≥ 0 for compact type and
≤ 0 for noncompact type.

Schur’s lemma once more implies that the Ricci tensor is a multiple of
〈·, ·〉, so that the manifold is Einstein. If the Einstein constant is = 0,
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then the sectional curvatures will be identically zero, which implies
that the manifold is of Euclidean type (i.e., [M,M] = 0 by (9)), a
contradiction. So the Einstein constant is > 0 for compact type and
< 0 for noncompact type.

Lastly, that the noncompact type is diffeomorphic to Euclidean space
follows from a general fact [23, II, p. 105] that a connected homoge-
neous Riemannian manifold M with nonpositive sectional curvature
and negative-definite Ricci tensor is simply connected. �

Corollary 53. Let (G,K, σ) be an effective Riemannian symmetric
pair such that (G,K, θ) is irreducible of noncompact type. Then G has
trivial center and K is connected and is a maximal compact subgroup
of G. Any two maximal compact subgroups of G are conjugate.

Proof. (Sketch) The effectiveness of G/K means that G is contained in
the isometry group of G/K. By the preceding theorem G/K is homoge-
neous, has nonpositive sectional curvature and negative-definite Ricci
tensor and is simply connected, then the result follows by a general
theorem on transformation groups [23, II, p. 107, p. 112]. �

2.2. The classification of symmetric spaces. The classification of
irreducible symmetric spaces is made simpler by looking at the non-
compact type, because of Corollary 53 and the following two theorems.

Theorem 54. Simply connected irreducible Riemannian symmetric
spaces are in one-to-one correspondence with (isomorphic) effective ir-
reducible orthogonal symmetric Lie algebras (G,K, θ).

Proof. For the effective orthogonal symmetric Lie algebra, Let G̃ be the
simply connected Lie group whose Lie algebra is G. The involution θ
extends to a unique involutive automorphism σ̃ on G̃. Any subgroup K̃
satisfying (G̃)0

σ̃ ⊂ K̃ ⊂ G̃σ̃ makes M := G̃/K̃ a Riemannian symmetric
space. We mod out the maximal normal subgroup N of G̃ contained
in K̃. Then M := G/K, where G := G̃/N and K := K̃/N , is effective.
G is contained in the identity component G1 of the group of isometries
of M .

We claim that G = G1. The symmetry of M at the origin ◦ induces
an involutive automorphism of G1, which extends σ := σ̃|G of G. Let
K1 be the isotropy subgroup of G1 at ◦. Then M = G1/K1 and we
have two Cartan decompositions

G = K ⊕M, G1 = K1 ⊕M1

associated with M := G/K and M := G1/K1. But thenM =M1 and
so

K = [M,M] = [M1,M1] = K1.
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It follows that G = G1, and so G = G1. �

Theorem 55. Irreducible effective orthogonal symmetric Lie algebras
(G,K, θ) of noncompact type are in one-to-one correspondence with the
real simple Lie algebras of noncompact type.

Proof. (Sketch) Corollary 53 implies that there is at most one effective
orthogonal symmetric Lie algebra (G,K, θ) for each G.

To show the existence of such an orthogonal symmetric Lie algebra,
we consider GC, which is semisimple. Now we know GC has a compact
real form U [20, p. 181]. That is, U is a real Lie algebra such that
UC = GC and the Killing form on U is negative-definite. This immedi-
ately takes care of type IV, because (GC,U , θ), where θ is the complex
conjugation with respect to U is an irreducible effective orthogonal
symmetric Lie algebra.

For type III, again we are given (GC,U , θ); we denote by (G1, U, σ1)
an effective orthogonal symmetric pair assuming the symmetirc Lie
algebra. We denote by τ the complex conjugation of GC with respect
to G. τ is an involutive automorphism of GC (as a real Lie algebra),
which induces an involutive automorphism σ on the universal covering
group G̃1 of G1 and in turn it induces an involutive automorphism σ
on G1 (because G1 is the quotient group of G̃1 by its center). We know
there is a maximal compact subgroup K1 of G1 left invariant by σ by
a general theorem about the isometry group of a connected, simply
connected homogeneous space of nonpositive curvature [23, II, p. 112,
Theorem 9.4]; by Corollary 53, U is conjugate to K1 in G1, so that
the Lie algebra K1 of K1 is also a compact real form of GC. Let µ be
the complex conjugation of GC with respect to K1. Then (GC,K1, µ) is
an irreducible orthogonal symmetric Lie algebra of noncompact type.
Since K1 is left invariant by σ and G is left fixed by σ, we obtain

G = G ∩ K1 ⊕ G ∩
√
−1K1.

Let K := G ∩ K1. Then (G,K, µ) is an effective orthogonal symmetric
Lie algebra of noncompact type. �

Remark 56. [20, pp. 182-186] contains an intrinsic algebraic descrip-
tion of the geometric one given in the preceding theorem. It is shown
there that two compact forms U1 and U2 in a complex semisimple Lie
algebras GC are identical via an automorphism of GC; therefore, The-
orem 54 says that the simply connected Riemannian symmetric spaces
of Type I are in one-to-one correspondence with (U , θ), where U is a
simple Lie algebra of compact type and θ is (up to isomorphism) an
involutive automorphism of U . This will become clear by the classifi-
cation tables given below.
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Definition 57. Let (G,K, θ) be an effective orthogonal symmetric Lie
algebra. Then the rank of it is the maximum dimension of linear
abelian spaces of M, i.e., linear spaces V ⊂M for which [V, V ] = 0.

Theorem 58. (The Classification)
(1) [20, p. 439] The Riemannian symmetric spaces of Type II are

exactly the compact, connected simple Lie groups G with a bi-
invariant metric. They are also identified with G×G/∆(G×G).
The following are all the simply connected ones:

Type G Center Rank Dimension
An, n ≥ 1 SU(n+ 1) Zn+1 n n(n+ 2)
Bn, n ≥ 2 Spin(2n+ 1) Z2 n n(2n+ 1)
Cn, n ≥ 3 Sp(n) Z2 n n(2n+ 1)
Dn, n ≥ 4 Spin(2n) Z4, for n odd, or n n(2n− 1)

Z2 ⊕ Z2, forn even
G2 Z1 2 14
F4 Z1 4 52
E6 Z3 6 78
E7 Z2 7 133
E8 Z1 8 248

Modding out any subgroup of the center results in a simple Lie
group of Type II.

(2) [20, p. 516] The Riemannian symmetric spaces of Type IV
are G/U , where G is a connected group whose Lie algebra is
a complex simple Lie algebra G over C considered as a real
Lie algebra, and U is a maximal compact subgroup of G. The
following is the list:

G U Rank Dimension
SL(n+ 1,C) SU(n+ 1) n n(n+ 2)
SO(2n+ 1,C) SO(2n+ 1) n n(2n+ 1)
Sp(n,C) Sp(n) n n(2n+ 1)
SO(2n,C) SO(2n) n n(2n− 1)
GC

2 G2 2 14
FC

4 F4 4 52
EC

6 E6 6 78
EC

7 E7 7 133
EC

8 E8 8 248
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(3) The simply connected Riemannian symmetric spaces of Type I
are:

G U Rank Dimension
SU(n) SO(n) n− 1 (n− 1)(n+ 2)/2
SU(2n) Sp(n) n− 1 (n− 1)(2n+ 1)
SU(p+ q) S(Up × Uq) min(p, q) 2pq
SO(p+ q) SO(p)× SO(q) min(p, q) pq
SO(2n) U(n) [n/2] n(n− 1)
Sp(n) U(n) n n(n+ 1)
Sp(p+ q) Sp(p)× Sp(q) min(p, q) 4pq
G2 SO(4) 2 8
F4 (Sp(3)× Sp(1))/Z2 4 28
F4 Spin(9) 1 16
E6 Sp(4)/Z2 6 42
E6 (SU(6)× SU(2))/Z2 4 40
E6 (Spin(10)× SO(2))/Z4 2 32
E6 F4 2 26
E7 (E6 × SO(2))/Z3 3 54
E7 SU(8)/Z2 7 70
E7 (Spin(12)× SU(2))/Z2 4 64
E8 SO(16) 8 128
E8 (E7 × SU(2))/Z2 4 112

All G/K in the table are effective, and finitely cover all compact
symmetric spaces of Type I by the scheme given in [20, p. 327,
Corollary 9.3].
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(4) The Riemannian symmetric spaces of Type III are:

G U Rank Dimension
SL(n,R) SO(n) n− 1 (n− 1)(n+ 2)/2
SU∗(2n) Sp(n) n− 1 (n− 1)(2n+ 1)
SU(p, q) S(Up × Uq) min(p, q) 2pq
SO0(p, q) SO(p)× SO(q) min(p, q) pq
SO∗(2n) U(n) [n/2] n(n− 1)
Sp(n,R) U(n) n n(n+ 1)
Sp(p, q) Sp(p)× Sp(q) min(p, q) 4pq
G2(2) SO(4) 2 8
F4(4) (Sp(3)× Sp(1))/Z2 4 28
F4(−20) Spin(9) 1 16
E6(6) Sp(4)/Z2 6 42
E6(2) (SU(6)× SU(2))/Z2 4 40
E6(−14) (Spin(10)× SO(2))/Z4 2 32
E6(−26) F4 2 26
E7(−25) (E6 × SO(2))/Z3 3 54
E7(7) SU(8)/Z2 7 70
E7(−5) (Spin(12)× SU(2))/Z2 4 64
E8(8) SO(16) 8 128
E8(−24) (E7 × SU(2))/Z2 4 112

All G/K in the table are effective. Here, the −14 in E6(−14)
means

dim(M)− dim(K) = −14

in the Cartan decomposition, etc.

Article [47] gives an explicit construction of Type II and III excep-
tional symmetric spaces in the tables.

Remark 59. In view of Remark 56, one way to go about the clas-
sification is to first of all classify all compact simple Lie groups, or
equivalently, to classify all complex simple Lie algebras and find their
compact real forms, which are of Type II, An through E8, given in the
table. Then classify, up to isomorphism, all involutive automorphisms
of the compact real forms to come up with Type I given in the table.
The other two types are obtained by duality.

2.3. Root systems. The classification of (real or complex) simple Lie
algebras rests on understanding root systems of semisimple Lie alge-
bras. We will have a quick look at this concept.
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Let (G,K, θ) be an irreducible symmetric Lie algebra of noncompact
type. Let A ⊂ M be a maximum abelian subspace, i.e., a linear
subspace of maximum dimension in M satisfying [A,A] = 0; recall
the dimension of A is called the rank of the symmetric Lie algebra.
It is easy to see by the Jacobi identity that adH1 and adH2 commute,
for H1, H2 ∈ A, as operators of G. Since the Killing form is negative-
definite on K and positive-definite on M, the form

Bθ(Y, Z) := −B(Y, θ(Z))

is positive-definite and adH , H ∈ A, is symmetric with respect to Bθ,
so that adH , H ∈ A, can be simultaneously diagonalized.

Remark 60. We can also consider the compact type, where the inner
product is −B(X, Y ). But then adH is skew-symmetric with purely
imaginary eigenvalues, which, when multiplied by

√
−1, give us the

same setup as in the nonocompact type via duality.

For λ ∈ A∗, set

Gλ = {X ∈ G : [H,X] = λ(H)X, ∀H ∈ A}.
We have

[Gλ,Gµ] ⊂ Gλ+µ.

Definition 61. If λ 6= 0 and Gλ 6= 0, then λ is called a root of G with
respect to A, and Gλ is called a root space. The set of all roots, denoted
by Σ, is called the root system of G with respect to A. The dimension
of a root space is called its multiplicity.

Remark 62. If we conduct the root space decomposition with respect to
the compact type, then the decomposition is in GC. In fact, a symmetric
space of Type II, when regarded as a simple Lie group G with Lie algebra
G, has the property that a maximal abelian space in M is isomorphic
to a maximal abelian Lie subalgebra H in G, whose complexification is
called a Cartan subalgebra in GC.

The root space decomposition of GC with respect to H will be specif-
ically denoted by ∆ instead of Σ. The root space decomposition of GC
with respect to ∆ has particularly nice structures [20, p. 165-178]. For
instance, all roots have multiplicity 1.

On the other hand, when we regard a group as a symmetric space of
Type II, all roots of Σ have multiplicity 2, and vice versa [26, p. 78-85].

Remark 63. The inner product Bσ(Y, Z) naturally induces an inner
product < Y,Z > on A∗ by setting

λ(v) = Bθ(tλ, v)
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and set
< λ, τ >:= Bθ(tλ, tτ ).

We have
G = G0 ⊕

∑
λ∈Σ

Gλ.

Definition 64. Fix a v 6= 0 in A so that λ(v) 6= 0 for all λ ∈ Σ. We
say a root λ ∈ Σ is positive (negative) if λ(v) > 0 (< 0).

Theorem 65. ‘[20, p. 290] Σ satisfies

(1) Σ generates A∗,
(2) for each α ∈ A∗, the reflection Sα along α leaves Σ invariant,

where

Sα(β) = β − 2
< β, α >

< α, α >
α,

(3) aβα := 2<β,α>
<α,α>

∈ Z, and

(4) in fact the α-chain through β, i.e., β+nα, p ≤ n ≤ q, is unbro-
ken, and we have

aβα = −(p+ q).

Corollary 66. If β = mα for α, β ∈ Σ, then m = ±1
2
,±1,±2.

Proof. aβα = 2m ∈ Z and aαβ = 2/m ∈ Z. �

Definition 67. A finite set Σ ⊂ Rn is called a root system if it
satisfies items (1), (2), (3) in the preceding theorem. The root system
is called reduced if β = mα for α, β ∈ Σ implies m = ±1.

Remark 68. Referring to Remark 62, the root system ∆ of a simple
Lie algebra of compact type, is reduced. On the other hand, the root
system of a symmetric Lie algebra G of Type III need not have a reduced
root system.

Corollary 69. Let Σ be a root system. Let

Σ1 := {α ∈ Σ : α/2 /∈ Σ}, Σ2 := {α ∈ Σ : 2α /∈ Σ}.
Then Σ1 and Σ2 are reduced.

Definition 70. Let Σ ⊂ Rn be a root system. A subset B ⊂ Σ is called
a basis of Σ if

(1) B is a basis of Rn, and
(2) for β ∈ Σ, if β =

∑
α∈B nαα, then nα ≥ 0 or nα ≤ 0 for all

α ∈ B.

A positive root is called a simple root if it cannot be written as the
sum of two positive roots.
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Theorem 71. [20, p. 178, p.458]

(1) Every root system has a basis consisting of simple roots, and
(2) aβα ≤ 0 for any two simple roots.

Definition 72. A root system Σ is called irreducible if it cannot be
decomposed into two disjoint nonempty orthogonal subsets.
Proposition 73. [20, p. 458] A root system decomposes uniquely as
the union of irreducible root systems.

Theorem 74. (Classification of irreducible root systems) [20, p. 462]
Reduced case. (Here, ei are standard basis elements of a Euclidean
space.)

(1) An, n ≥ 1 : Σ = {ei − ej, 1 ≤ i 6= j ≤ n+ 1},
Simple roots: αi = ei − ei+1, 1 ≤ i ≤ n.

(2) Bn, n ≥ 1 : Σ = {±ei, 1 ≤ i ≤ n,±ei ± ej, 1 ≤ i 6= j ≤ n}
Simple roots: αi = ei − ei+1, 1 ≤ i ≤ n− 1, αn = en.

(3) Cn, n ≥ 1 : Σ = {±2ei, 1 ≤ i ≤ n,±ei ± ej, 1 ≤ i 6= j ≤ n},
Simple roots: αi = ei − ei+1, 1 ≤ i ≤ n− 1, αn = 2en.

(4) Dn, n ≥ 2 : Σ = {±ei ± ej, 1 ≤ i 6= j ≤ n},
Simple roots: αi = ei − ei+1, 1 ≤ i ≤ n− 1, αn = en−1 + en.

(5) G2 : Σ = {±(e2 − e3),±(e3 − e1),±(e1 − e2),±(2e1 − e2 −
e3),±(2e2 − e1 − e3),±(2e3 − e1 − e2)},
Simple roots: α1 = e1 − e2, α2 = −2e1 + e2 + e3.

(6) F4 : Σ = {±ei,±ei ± ej, i < j, (±e1 ± e2 ± e3 ± e4)/2},
Simple roots: α1 = e2 − e3, α2 = e3 − e4, α3 = e4, α4 = (e1 −
e2 − e3 − e4)/2.

(7) E8 : Σ = {±ei ± ej, i < j, (
∑8

i=1(−1)ni ei)/2,
∑8

i=1 ni even},
Simple roots: α1 = e1 + e2, α2 = (e1 − e2 − e3 − e4 − e5 − e6 −
e7 + e8)/2, αi+1 = ei − ei−1, 2 ≤ i ≤ 7.

(8)

E7 : Σ = { ± ei ± ej, 1 ≤ i < j ≤ 6,±(e7 − e8),

± (e7 − e8 +
6∑
i=1

(−1)ni ei)/2,
6∑
i=1

ni even},

Simple roots: α1 = e1 + e2, α2 = (e1 − e2 − e3 − e4 − e5 − e6 −
e7 + e8)/2, αi+1 = ei − ei−1, 2 ≤ i ≤ 6.

(9) E6 : Σ = { ± ei ± ej, 1 ≤ i < j ≤ 5,±(e8 − e7 − e6 +
5∑
i=1

(−1)ni ei)/2,
5∑
i=1

ni even},

Simple roots: α1 = e1 + e2, α2 = (e1 − e2 − e3 − e4 − e5 − e6 −
e7 + e8)/2, αi+1 = ei − ei−1, 2 ≤ i ≤ 5.
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Nonreduced case.
BCn, n ≥ 1 : Σ = {±ei±ej, 1 ≤ i < j ≤ n,±ei, 1 ≤ i ≤ n, ±2ei, 1 ≤

i ≤ n},
Simple roots: αi = ei − ei+1, 1 ≤ i ≤ n− 1, αn = en

Note that E8 restricts to E7 and E8. In fact, the R7 (vs. R6) spanned
by the first seven (vs. six) simple roots of E8 intersecting the root
system of E8 is the root system of E7 (vs. E6).

Example 75. (The root systems ∆ of the classical simple Lie algebras)
An = sl(n + 1,C). Cartan subalgebra (maximal abelian subalgebra) is

H := {x1e11 + · · ·+ xn+1en+1 n+1 : x1 + · · ·+ xn+1 = 0,

where eij is the matrix whose (i, j)-entry is 1 and is 0 elsewhere. Set
hi = eii. Let ω1, · · · , ωn+1 be the dual basis to h1, · · · , hn+1. The Killing
form is the standard inner product on H. For any h ∈ H,

adh : eij 7→ heij − eijh = (ωi − ωj)(h)eij, i 6= j.

Therefore, the root system of An+1 is

ωi − ωj, 1 ≤ i 6= j ≤ n.

Let

v := a1h1 + · · ·+ an+1hn+1, a1 > a2 > · · · > an+1 > 0.

λ is a positive root if λ(v) > 0. So, ωi − ωj, i > j, are positive roots,
with the simple roots given above.

Bn = so(2n + 1,C),n ≥ 1. It consists of (2n+ 1) by (2n+ 1) matrices
of the form A B E

C D F
G H 0

 ,

where A,B,C,D are of size n by n, B,C are skew-symmetric, (A,D), (E,H), (F,G)
are pairs whose components are negative transposes of each other. The
Cartan subalgebra H consists of matrices of the formX 0 0

0 −X 0
0 0 0

 , X = diag(x1, · · · , xn).

With hi := diag(eii,−en+i n+i) and ωi its dual, we calculate to see that
the eigenvectors of adh, h ∈ H, are

eij − en+j n+i, ei n+j − ej n+i, ei 2n+1 − e2n+1 n+1, i 6= j,

and the roots are

±ωi, 1 ≤ n, ±ωi ± ωj, i 6= j.
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Setting
v = a1h1 + · · · anhn, a1 > · · · > an > 0,

the positive roots are

ωi + ωj, ωi − ωj, ωi, i < j,

with the simple roots given above.

Cn = sp(n,C),n ≥ 1. It consists of matrices of the form(
A B
C D

)
,

where A,D are negative transposes of each other and B,C are symmet-
ric; all of them are of size n by n. The Cartan subalgebra H consists
of matrices of the form(

X 0
0 −X

)
, X = diag(x1, · · · , xn).

With hi := diag(eii,−en+i n+i) and ωi its dual, we calculate to see that
the eigenvectors are

ei n+j + ej n+i, en+i j − en+j i, eij − en+j n+i, i 6= j,

with roots ±ωi±ωj. Setting v = a1h1 + · · ·+anhn, a1 > · · · > an > 0,
the positive roots are

ωi + ωj, ωi − ωj, i < j,

with the simple roots given above.

Dn = so(2n,C),n ≥ 2. It consists of matrices of the form(
A B
C D

)
,

where A,D are negative transposes of each other and B,C are skew-
symmetric; all of them are of size n by n. The Cartan subalgebra
consists of matrices of the form(

X 0
0 −X

)
, X = diag(x1, · · · , xn).

With hi := diag(eii,−en+i n+i) and ωi its dual, we calculate to see that
the eigenvectors are

eij − en+j n+i, ei n+j − ej n+i, i 6= j,

with roots ±ωi ± ωj, i 6= j. Setting v = a1h1 + · · · + anhn, a1 > · · · >
an > 0, the positive roots are

ωi + ωj, ωi − ωj, i < j,

with the simple roots given above.
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Remark 76. The subscripts in An through E8 refer to the rank, or the
dimension of the maximal abelian space, of the symmetric space.

Dynkin Diagrams of Irreducible Root Systems
Let α1, · · · , αn be the simple roots marked by n circles. Connect

αi and αj by a line if aijaji 6= 0, where aβα is given in Theorem 65.
Assign aijaji-many arrowheads, pointing to the shorter root, to a line
if aijaji > 1, where the line is thickened for the purpose of distinction.
The Dykin diagrams for the irreducible root systems are:

Reduced Root Systems

An

Bn

Cn

Dn

G2

F4

E6

E7

E8
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Nonreduced Root Systems

BC1

BCn

(n ≥ 2. The two concentric circles mark the simple root α for which
2α is also a root.)

We can calculate by the defining relations in Theorem 74 to match
the Dynkin diagrams. Note that for the root systems E6, E7, and E8,
the singleton circle beneath the horizontal ones is α1 in Theorem 74.

Theorem 77. [20, p. 482] BCn is excluded from the root systems ∆
of compact simple Lie groups. Conversely, ∆ recovers its corresponding
simple Lie algebra.

In particular, a look at the Dynkin diagrams shows that there are
Lie algebra isomorphisms A1 ' B1 ' C1, i.e., sl(2,C) ' so(3,C) '
sp(1,C), B2 ' C2, i.e., so(5,C) ' sp(2,C), D2 ' A1 ⊕ A1, i.e.,
so(4,C) ' so(3,C) ⊕ so(3,C), and D3 ' A3, i.e., so(6,C) ' sl(4,C).
On the Lie group level, there exist the well known corresponding iso-
morphisms Spin(3) ' Sp(1), Spin(5) ' Sp(2), Spin(4) ' Spin(3) ×
Spin(3), and Spin(6) ' SU(4) [1].

Definition 78. Let Σ ⊂ Rn be a root system. The complement of the
hyperplanes fixed by the reflections sλ, λ ∈ Σ, are called Weyl cham-
bers, while the hyperplanes are called the chamber walls. Any vector
in a Weyl chamber (chamber wall) is called regular (singular). The
group W (Σ) generated by the reflections sλ, λ ∈ Σ, is called the Weyl
group associated with Σ.

Theorem 79. [20, p.288] The Weyl group acts simply transitively on
the set of Weyl chambers.

Now that we have the simple complex Lie algebras in hand, we can,
in view of Remark 59, find their compact real forms U , which are
given in the table for type II. So now we are given such a U with
the corresponding simply connected compact group U in the table. We
want to find all the involutive automorphisms σ of U up to equivalence.
These automorphisms will then give rise to all the Type I symmetric
spaces. There are two types of automorphisms: the inner and outer
ones. The inner automorphisms are Ad(g) for g ∈ U . The set Int(U)
of all inner automorphisms on U is a group isomorphic to U/Z, where
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Z is the center of U . The set of all automorphisms will be denoted by
Aut(G). Recall from Remark 62 the root systems are ∆.

Theorem 80. [26, II, p. 44, p. 90]

(1) An automorphism on U is inner if and only if it leaves a max-
imal torus pointwise fixed.

(2)

Aut(U)/Int(U) ' Aut(∆)/W (∆),

where Aut(∆) is group of isometries of the Euclidean space,
spanned by ∆, which leave ∆ invariant.

(3) Aut(∆)/W (∆) is isomorphic to the group of symmetries of the
Dynkin diagram. Therefore, we have the following table of the
order r of Aut(U)/Int(U).

(4)
U A1 An Bn Cn D4 Dn G2 F4 E6 E7 E8 BCn
r 1 2 1 1 6 2 1 1 2 1 1 1

With this theorem we can classify all the automorphisms for the
classical groups U . If the automorphism is inner, say, Ad(g) for some
g ∈ U , then g2 is in the center of U . We can then solve for all the g.
Except for D4, all the outer automorphisms are of the form σAd(g),
for some σ to be found, since r = 2. For details see [26, p. 101]. We
have the following.

Theorem 81. (1) There are, up to equivalence, three types of in-
volutive automorphisms of SU(n):
(a) Ad(Ipq), p+ q = n, 1 ≤ q ≤ [n/2], where

Ipq :=

(
−Ip 0

0 Iq

)
.

The automorphism is inner. The fixed point set is S(Up ×
Uq).

(b) τ , the complex conjugation and an outer automorphism.
The fixed point set is SO(n).

(c) τ ◦ Jq+1, where

Jk =

(
0 Ik
−Ik 0

)
,

and n = 2(q + 1). It is an outer automorphism. The fixed
point set is Sp(n).

(2) There is only one type of involutive automorphism of SO(2n+
1), which is Ad(Ipq), p+ q = 2n+ 1. It is inner. The fixed point
set is SO(p)× SO(q).
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(3) There are two types of involutive automorphisms, which are

τ, Ad(Ipq), p+ q = n, 1 ≤ q ≤ [n/2],

of Sp(n). Both are inner. The fixed point set of the former is
U(n) and is SO(p)× SO(q) of the latter.

(4) There are two types of involutive automorphisms of SO(2n),
which are

Ad(Ipq), p+ q = 2n, Ad(Jn).

The former is inner, with fixed point set SO(p) × SO(q), and
the latter is outer, with fixed point set U(n).

As a consequence, we obtain symmetric spaces of Type I associated
with the classical simple groups.

Remark 82. To handle the exceptional cases to come up with the re-
maining spaces of Type I, one needs to study more about the root sys-
tems ∆ and their Satake diagrams [26, p. 132], which determines the
involutions of ∆ [26, p. 135], and hence the involutive automorphisms,
of the simply connected compact U . One can read off from the Satake
diagrams the root space decomposition with respect to the root system
Σ of a symmetric space of Type I or III [26, p. 119, p. 145-146].
Specifically, a simply connected symmetric space of Type I is deter-
mined uniquely by its root system Σ and the root multiplicities. The
nonreduced root systems BCn occur in both the classical and exceptional
categories.

Lastly, the center of a compact simply connected simple Lie group,
given in the table for Type II, can be read off from the root system ∆, or
as a consequence, from the extended Dynkin diagram [26, p. 15, p. 96].
They can be calculated in a straightforward manner for the classical
groups.

To conclude, we record the important theorem.

Theorem 83. [20, p. 284, p. 289] Let (G,K, σ) be an irreducible
Riemannian symmetric space of noncompact type. Let

M := {k ∈ K : Ad(k)·v = v,∀v ∈ A}, M ′ := {k ∈ K : Ad(k)·A ⊂ A}.
Then M ′/M is the Weyl group.

Definition 84. An s-representation of rank r is the isotropy rep-
resentation of a connected, simply connected semisimple Riemannian
symmetric space of rank r. Here, if the symmetric space is decomposed
into its irreducible components, the rank is the sum of the ranks of the
components.
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An s-representation of rank 2 is either the isotropy representation of
two irreducible symmetric spaces of rank 1, or of an irreducible symmet-
ric space of rank 2. Note that R×M, where M is irreducible symmetric
of rank 1, is also of rank 2, although its isotropy representation is not
an s-representation.

In connection with classifying homogeneous hypersurfaces in Sn, we
are particularly interested in the isotropy representations of simply
connected symmetric spaces of rank 2, because of the theorem of Hsiang
and Lawson [21] on the classification of all maximal effective orthogonal
representations ρ : G ↪→ SO(n+ 1) of cohomogeneity 2:

Theorem 85. Up to equivalence, the maximal effective orthogonal rep-
resentations ρ : G ↪→ SO(n + 1) of cohomogeneity 2 are exactly the
isotropy representations of the simply connected noncompact symmet-
ric spaces of rank 2, i.e., the isotropy representations of

(1) R × Hn, where the principal orbits are spheres Sn−1 ⊂ Sn ⊂
Rn+1,

(2) Hp×Hq, where the principal orbits are Sp−1×Sq−1 ⊂ Sp+q−1 ⊂
Rp+q, and

(3) the noncompact irreducible symmetric spaces of rank 2, where
principal orbits are those of s-representations.

The principal orbits of the first two items are easy to visualize. In
Example 50 we have seen that the isotropy, or s-, representation of
O(1, n) is the standard orthogonal representation SO(n) on Rn, whose
typical principal orbit is the sphere Sn−1. The Euclidean factor in
item (1) acts trivially, so that a principal orbit of codimension 2 of
the isotropy representation is Sn−1 ⊂ Sn ⊂ Rn+1. In the same vein,
a typical principal orbit of the isotropy representation in item (2) is
Sp−1 × Sq−1 ⊂ Sp+q−1 ⊂ Rp+q.

Definition 86. Let M be an isoparametric hypersurface in Sn. The
number of principal curvatures of M is denoted by g.

In particular, we have g = 1 or 2 for the homogeneous spaces in the
first two items of Theorem 85. The isoparametric hypersurfaces with
g = 1 or 2, classified by Cartan, are exactly the ones in the first two
items.

Let us study item (3) in Theorem 85, where the principal orbits give
rise to all homogeneous isoparametric hypersurfaces with g ≥ 3 in the
sphere.

Let G/K be a noncompact irreducible symmetric space of rank 2
with the Cartan decomposition G = K ⊕M. Fix a v 6= 0 ∈ M. We
know [20, p. 247] there is a k ∈ K such that Ad(k) · v ∈ A, where
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A is the maximal abelian subspace of M. Therefore, we may assume
without loss of generality that v ∈ A.

Proposition 87. With the setup above, an orbit Ad(K) · v, where
v ∈ A, is principal, of codimension 2, if and only if v lies in a Weyl
chamber.

Proof. The isotropy subgroup L of Ad(K) leaving v fixed assumes the
Lie algebra

L := {X ∈ K : [X, v] = 0}.
We have the root space decomposition

(10) 0 = adh(Z) =
∑
λ∈Σ

λ(h)Zλ

with h ∈ A and Zλ ∈ Gλ, and so

G = N0 ⊕
∑
λ∈Σ

Gλ,

where N0 is the centralizer of A in G.
If v belongs to a Weyl chamber, then λ(v) 6= 0 for all λ ∈ Σ, so

that by (10) Xλ = 0 for all λ ∈ Σ. That is, X ∈ L if and only if
X ∈M0 := N0 ∩ K, the centralizer of A in K.

By [20, Lemma 3.6, p. 261], we knowM0 has the same codimension
in K as A in M. That is,

dim(Ad(K)/L) = dim(K)− dim(L) = dim(M)− dim(A).

In other words, the isotropy orbit is of codimension dim(A) = 2.
If v lies in a chamber wall, then by (10) X ∈ L if and only if

X ∈M0 ⊕
∑

λ,λ(v)6=0

(Gλ ∩ K).

Therefore, the codimension of the orbit of v is larger than 2. �

Corollary 88. The isotropy representation of an irreducible noncom-
pact symmetric space of rank 2 has only two singular orbits and a 1-
parameter family of diffeomorphic principal orbits of codimension 2
degenerating to the two singular orbits.

Proof. In the rank 2 case, a Weyl chamber is a sector of the plane of
angle measure π/3 for A2, π/4 for B2 and π/6 for G2. Let us say
θ0 < θ < θ0 + π/l, l = 3, 4, 6, defines the chamber. Then the preceding
proposition says that for any unit v assuming angle θ in the chamber,
its isotropic orbit is homogeneous (and hence isoparametric) of codi-
mension 2 and is diffeomorphic to Ad(K)/L. So we have a 1-parameter
family of diffeomorphic homogeneous isoparametric hypersurfaces. At
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the two chamber walls, that is, when v assumes the angle θ0 or θ0 +π/l,
the dimension of the orbit drops. Meanwhile, since the normalizer of A
serves as the Weyl group by Theorem 83, we see that the isotropic orbit
of v intersecting the chamber plane at some points v1 = v, v2, · · · , v2l,
one in each chamber. So the isotropic representation has only two sin-
gular orbits, even though there are 2g Weyl chambers. All other orbits
are principal of codimension 2. �

Proposition 89. With the same setup, Ad(k)(A) is the normal plane
to the principal orbit Ad(K)(v) at Ad(k)(v) for v ∈ A.

Proof. It suffices to check this at v, where the tangent space of the
orbit is

Tv = {[h, v] : h ∈ K}.
But then for w ∈ A, we have, since the inner product is proportional
to the Killing form,

〈w, [h, v]〉 = 〈[v, w], h〉 = 0.

�

Proposition 90. With the same setup, let w be a unit vector perpen-
dicular to v in A, and extend it to a global normal field on the principal
orbit Ad(K) · v, |v| = 1, in the unit sphere of M. The shape operator
Sw of the orbit at v satisfies that the eigenvalues are

−λ(w)/λ(v),

where λ are reduced positive roots such that λ/2 /∈ Σ. The eigenspace
associated with the above eigenvalue is

Eλ = Gλ ⊕ G−λ ⊕ G2λ ⊕ G−2λ.

In particular, g, the number of principal curvatures of the shape opera-
tor, is 3, 4, or 6. If we label the principal curvatures by λ1 > · · · > λg
and their multiplicities by m1, · · · ,mg, then mi = mi+2, where the sub-
scripts are modulo g. In particular, the multiplicities are all equal when
g = 3. Moreover, if we choose the angles

θi = (2i− 1)π/2g, i = 1, · · · , g,

to coordinatize the positive roots, then the principal curvatures are

λi = tan(θ − θi), −π/g < θ < π/g,

when v assumes the angle θ and w the angle θ + π/2.
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Proof. As mentioned in the preceding proposition, a vector X tangent
to the orbit is of the form

X = [k, v] = −
∑
λ∈Σ

λ(v)Xλ

for k ∈ K. Since

n = Ad(K) · w
is a normal vector field to the orbit, the shape operator is

S(X) := −dn(X) = −[X,w] =
∑
λ∈Σ

λ(w)Xλ.

Therefore, we obtain

−λ(v)S(Xλ) = λ(w)Xλ.

Since v is regular we have λ(v) 6= 0 for all λ ∈ Σ. It follows that

S(Xλ) = −λ(w)/λ(v)Xλ.

The principal curvatures of S are thus −λ(w)/λ(v), which is assumed
by ±λ,±2λ. It follows that the eigenspace Eλ with the principal curva-
ture −λ(w)/λ(v) is the desired one, where λ need only go through the
positive roots λ for which λ/2 /∈ Σ, which form a reduced root system.
The number of positive roots in the A2, B2, or G2 root system is 3, 4,
or 6, respectively, which is g.

We choose the angles θi = (2i− 1)π/2g to coordinatize the positive
roots. We see the Weyl group is generated by

(11) θ 7→ π/g − θ, θ 7→ θ + 2π/g.

By Theorem 83, the Weyl group preserves the principal curvatures and
their multiplicities. Hence, mi = mi+2 with index modulo g.

Lastly, since

v = (cos(θ), sin(θ)), w = (− sin(θ), cos(θ)), λi = (cos(θi), sin(θi)),

we calculate

−λi(w)/λi(v) = −〈w, λi〉/〈v, λi〉 = tan(θ − θi).

�

Let us now look at

F (θ) := sin(gθ), −π/2g < θ < π/2g.

It is left invariant by the two generators of the Weyl group in (11).
In fact, F (θ) is the restriction to the unit circle of the homogeneous
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polynomial of degree g

(12) FA :=

[(g−1)/2]∑
0

(
g

2i+ 1

)
(−1)ixg−(2i+1)y2i+1

defined by the maximal abelian space A. FA is left invariant by the
Weyl group.
Theorem 91. [23, p. 299] The space of homogeneous polynomials on
M left invariant by Ad(K) is isomorphic to the space of homogeneous
polynomials on A left invariant by the Weyl group.

This theorem is called Chevalley Restriction Theorem. In [23], the
proof is given for a compact Lie group, or for a symmetric space of
Type II. But the proof there can be modified easily to arrive at the
preceding theorem in view of Theorem 83.
Theorem 92. [14] The space of homogeneous polynomials on a max-
imal abelain space A of dimension r left invariant by the Weyl group
is generated by r algebraically independent polynomials.

Since r = 2 in our case and we have found two generators, namely,
x2 +y2 and FA on A, the space of homogeneous polynomials left invari-
ant by Ad(K) onM of dimension n is thus generated by (x1)2 + · · ·+
(xn)2 and a homogeneous polynomial F of degree g whose restriction
to the circle is FA.
F , homogeneous of degree g, thus leaves each isotopic orbit invariant.

Therefore, we conclude the following.

Theorem 93. There is a homogeneous polynomial F of degree g, called
Cartan polynomial, for g = 3, 4, 6, on M, whose restriction f to the
unit sphere of M satisfies the property that its range is [−1, 1]. For
each c ∈ (−1, 1), f−1(c) is a homogeneous (isoparametric) hypersurface
degenerating to two singular submanifolds f−1(±1). The statement is
clearly true when g = 1 or 2. All homogeneous hypersurfaces in spheres
are constructed this way.

We remark that for g = 1 in the preceding theorem, the polynomial
is F = xn+1 over Rn+1, while for g = 2 the polynomial is F = (x1)2 +
· · ·+ (xr)

2 − (xr+1)2 − · · · − (xr+s)
2 over Rr+s.

Example 94. We find F in the case g = 3 when the symmetric space
is SU(3)/SO(3) of Type I and rank 2.

Let M be the space of 5-dimensional 3 by 3 real traceless symmetric
matrices. The Cartan decomposition is

su(3) = so(3)⊕
√
−1M, K = so(3).
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M is equipped with the inner product

< Y, Y >:= tr(Y Y ) = α2 + β2 + γ2 + x2 + y2 + z2,

which is a multiple of the Killing form of su(3) restricted to M, where
we write

Y :=

 α x/
√

2 y/
√

2

x/
√

2 β z/
√

2

y/
√

2 z/
√

2 γ

 , α + β + γ = 0.

The isotropic action is the adjoint action

Ad(T ) : V ∈M 7→ TV T−1 ∈M, T ∈ SO(3).

The diagonal block ofM is the maximal abelian subspace A ofM. The
three positive roots are

α1 :=

1 0 0
0 −1 0
0 0 0

 /
√

2, α2 :=

0 0 0
0 1 0
0 0 −1

 /
√

2, α3 :=

1 0 0
0 0 0
0 0 −1

 /
√

2,

where α1 and α2 are simple roots. We choose the unit angle bisector
as the standard basis element

e1 := (2α1 + α2)/
√

6,

and
e2 := α2.

Then e1, e2 form an orthonormal basis of A, so that an element in M
relative to e1, e2 is

X := ae1 + be2 =

2a/
√

6 0 0

0 b/
√

2− a/
√

6 0

0 0 −b/
√

2− a/
√

6

 ,

and the Y above is

Y :=

2a/
√

6 x/
√

2 y/
√

2

x/
√

2 b/
√

2− a/
√

6 z/
√

2

y/
√

2 z/
√

2 −b/
√

2− a/
√

6

 .

Now it is clear that det(Y ) is Ad(SO(3))-invariant. We calculate

det(X) =
1

3
√

6
(a3 − 3ab2) =

1

3
√

6
FA,

where FA is given in (12), when we set

a = cos(π/6− θ), b = sin(π/6− θ), −π/6 < θ < π/6.

It follows that

F := 3
√

6 det(Y )
41



restricts to FA and so F is the Cartan polynomial given in Theorem 93.
A calculation shows F is exactly the polynomial given in (3) by Cartan
in the case when F is R.

Note that f , the restriction of F to the unit sphere, has range [−1, 1]
and f−1(±1) are the two singular submanifolds, both being the projec-
tive plane. To see this, we set θ = ±π/6. Then, respectively,

X =

2/
√

6 0 0

0 −1/
√

6 0

0 0 −1/
√

6

 ,

1/
√

6 0 0

0 1/
√

6 0

0 0 −2/
√

6

 .

Let us find the isotropy group L of the isotropy action on X, where L
consists of all T ∈ SO(3) commuting with X. We see L is in diagonal
block form. Hence,

L ' S(O(1)×O(2)),

so that the singular orbits are

Ad(SO(3))/L = SO(3)/S(O(1)×O(2)) = RP 2.

Remark 95. A look at the tables for the symmetric spaces of rank 2 of
Types I and II shows that there are four such spaces with g = 3, which
are

SU(3)/SO(3), SU(3)×SU(3)/∆(SU(3)×SU(3)), SU(6)/Sp(3), E6/F4,

whose Cartan polynomials of their isotropic orbits are the ones given
in (3).

As in the SU(3)/SO(3) case, the singular orbits of the other three ex-
amples are, respectively, the complex, quaternionic and octonion projec-
tive planes. The principal orbits are tubes around the projective planes.

The following table is the collection of all symmetric spaces G/K
of Types I and II whose isotropy representations give homogeneous
(isoparametric) hypersurfacs M . There are at most two multiplicities
(m1,m2),m1 ≤ m2, for the g principal curvatures.
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G K dimM g (m1,m2)
S1 × SO(n+ 1) SO(n) n 1 (1, 1)
SO(p+ 1)× SO(n+ 1− p) SO(p)× SO(n− p) n 2 (p, n− p)
SU(3) SO(3) 3 3 (1, 1)
SU(3)× SU(3) SU(3) 6 3 (2, 2)
SU(6) Sp(3) 12 3 (4, 4)
E6 F4 24 3 (8, 8)
SO(5)× SO(5) SO(5) 8 4 (2, 2)
SO(10) U(5) 18 4 (4, 5)
SO(m+ 2),m ≥ 3 SO(m)× SO(2) 2m− 2 4 (1,m− 2)
SU(m+ 2),m ≥ 2 S(U(m)× U(2)) 4m− 2 4 (2, 2m− 2)
Sp(m+ 2),m ≥ 2 Sp(m)× Sp(2) 8m− 2 4 (4, 4m− 5)
E6 (Spin(10)× SO(2))/Z4 30 4 (6, 9)
G2 SO(4) 6 6 (1, 1)
G2 ×G2 G2 12 6 (2, 2)

3. Development in the early 1970s, the general case

Münzner [33] in 1973 proved a remarkable result that extended Car-
tan’s investigation, recorded in Theorem 11, in a far-reaching manner:

Theorem 96. (Münzner’s structure theory on isoparametric hyper-
surfaces) Let M be any isoparametric hypersurfaces with g principal
curvatures in Sn. Then we have the following.

(1) There is a homogeneous polynomial F , called Cartan-Münzner
polynomial, of degree g over Rn satisfying

|∇F |2 = g2r2g−2, ∆F =
m− −m+

2
g2rg−2,

where r is the radial function over Rn+1.
(2) Let f := F |Sn. Then the range of f is [−1, 1]. The only critical

values of f are ±1. Moreover, M± := f−1(±1) are connected
submanifolds of codimension m±+1 in Sn, called focal subman-
ifolds, whose principal curvatures are cot(kπ/g), 1 ≤ k ≤ g− 1.

(3) For any c ∈ (−1, 1), f−1(c) is an isoparametric hypersurface
with at most two multiplicities m± associated with the principal
curvatures. In fact, if we order the principal curvatures λ1 >
· · · > λg with multiplicities m1, · · · ,mg, then mi = mi+2 with
index modulo g; in particular, all multiplicities are equal when g
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is odd, and when g is even, there are at most two multiplicities
precisely equal to m±.

(4) Each of the 1-parameter isoparametric hypersurfaces is a tube
around the two focal submanifolds, so that Sn is obtained by
gluing two disk bundles over M± along the isoparametric hy-
persurface M0 := f−1(0). As a consequence, algebraic topology
implies that the only possible values of g are 1, 2, 3, 4, or 6.

Indeed, starting from an isoparametric hypersurface

x : M ↪→ Sn

whose principal curvatures are set to be

λj = cot(θj), 0 < θ1 < · · · < θg < π,

with respect to the outward normal field n. Let us consider the parallel
transport of M

(13) xt := cos(t)x+ sin(t)n,

which is the counterpart to the Euclidean parallel transport along the
normal direction. A priori, Mt := xt(M) is an embedding for small t.
Since

nt := − sin(t)x+ cos(t)n

is normal to Mt, a straightforward calculation derives that the principal
curvatures of Mt, with respect to the chosen normal field nt, are

λj(t) = cot(θj − t)(14)

with the same eigenspace and multiplicity as λj. On the other hand,
for a fixed l, the eigenspace of λl from point to point defines an inte-
grable distribution, called the l-th curvature distribution, on M with
spheres of radius | sin(θl)| as leaves. This can be directly checked by
differentiating

fl(x) := x+ vl(x)/|vl(x)|2, vl(x) := −x+ cot(θl)n,

to see that fl(x) is a constant cl on the l-th curvature leaf through x;
we have

(15) cl = cos(θl)(cos(θl)x+ sin(θl)n),

i.e., the unit vector along cl assumes the angle θl on the unit circle
spanned by x and n. Now that the curvature leaf through x is a sphere
of radius | sin(θl)| centered at cl, the antipodal point to x on this leaf
is the reflection map φl about cl:

φl(x) := x+ 2vl(x)/|vl(x)|2 = cos(2θl)x+ sin(2θl)n;
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that is, φ(x) is the point of reflection of x about the line spanned by
cl on the (x, n)-plane. Therefore, by (14), the principal values of M at
φl(x) are

(16) − cot(θj − 2θl),

where j varies, with the same eigenspaces and multiplicities as x. Note
that the sign in (16) differs from that in (14), because the circle xt
leaves M at x and enters M at φ(x), so that n2θ at φ(x) is negative of
the chosen outward normal field n of M at φ(x). Since M has constant
principal values, counting multiplicities, we conclude that the following
sets

(17) {cot(θj)}, {cot(2θl − θj)}
are identical for all j, l, and two numbers, one from each set, having
the same index j have the same principal multiplicity mj, regardless of
what l is.

Now (17) means that the lines Lj spanned by cj on the (x, n)-plane,
all through the origin, satisfies the property that the reflection of Lj
about any Ll is another Lk. It follows that these lines Lj, 1 ≤ j ≤ g,
are equally spaced in the (x, n)-plane so that

θj = (j − 1)π/g + θ1.

Thus the reflections about the lines Lj results in mi = mi+2 with index
modulo g. Accordingly, we denote m1 and m2 by m+ and m−, respec-
tively. (This is reminiscent of a root system and its Weyl chambers.)

Having done so, Münzner went on to construct a local isoparametric
function, which is nothing but an appropriate distance function, in a
neighborhood of M as follows. Any p in a tubular neighborhood U of
M can be written uniquely as

p = cos(t)x+ sin(t)n

for some small t. Define

τ(p) := θ1 − t, V (p) = cos(gτ(p)).

Extend V (p) to a neighborhood of M in the ambient Euclidean space
by defining

F (rp) = rgV (p),

where r is the Euclidean radial function. Münzner then verified the
following.

Theorem 97. F is in fact a homogeneous polynomial of degree g sat-
isfying

|∇F |2 = g2r2g−2, ∆F = g2m− −m+

2
.
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Proof. (Sketch) Define

G := F − arg,
where

a :=
g

g + n− 1

m− −m+

2
.

Then verify that

∆G = 0.

In general, it is true that for a harmonic function G over Rn+1, we have

(18) ∆g|∇G|2 =
∑

(∂g+1G/∂xi1 · · · ∂xig+1)
2.

On the other hand, for the G involved a calculation gives

|∇G|2 = g2r2g−2(1 + a2)− 2ag2rg−2F.

We therefore find

∆g−1|∇G|2 = c

with c an appropriate constant. F is thus a homogeneous polynomial
by (18). �

Now that F is globally analytic over Rn+1, we set f := F |Sn . A
calculation by the formulae

|∇F |2 = (
∂F

∂r
)2 + |∇f |2, ∆f = ∆F − ∂2F

∂r2
− n∂F

∂r

derives, by Theorem 97, that

|∇f |2 = A(f), ∆f = B(f),

where

A(f) = g2(1− f 2), B(f) = −g(n+ g − 1)f +
m− −m+

2
g2.

So, f is an isoparametric function on Sn. Note that A(f) = 0 only at
f = ±1, so that the range of f is [−1, 1] and ±1 are the only critical
values. Let M± := f−1(±1) be the singular set. Sn \ (M+ ∪M−) is
open and dense and is diffeomorphic to Mc × (−1, 1) for any fixed c,
where Mc := f−1(c) for c ∈ (−1, 1).

A priori, Mc need not be connected. We claim that this is not the
case. Define

d : M × (0, π/g)→ Sn, d(x, τ) = cos(θ1 − τ)x+ sin(θ1 − τ)n.

Then

f(d(x, τ)) = cos(gτ)
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by the analytic nature of f , since f |U = V and the identity is true on
U . That is, M is contained in Mc, where c = cos(gθ1). But then the
map

(19) dc : Mc× (0, π/g)→ Sn, dc(x, τ) = cos(θ1− τ)x+ sin(θ1− τ)n

also satisfies f(dc(x, τ)) = cos(gτ) and

dc : Mc × (0, π/g)→ Sn \ (M+ ∪M−)

is a diffeomorphism. From this we see that the map

g := Mc → Sn, x 7→ cos(θ1)x+ sin(θ1)n

maps Mc to M+. Observe that g(x) = c1 for any curvature leaf through
x whose tangent space is the eigenspace with principal value cot(θ1),
where cl is defined in (15), remarking that c1 is the center of the spher-
ical leaf, and vice versa. We see that g : Mc → M+ is a sphere bundle
whose fiber is a curvature leaf diffeomorphic to Sm+ . Meanwhile, it is
easy to check that dg has kernel dimension m+; at x, the derivative dg
preserves eigenspaces of all principal values other than that of cot(θ1).
Therefor, M+ is a manifold of dimension dim(M) − m+, which is of
codimension at least 2 in Sn. Likewise, the codimension of M− is at
least 2 in Sn.

Returning to the map (19), we see now Sn \ (M+∪M−) is connected
as M+ and M− are of codimension at least 2 in Sn. Therefore, that
dc is a diffeomorphism ensures that Mc is connected, for all c. As a
consequence, M± are also connected via the map g.

Lastly, since g = xθ1 defined in (13), we see by (14) that the principal
values of M+, in any normal direction, are

cot(θj − θ1) = cot((j − 1)π/g), 2 ≤ j ≤ g.

This also holds true for M−.

Corollary 98. M± are minimal submanifolds of Sn. The minimality
condition is exactly equation (1), the fundamental formula of Segre and
Cartan.

Proof. By the preceding formula, the mean curvature of M+ in any
normal direction is

g−1∑
j=1

cot(jπ/g) = 0,

which is exactly the fundamental formula by Remark 9. �

Corollary 99. There is a unique minimal isoparametric hypersurface
in the 1-parameter family Mt.
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Proof. By (14), the mean curvature of Mt is

H :=

g∑
j=1

cot(θj − t)

for t ∈ (0, π/g). H is strictly increasing as the derivative is > 0. Near
t = θ1 < π/g the function is > 0 whereas near θ = π/g − θ1 > 0 the
function is < 0. Therefore, there is a unique t ∈ (0, π/g) at which
H = 0. �

Now that Sn is obtained by gluing two disk bundles over the focal
submanifolds M± along an isoparametric hypersurface M , Münzner
used algebraic topology to express the cohomology ring of M , with Z2

coefficients, as modules of those of M±, whose module structures then
give g = 1, 2, 3, 4, or 6.

Based on Münzner’s work, Ozeki and Takeuchi [37, I] constructed
two classes, each with infinitely many members, of inhomogeneous
isoparametric hypersurfaces with g = 4. They also classified all isopara-
metric hypersurfaces with g = 4 when one of the multiplicities m± is
2, which are all homogeneous [37, II].

An important ingredient in their work is their expansion formula of
the Cartan-Münzner polynomial:

F (tx+ y + w) = t4 + (2|y|2 − 6|w|2)t2 + 8(

m+∑
a=0

pawa)t

+ |y|4 − 6|y|2|w|2 + |w|4 − 2

m+∑
a=0

(pa)
2 + 8

m+∑
a=0

qawa

+ 2

m+∑
a,b=0

〈∇pa,∇pb〉wawb.

Here, x is a point on M+, y is tangent to M+ at x, and w is normal to
M+ with coordinates wi with respect to the chosen orthonormal nor-
mal basis n0,n1, · · · ,nm+ at x. Moreover, pa(y) (resp., qa(y)) is the
a-th component of the 2nd (resp., 3rd) fundamental form of M+ at x.
Furthermore, pa and qa are subject to ten convoluted equations [37, I,
pp 529-530], of which the first three assert that, since Sn, the 2nd fun-
damental matrix of M+ in any unit normal direction n, has eigenvalues
1,−1, 0 with fixed multiplicities, it must be that (Sn)3 = Sn.

48



The expansion formula coupled with the ten identities are funda-
mentally important for the classification of isoparametric hypersurfaces
with g = 4 [9], [10], [11].

4. Development in the 1980s

The multiplicities of the principal values for g = 4 and g = 6 had
remained undetermined until Arbresch [2] extended Münzner’s work
to show by algebraic topology that for g = 6 we have m+ = m− = 1
or 2. This is in agreement with the multiplicities of the homogeneous
examples. Although he derived some constraints in the case g = 4,
among which we have, for instance, m+ = m− implies m+ = m− = 1
or 2, etc., the case remained open.

Meanwhile, Ferus, Karcher and Münzner generalized the inhomo-
geneous examples of Ozeki and Takeuchi to construct infinitely many
classes, each with infinitely many members, of inhomogeneous isopara-
metric hypersurfaces with g = 4. Their construction can be best moti-
vated by the example in Nomizu’s paper [34] mentioned earlier:

Consider Ck = Rk ⊕ Rk and write z ∈ Ck as z = x +
√
−1y accord-

ingly. Define an homogeneous polynomial of degree 4 on Ck by

F̃ = (|x|2 − |y|2) + 4(〈x, y〉)2.

Then F is an isoparametric function with multiplicities {1, k − 2}. In
fact, the isoparametric hypersurfaces are the principal isotropy orbits
of the symmetric spaces SO(k + 2)/S(2)× SO(k).

Note that f̃ = F̃ |S2k−1 has range [0, 1]. So we normalize it by defining

f := 1− 2f̃ , or rather, by setting

F := (|x|2 + |y|2)2 − 2F̃ .

F is an isoparametric function such that f has range [−1, 1]. Let us
set

P0 :=

(
I 0
0 −I

)
, P1 :=

(
0 I
I 0

)
, u := (x, y)tr,

where I is the k by k identity matrix. Then F can be rewritten as

F = |u|4 − 2
1∑
i=0

〈Piu, u〉2, PiPj + PjPi = 2δijI.

Ferus, Karcher and Münzner’s construction is a generalization of this.

Definition 100. The skew-symmetric (resp., symmetric) Clifford al-
gebra Cn (resp., C ′n) over R is the algebra generated by the standard
basis e1, · · · , en of Rn subject to the only constraint

eiej + ejei = −2δijI (resp., eiej + ejei = 2δijI).
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The classification of the Clifford algebras are known [22]:

n 1 2 3 4 5 6 7 8
Cn C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)
δn 1 2 4 4 8 8 8 8
C ′n R⊕ R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)
θn 2 4 8 8 16 16 16 16

Here, δn is the dimension of an irreducible module of Cn−1, and θn is
the dimension of an irreducible module of C ′n+1. Moreover, Cn (resp.,
C ′n) is subject to the periodicity condition Cn+8 = Cn ⊗ R(16) (resp.,
C ′n+8 = C ′n ⊗ R(16)). The generators e1, · · · , en acting on each irre-
ducible module of either Cn or C ′n in the table give rise to n skew-
symmetric or symmetric orthogonal matrices T1, · · · , Tn satisfying

TiTj + TjTi = ±2δijI,

a representation of Cn or C ′n on the irreducible module. Note that we
have

θn = 2δn.

This is not fortuitous. It says that we can construct symmetric rep-
resentations of C ′m+1 from skew-symmetric representations of Cm−1,
and vice versa. Indeed, let us be given k irreducible representations
V1, · · · , Vk of Cm−1. Set

V := V1 ⊕+ · · · ⊕ Vk ' Rl, l = kδm.

The representations of e1, · · · , em−1 on V1, · · · , Vk give rise to m − 1
skew-symmetric orthogonal matrices E1, · · · , Em−1 on V . Set

P0 :=

(
I 0
0 −I

)
, P1 :=

(
0 I
I 0

)
, P1+i =

(
0 Ei
−Ei 0

)
, 1 ≤ i ≤ m−1.

Then

PiPj + PjPi = 2δijI.

P0, · · · , Pm give a representation of C ′m+1 on R2l.
Ferus, Karcher and Münzner’s examples, referred to as of OT-FKM

type, are

F := 2|u|4 − 2
m∑
i=0

(〈Piu, u〉)2, u ∈ R2l, l = kδm.

Note that we recover Nomizu’s example when m = 1.
By a straightforward calculation, we conclude [17]
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Proposition 101. The two multiplicities m± of the associated isopara-
metric hypersurface are

(m, kδm −m− 1),

where m, k ∈ N to make the second entry positive.

We have the following table for the multiplicity pair (m, kδm−m−1).

δm = 1 2 4 4 8 8 8 8 16 · · ·
k = 1 – – – – (5, 2) (6, 1) – – (9, 6) · · ·
k = 2 – (2, 1) (3, 4) (4, 3) (5, 10) (6, 9) (7, 8) (8, 7) (9, 22) · · ·
k = 3 (1, 1) (2, 3) (3, 8) (4, 7) (5, 18) (6, 17) (7, 16) (8, 15) (9, 38) · · ·
k = 4 (1, 2) (2, 5) (3, 12) (4, 11) (5, 26) (6, 25) (7, 24) (8, 23) (9, 54) · · ·
k = 5 (1, 3) (2, 7) (3, 16) (4, 15) (5, 34) (6, 33) (7, 32) (8, 31) (9, 70) · · ·

...
...

...
...

...
...

...
...

...
...

...

Among other things, Ferus, Karcher and Münzner established

Theorem 102. (1) OT-FKM type with multiplicities on the first,
second, fourth columns, (4, 3) and (9, 6) are exactly the homo-
geneous examples, except for the two with multiplicities {2, 2}
and {4, 5} not on the list.

(2) OT-FKM type with multiplicities on the third and seventh columns
are exactly the inhomogeneous examples constructed by Ozeki
and Takeuchi.

So, except for the first, second and fourth columns, we have infin-
itely many families, each with infinitely many members, of inhomoge-
neous isoparametric hypersurfaces with four principal curvatures. Note
that we also have the fact that OT-FKM type with multiplicities (1, l)
or (2, l) is congruent to the one with multiplicities (l, 1) or (l, 2) [17,
6.5]. Note also that Cartan classified the cases when the multiplic-
ities are {1, 1} and {2, 2}, both being homogeneous as mentioned in
Theorem 11.

Wang [46] investigated the topology of OT-FKM type by K-theory
and showed that there are many pairs of minimal isoparametric hyper-
surfaces in spheres, of identical constant scalar curvature, which are
diffeomorphic but noncongruent to each other. Also, in [45] he proved
that on a compact manifold N , a transnormal function f alone, where
|∇f |2 = A(f) for some smooth A, already warrants that f has only two
critical values a and b, where [a, b] is the range of f . Moreover, the two
singular sets M− := f−1(a) and M+ := f−1(b) are smooth manifolds,
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and each level hypersurface f−1(c), c ∈ (a, b), is a tube over M±. In
particular, he obtained

Theorem 103. An transnormal function f on Sn is already isopara-
metric so long as M± are of codimension at least 2. That is, with the
assumption, |∇f |2 = A(f) implies ∆f = B(f) for some smooth B.

The theorem is in fact also true for Rn as his analysis showed in the
noncompact case. See [19] and [30] for a follow-up study.

Dorfmeister and Neher [16] settled one of the two cases when g = 6.

Theorem 104. An isoparametric hypersurface with g = 6 and multi-
plicities m± = 1 is homogeneous.

5. Development in the 1990s

Another remarkable result, via homotopy theory, in the late 1990s
was achieved by Stolz [41], who classified all the possible multiplicity
pairs (m1,m2),m1 ≤ m2, of isoparametric hypersurfaces with g = 4.

Theorem 105. The multiplicity pairs (m1,m2),m1 ≤ m2, of isopara-
metric hypersurfaces with four principal curvatures are exactly those in
the above table for the OT-FKM type, barring the pairs (2, 2) and (4, 5)
not in the table.

He established that if (m1,m2),m1 ≤ m2, is neither (2, 2) nor (4, 5),
then m1 +m2 +1 is a multiple of 2φ(m1−1), where φ(n) denotes the num-
ber of natural numbers s, 1 ≤ s ≤ n, such that s ≡ 0, 2, 2, 4 (mod 8).
One can see easily that such pairs (m1,m2) are exactly those for the
OT-FKM type in the above table.

His approach is reminiscent of the theorem of Adams:

Theorem 106. If there are k independent vector fields on Sn, then
n+ 1 is a multiple of 2φ(k).

The core technique Adams developed for proving the above theorem
on vector fields was to what Stolz reduced his proof.

6. Development in the 2000s
Theorem 107. [9], [10], [11] When g = 4, except possibly for the
case with multiplicities {7, 8}, an isoparametric hypersurface is, up to
congruence, one of the hypersurfaces of OT-FKM type.

The proof utilizes commutative algebra, algebraic geometry, and
Stolz’s multiplicity result.

Miyaoka recently settled the other case when g = 6.
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Theorem 108. [31], [32] An isoparamtric hypersurface with g = 6
and multiplicities m± = 2 is homogeneous.

She also gave a simpler and more geometric proof [29] of the theorem
by Dorfmeister and Neher by the same technique.

So as it stands now, only the case with g = 4 and {m+,m−} = {7, 8}
remains open, for which we know three inhomogeneous examples of
OT-FKM type.

Lastly, a recent application of the classification of isoparametric hy-
persurfaces is the result of Tang and Yan [44] on the first eigenvalue
of isoparametric hypersurfaces in spheres, which verifies, in the case of
isoparametric hypersurfaces, a conjecture of Yau that states that the
first eigenvalue of every compact minimal hypersurface in Sn+1 is n.

Another recent application of the classification of isoparametric hy-
perurfaces in spheres is the construction, by Tang, Xie and Yan [43],
of new positive scalar curvature manifolds from the minimal isopara-
metric hypersurface given in Corollary 99.

As a final note, Ge and Tang [18], constructed isoparametric func-
tions on exotic spheres, Ma and Ohnita determined Hamiltonian sta-
bility of the Gauss images of homogeneous isoparametric hypersurfaces
in complex hyperquadrics as Lagrangian submanifolds [27], [28], and
Dearricott [15] proved the existence of a contact CR structure of di-
mension 8 on the focal manifold of dimension 14 of the (homogeneous)
isoparametric hypersurface with multiplicities {4, 5} in S19, giving rise
to the notion of 13-dimensional 5-Sasakian manifolds fibered over CP 4

that generalizes the 3-Sasakian ones. The 5-Sasakian manifold con-
structed from the focal manifold carries a metric of positive sectional
curvature [3].
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Math. Liège (1939), 30-41.

53
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