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1. Let (V,+, ·) be a vector space over a field F and let W be a subspace of V . We define the relation ∼ on
V as follows: for v1, v2 ∈ V , we say v1 ∼ v2 if v1 − v2 ∈W . Prove that ∼ is an equivalence relation on V .

Proof. Let x ∈ V . Since W is a subspace of V , and in particular is itself a vector space over F, 0 = x−x ∈W ,

and so x ∼ x. If x, y ∈ V such that x ∼ y, then x − y ∈ W . Again, since W is a vector space over F,

-1F · (x − y) = y − x ∈ W , and so y ∼ x. If x, y, z ∈ V such that x ∼ y and y ∼ z, then x − y, y − z ∈ W .

Since W is a vector space, (x − y) + (y − z) = x − z ∈ W , and so x ∼ z. Therefore, ∼ is an equivalence

relation on V . �

Let V/W be the quotient of V by ∼ (as a set). Define an addition operation ⊕ and multiplication
by elements of F ⊗ by [x] ⊕ [y] = [x + y] and λ ⊗ [x] = [λ · x] for all [x], [y] ∈ V/W and λ ∈ F. Prove that
(V/W,⊕,⊗) is a vector space over F.

Proof. We first show that ⊕ and ⊗ are well defined operations. Let [u], [u′], [v], [v′] ∈ V/W such that

[u] = [u′] and [v] = [v′]. Then u ∼ u′ and v ∼ v′, and so u−u′, v− v′ ∈W . Then, since W is a vector space,

(u+v)−(u′+v′) = (u−u′)+(v−v′) ∈W . Then u+v ∼ u′+v′, and hence [u]⊕[v] = [u+v] = [u′+v′] = [u′]⊕[v′].

That is, ⊕ is well defined on V/W . Let λ ∈ F. As before, since v ∼ v′, v−v′ ∈W . Then, since W is a vector

space over F, λ · v−λ · v′ = λ · (v− v′) ∈W . Then λ · v ∼ λ · v′, and thus λ⊗ [v] = [λ · v] = [λ · v′] = λ⊗ [v′].

Therefore, ⊗ is also well defined on V/W .

We now show that (V/W,⊕) is a commutative group. Since V is a vector space, x+y ∈ V for all x, y ∈ V ,

and so [x]⊕ [y] = [x+ y] ∈ V/W for all [x], [y] ∈ V/W , i.e. ⊕ is a binary operation on V/W . Since addition

+ is associative in V , ⊕ is associative in V/W :

[x]⊕ ([y]⊕ [z]) = [x]⊕ [y + z] = [x+ (y + z)] = [(x+ y) + z] = [x+ y]⊕ [z] = ([x]⊕ [y])⊕ [z].

Similarly, ⊕ is commutative since + is commutative: [x]⊕ [y] = [x+ y] = [y + x] = [y]⊕ [x].

Direct computation shows that the identity element is [0] and −[x] = [-x] for all [x] ∈ V/W :

[x]⊕ [0] = [x+ 0] = [x] and [x]⊕ [-x] = [x+ -x] = [0]. Again, we are assured that [0], [-x] ∈ V/W since (V,+)

is a group.
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Finally, we show that ⊗ satisfies the required axioms of scalar multiplication in a vector space. Let

α, β ∈ F and [x], [y] ∈ V/W . Then, since (V,+, ·) is a vector space over F, we have

α⊗ [x] = [α · x] ∈ V/W , α⊗ (β ⊗ [x]) = α⊗ [β · x] = [α · (β · x)] = [(αβ) · x] = (αβ)⊗ [x],

1F⊗[x] = [1F·x] = [x], α⊗([x]⊕[y]) = α⊗[x+y] = [α·(x+y)] = [α·x+α·y] = [α·x]⊕[α·y] = (α⊗[x])⊕(α⊗[y]),

and (α+β)⊗ [x] = [(α+β) ·x] = [α ·x+β ·x] = [α ·x]⊕ [β ·x] = (α⊗ [x])⊕ (β⊗ [x]). Therefore, (V/W,⊕,⊗)

is a vector space over F. �

Suppose that the dimension of V over F is finite. Prove that dimF V/W = dimF V − dimF W .

Proof. If W = V , then V/W = {[0]} since x − y ∈ V = W , i.e. x ∼ y, for all x, y ∈ V . In this case,

dimF V/W = 0, dimF V = dimF W , and the given equation holds.

In the case that W � V , we have dimF/W ≤ dimF V ; in particular, dimF W is finite. Let {w1, . . . , wm}

be a basis for W , and {w1, . . . , wm, v1, . . . , vn} be a basis for V , so that dimF W = m and dimF V = m+ n.

We will show that {[v1], . . . , [vn]} is a basis for V/W . Let [x] ∈ V/W . Then x ∈ V , so

x =
m∑
i=1

λi · wi +
n∑

j=1

σj · vj for some λi, σj ∈ F. Since wi − 0 = wi ∈ W , we have wi ∼ 0 for each i; in fact,

w ∼ 0 if and only if w ∈W . Then

=

 m∑
i=1

λi · wi +

n∑
j=1

σj · vj


=

[
m∑
i=1

λi · wi

]
⊕

 n∑
j=1

σj · vj


=

(
m∑
i=1

λi ⊗ [wi]

)
⊕

 n∑
j=1

σj ⊗ [vj ]


=

(
m∑
i=1

λi ⊗ [0]

)
⊕

 n∑
j=1

σj ⊗ [vj ]


= [0]⊕

 n∑
j=1

σj ⊗ [vj ]


=

n∑
j=1

σj ⊗ [vj ]

and thus {[v1], . . . , [vn]} spans V/W over F.
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Suppose [0] =
n∑

j=1

αj ⊗ [vj ] for some αj ∈ F. Then

[
n∑

j=1

αj · vj

]
=

n∑
j=1

αj ⊗ [vj ] = [0], i.e.
n∑

j=1

αj · vj ∼ 0.

Then
n∑

j=1

αj · vj ∈ W , and thus
n∑

j=1

αj · vj =
m∑
i=1

βi · wi for some βi ∈ F. Then
n∑

j=1

αj · vj +
m∑
i=1

-βi · wi =

n∑
j=1

αj · vj −
m∑
i=1

βi · wi = 0. Since {w1, . . . , wm, v1, . . . , vn} is a basis for V , we must then have αj = 0 = βi

for all i and all j. Since each αj is equal to zero, {[v1], . . . , [vn]} is linearly independent, and thus is a basis

(a linearly independent spanning set). Therefore, dimF V/W = n = (m+ n)−m = dimF V − dimF W . �

Part 1 Section 4 Exercises

29. Show that if G is a finite group with identity e and with an even number of elements, then there
exists a 6= e in G such that a ∗ a = e.

Proof. First, note that a ∗ a = e if and only if a = a-1. Let G1 = G \ {e}, and let x1 ∈ G1. If x1 = x-11 ,

then we are done. Otherwise, set G2 = G1 \ {x1, x-11 } and let x2 ∈ G2. Continuing similarly, we will either

find an element xi such that xi = x-1i or else, since |G| is even, we will arrive at the singleton set GI , where

I =
|G|
2

. Supposing that none of the xi satisfy xi = x-1i , let GI = {a}. Since a ∈ G and G is a group,

a-1 ∈ G. However, since xi 6= a 6= x-1i for all i, we have xi 6= a-1 6= x-1i by the cancellation law. Therefore,

since a 6= e implies a-1 6= e-1 = e, we must have a-1 = a. �

32. Show that every group G with identity e and such that x ∗ x = e for all x ∈ G is abelian.

Proof. Since x ∗ x = e, x = x-1 for all x ∈ G. Let a, b ∈ G. Then, by Corollary 4.18,

a ∗ b = a-1 ∗ b-1 = (b ∗ a)-1 = b ∗ a. Therefore, (G, ∗) is commutative. �

41. Let G be a group and let g be one fixed element of G. Show that the map ig, such that ig(x) = gxg-1

for x ∈ G, is an isomorphism of G with itself.

Proof. Suppose x, y ∈ G such that ig(x) = ig(y). Then gxg-1 = gyg-1. By the left cancellation law, we must

then have xg-1 = yg-1; the right cancellation law then shows that x = y, and so ig is injective.

Let t ∈ G. Then, since G is a group, g-1tg ∈ G and ig(g-1tg) = g(g-1tg)g-1 = (gg-1)t(gg-1) = ete = t, and

so ig is surjective.

Since ig(xy) = gxyg-1 = gxeyg-1 = gx(g-1g)yg-1 = (gxg-1)(gyg-1) = ig(x)ig(y), ig is a group homomorphism.

Therefore, ig is a group isomorphism from G to itself (i.e. ig is a group automorphism of G). �
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Part 1 Section 5 Exercises

22. Describe all the elements in the cyclic subgroup of GL(2,R) generated by
[

0 -1
-1 0

]
.

Solution: Since

[
0 -1

-1 0

]2
=

[
1 0

0 1

]
, we have

〈[
0 -1

-1 0

]〉
=

{[
0 -1

-1 0

]
,

[
1 0

0 1

]}
�

43. Show that if H and K are subgroups of an abelian group G, then {hk | h ∈ H, k ∈ K} is also a
subgroup of G.

Proof. Let HK = {hk | h ∈ H, k ∈ K}; since e ∈ H,K, we must have e = ee ∈ HK. In particular, HK is

nonempty. Let hk, h′k′ ∈ HK. Then, since G is an abelian group,

(hk)(h′k′) = h(kh′)k′ = h(h′k)k′ = (hh′)(kk′). Since h, h′ ∈ H and H is a (sub)group, hh′ ∈ H. Similarly,

kk′ ∈ K. Thus, (hk)(h′k′) = (hh′)(kk′) ∈ HK, and so the induced operation is a binary operation on HK.

Since G is abelian, (hk)-1 = k-1h-1 = h-1k-1. Since H and K are groups, h-1 ∈ H and k-1 ∈ K, and so

(hk)-1 = h-1k-1 ∈ HK. Therefore, HK is a subgroup of G. �

51. Let G be a group and let a be one fixed element of G. Show that CG(a) = {x ∈ G | xa = ax} is a
subgroup of G.

Proof. Since ea = a = ae, e ∈ CG(a); in particular, CG(a) is nonempty. Let x, y ∈ CG(a), so that xa = ax

and ya = ay. Then, (xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy), i.e. xy ∈ CG(a), and so the induced

operation is a binary operation on CG(a). Since xa = ax, we have

x-1a = (x-1a)e = (x-1a)(xx-1) = x-1(ax)x-1 = x-1(xa)x-1 = (x-1x)(ax-1) = e(ax-1) = ax-1,

i.e. x-1 ∈ CG(a). Therefore, CG(a) is a subgroup of G. �

4



James Lee Crowder

52. Generalizing Exercise 51, let S be any subset of a group G.

i) Show that CG(S) = {x ∈ G | xs = sx ∀s ∈ S} is a subgroup of G.

ii) Show that the center of G, denoted Z(G) = CG(G), is an abelian subgroup of G.

Proof.

i) Let S ⊆ G. Since es = s = se for all s ∈ S, e ∈ CG(S), and so CG(S) is nonempty. Let x, y ∈ CG(S),

and let s ∈ S. Then xs = sx and ys = sy. Thus, as in Exercise 51, (xy)s = s(xy). Since s ∈ S is arbitrary,

xy ∈ CG(S), and so the induced operation is a binary operation on CG(S). As in Exercise 51, since xs = sx,

x-1s = sx-1 for all s ∈ S, and so x-1 ∈ CG(S). Therefore, CG(S) is a subgroup of G.

ii) All that remains to be shown is commutativity. Let a, b ∈ Z(G). Then, since b ∈ G and a ∈ Z(G),

ab = ba by definition of Z(G) = CG(G). Therefore, Z(G) is an abelian subgroup of G. �

53. Let H be a subgroup of a group G. For a, b ∈ G, let a ∼ b if and only if ab-1 ∈ H. Show that ∼ is
an equivalence relation on G.

Proof. Let x ∈ G. Then, since H ≤ G, xx-1 = e ∈ H, i.e. x ∼ x. Suppose y ∈ G such that x ∼ y. Then

xy-1 ∈ H. Since H is a subgroup, yx-1 = (xy-1)-1 ∈ H. Then y ∼ x. Suppose z ∈ G such that y ∼ z. Then

xy-1, yz-1 ∈ H. Since H ≤ G, H is a group, and so xz-1 = xez-1 = x(y-1y)z-1 = (xy-1)(yz-1) ∈ H, and so

x ∼ z. Therefore, ∼ is an equivalence relation on G. �

57. Show that a group with no proper nontrivial subgroups is cyclic.

Proof. We will show the contrapositive. Suppose that G is not cyclic. Then G is not the trivial group, and

so there is some x 6= e in G. The, since G is not cyclic, {e} � 〈x〉 � G, i.e. 〈x〉 is a proper nontrivial

subgroup of G. �
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