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1. Let (V,+,-) be a vector space over a field F and let W be a subspace of V. We define the relation ~ on
V' as follows: for vy,ve € V', we say v ~ vy if v1 — vy € W. Prove that ~ is an equivalence relation on V.

Proof. Let x € V. Since W is a subspace of V', and in particular is itself a vector space over F, 0 = z—x € W,
and so x ~ z. If x,y € V such that  ~ y, then x —y € W. Again, since W is a vector space over F,
lp-(r—y)=y—xzeW,andsoy ~z. If z,y,z € V such that  ~ y and y ~ z, then x —y,y — 2z € W.
Since W is a vector space, (v —y) + (y —2) =z — z € W, and so & ~ z. Therefore, ~ is an equivalence

relation on V. |

Let V/W be the quotient of V by ~ (as a set). Define an addition operation & and multiplication

by elements of F ® by [2] ® [y] = [x + y] and A @ [z] = [X - 2] for all [z],[y] € V/W and X € F. Prove that
(V/W,®,®) is a vector space over F.
Proof. We first show that @& and ® are well defined operations. Let [u],[u], [v],[v'] € V/W such that
[u] = [u] and [v] = [v']. Then u ~ v’ and v ~ v/, and so u — v, v — v’ € W. Then, since W is a vector space,
(utv)—(v'+v") = (u—u')+(v—2") € W. Then u+v ~ v 4+v’, and hence [u]®[v] = [u+v] = [v/+v'] = [v/]B[V'].
That is, & is well defined on V/W. Let A € F. As before, since v ~ v/, v —v' € W. Then, since W is a vector
space over F, Ao —XA-v' =X (v—v") € W. Then A-v ~ A0/, and thus A® [v] = [A-v] = [A-V] =A@ V']
Therefore, ® is also well defined on V/W.

We now show that (V/W, @) is a commutative group. Since V' is a vector space, x+y € V forall z,y € V|
and so [z] ® [y] = [z +y] € V/W for all [z],[y] € V/W, i.e. @ is a binary operation on V/W. Since addition
+ is associative in V', @ is associative in V/W:
we (el =(lol+]=l+y+2]=z+y)+2=l+y e[ = (o) sk
Similarly, @ is commutative since + is commutative: [z] ® [y] = [z + y] = [y + 2] = [y] @ [z].

Direct computation shows that the identity element is [0] and —[z] = [-z] for all [z] € V/W:
[z]®[0] = [+ 0] = [z] and [z] & [-z] = [z +-z] = [0]. Again, we are assured that [0], [-z] € V/W since (V, +)

is a group.
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Finally, we show that ® satisfies the required axioms of scalar multiplication in a vector space. Let
a,B €F and [2],[y] € V/W. Then, since (V, +, -) is a vector space over F, we have
a@l]=a-2]eV/W,a®B®[z]) =a®[8-2]=[a-(8-2)] =[(af) 2] = (af) & [2],
1p®[z] = [lp-a] = [z], a®([z]®[y]) = a®@[z+y] = [a-(z+y)] = [w-r+ay] = [o-z]Bla-y] = (a®[z]) B (a]y]),
and (a+0)®@[z] = [(a+p)-z] = [a-z+ 2] = [a- 2| [B-2] = (a®[z]) B (B [x]). Therefore, (V/W, &, ®)

is a vector space over F. [ ]

Suppose that the dimension of V over F is finite. Prove that dimyp V/W = dimp V — dimp W.

Proof. If W =V, then V/W = {[0]} since x —y € V = W, ie. z ~ y, for all z,y € V. In this case,
dimp V/W =0, dimp V = dimp W, and the given equation holds.

In the case that W < V', we have dimp/W < dimy V; in particular, dimg W is finite. Let {wy, ..., wm}

be a basis for W, and {w1, ..., wm,v1,...,v,} be a basis for V, so that dimgp W = m and dimp V = m + n.
We will show that {[v1],...,[vs]} is a basis for V/W. Let [z] € V/W. Then x € V, so
m n
x=> N-w;+ y o;-v; for some \;,0; € F. Since w; —0 = w; € W, we have w; ~ 0 for each ¢; in fact,
i=1 j=1

w ~ 0 if and only if w € W. Then
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and thus {[v1],...,[vs]} spans V/W over F.
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Suppose [0] = > a; ® [v;] for some «; € F. Then
Jj=1 J

1aj ~vj1 = Zlaj ® [v;] = [0], i.e. Z:laj ~vj ~ 0.
= j= j=

J

Then ) «;-v; € W, and thus
- ;

n m n m
a; -v; = > B -w; for some B; € F. Then > «a;-vj+ Y. -fi-w; =
j =1 i= j=1 i=

=1 1

n m

Yoaj-v;— > Bi-w; =0. Since {w1, ..., Wm,v1,...,0,} is a basis for V, we must then have a; =0 = 5;
j=1 i=1
for all ¢ and all j. Since each «; is equal to zero, {[v1],...,[v,]} is linearly independent, and thus is a basis

(a linearly independent spanning set). Therefore, dimp V/W =n=(m+n) —m =dimp V —dimg W. A

Part 1 Section 4 Exercises

29. Show that if G is a finite group with identity e and with an even number of elements, then there
exists a # e in G such that a xa = e.

Proof. First, note that a x a = e if and only if @ = a’!. Let G; = G\ {e}, and let 1 € Gy. If x; = 27!,

then we are done. Otherwise, set Go = G1 \ {71,77'} and let 2o € Go. Continuing similarly, we will either

find an element z; such that z; = ;!

|G|

I = TR Supposing that none of the x; satisfy z; = 23!, let G; = {a}. Since a € G and G is a group,

or else, since |G| is even, we will arrive at the singleton set G, where

al € G. However, since z; # a # x;* for all i, we have x; # a! # z;' by the cancellation law. Therefore,

since a # e implies a™' # ¢! = e, we must have a™! = a. [ |

32. Show that every group G with identity e and such that z * x = e for all x € G is abelian.

Proof. Since x+x =e, x = x! for all z € G. Let a,b € G. Then, by Corollary 4.18,

axb=a'xb! = (bxa)t = bx*a. Therefore, (G,*) is commutative. [ ]

41. Let G be a group and let g be one fixed element of G. Show that the map i4, such that i,(z) = gzg™
for x € GG, is an isomorphism of G with itself.
Proof. Suppose z,y € G such that i,(z) =1i4(y). Then gzg' = gyg™'. By the left cancellation law, we must
then have zg™' = yg™'; the right cancellation law then shows that x = y, and so i, is injective.

Let t € G. Then, since G is a group, g''tg € G and i,(g7'tg) = g(g'tg)g" = (g9 )t(9g7') = ete = t, and
S0 g4 is surjective.
Since i4(zy) = gryg" = greyg = gr(g9)yg™ = (9279 )(gyg™") = ig()ig(y), iy is a group homomorphism.

Therefore, iy is a group isomorphism from G to itself (i.e. i, is a group automorphism of G). |
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Part 1 Section 5 Exercises

22. Describe all the elements in the cyclic subgroup of GL(2,R) generated by {_01 _01}
0 -1 ’ 1 0 0 -1 0 -1 1 0
Solution: Since ) = , we have ) = -1,
-1 0 0 1 -1 0 -1 0 0 1

43. Show that if H and K are subgroups of an abelian group G, then {hk | h € H,k € K} is also a
subgroup of G.

Proof. Let HK = {hk | h € H,k € K}; since e € H, K, we must have e = ee € HK. In particular, HK is
nonempty. Let hk, h'k’ € HK. Then, since G is an abelian group,

(hk)(R'E') = h(kh K = h(Rk)K' = (hh')(kEK'). Since h,h' € H and H is a (sub)group, hh' € H. Similarly,
kk' € K. Thus, (hk)(h'k") = (hh')(kk') € HK, and so the induced operation is a binary operation on HK.
Since G is abelian, (hk)! = k'h"! = h'k!. Since H and K are groups, h't € H and k! € K, and so
(hk)*t = h'k! € HK. Therefore, HK is a subgroup of G. |

51. Let G be a group and let a be one fixed element of G. Show that Cg(a) = {z € G | za = azx} is a
subgroup of G.
Proof. Since ea = a = ae, e € Ci(a); in particular, Cg(a) is nonempty. Let =,y € Cg(a), so that za = ax
and ya = ay. Then, (zy)a = z(ya) = z(ay) = (va)y = (ax)y = a(zy), i.e. 2y € Cg(a), and so the induced
operation is a binary operation on Cg(a). Since xa = ax, we have
rla = (z'a)e = (z7la)(x2!) = o7l (az)z! = 2l (za)rt = (27'2)(ax?) = e(az™!) = az’!,

i.e. 7! € Cg(a). Therefore, Cs(a) is a subgroup of G. ]
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52. Generalizing Exercise 51, let S be any subset of a group G.
i) Show that Cq(S) = {z € G | s = sz Vs € S} is a subgroup of G.

ii) Show that the center of G, denoted Z(G) = C(G), is an abelian subgroup of G.

Proof.

i) Let S C G. Since es = s = se for all s € S, e € C(5), and so C(S) is nonempty. Let =,y € Ca(S5),
and let s € S. Then zs = sz and ys = sy. Thus, as in Exercise 51, (zy)s = s(zy). Since s € S is arbitrary,
zy € Ci(9), and so the induced operation is a binary operation on C(S). As in Exercise 51, since xs = sz,
rls = szl for all s € S, and so 27! € C(S). Therefore, Cg(9) is a subgroup of G.

ii) All that remains to be shown is commutativity. Let a,b € Z(G). Then, since b € G and a € Z(G),

ab = ba by definition of Z(G) = C¢(G). Therefore, Z(G) is an abelian subgroup of G. [ ]

53. Let H be a subgroup of a group G. For a,b € G, let a ~ b if and only if ab? € H. Show that ~ is
an equivalence relation on G.
Proof. Let x € G. Then, since H < G, o' = e € H, i.e. x ~ z. Suppose y € G such that 2 ~ y. Then
xyt € H. Since H is a subgroup, yz™! = (zy')! € H. Then y ~ x. Suppose z € G such that y ~ 2. Then
xyt,yzt € H. Since H < G, H is a group, and so 27! = wez! = z(yly)zt = (2y!)(yz!) € H, and so

x ~ z. Therefore, ~ is an equivalence relation on G. ]

57. Show that a group with no proper nontrivial subgroups is cyclic.

Proof. We will show the contrapositive. Suppose that G is not cyclic. Then G is not the trivial group, and
so there is some = # e in G. The, since G is not cyclic, {e} < (z) < G, i.e. (x) is a proper nontrivial

subgroup of G. |



