## Using the TI-83 for Simpson's Rule

In order to use this information, you need to be familiar with creating and storing lists on the TI-83. This information is illustrated in the earlier documents Approximating Areas on the TI-83 and The Midpoint Rule on the TI-83 (see the Daily Assignments section of the web syllabus).

You also need to know an additional fact about handling lists: we have two lists of the same length, the TI83 will "multiply" them "term-by-term" to create a new list. For example, if $\mathrm{L} 1=\{2,4,6\}$ and $\mathrm{L} 2=\{3,2,7\}$, then on the TI- 83

$$
\mathrm{L} 1 * \mathrm{~L} 2=\{2 * 3,4 * 2,6 * 7\}=\{6,8,42\}
$$

Recall Simpson's Rule: to approximate $\int_{a}^{b} f(x) d x$, subdivide $[a, b]$ into $n$ equal subintervals, each of length $h($ or $\Delta x)=\frac{b-a}{n}$. For Simpson's Rule, $n$ must be an even positive integer. The endpoints of the subintervals are $x_{0}=a, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}=b$.

Simpson's approximation to $\int_{a}^{b} f(x) d x$ is then given by the formula

$$
S_{n}=\frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\ldots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

For a small $n$, it's easy to compute this. For a larger $n$, computing it one term at a time gets tedious, and it's harder to see how to do it efficiently on the TI-83 (unlike, say, for the Midpoint Rule) because of the pattern of "switching coefficients" $\{1,4,2,4,2,4, \ldots, 2,4,1\}$. Here is a series of steps that do the job, followed by a detailed discussion of why they work.

Enter the function $\mathrm{Y} 1=1 /\left(1+\mathrm{x}^{\wedge} 2\right)$ in the " $\mathrm{Y}=$ " window.
Store the values of $a, b, h(=\Delta x)$ in the TI-83

```
a STO A
b STO B
n STO N
(B - A)/N STO H
```

Then

```
seq(A+I*H, I, 1,N - 1) STO L1
seq(3+(-1)^(I - 1), I, 1, N - 1) STO L2
(H/3)*(Y1(A)}+\operatorname{sum}(\textrm{Y}1(\textrm{L}1)*\textrm{L}2)+\textrm{Y}1(\textrm{B}))\quad(Gives the value of Sn
```

Here's a step by step discussion of what's happening in a specific case. We compute $S_{8}$ for $\int_{0}^{3} \frac{1}{1+x^{2}} d x$.
Enter $\mathrm{Y} 1(\mathrm{X})=1 /\left(1+\mathrm{x}^{\wedge} 2\right)$ in the " $\mathrm{Y}=$ " window.

| 0 STO A | Stores 0 in location A |
| :--- | :--- |
| 3 STO B | Stores 3 in location B |
| 8 STO N | Stores $n$ in location N |
| $(B-A) /$ STO H | Stores $h=\Delta x=\frac{3}{8}$ in location H |

The subdivisions of $[0,3]$ and their endpoints look like

| 0 | $\frac{3}{8}$ | $\frac{6}{8}$ | $\frac{9}{8}$ | $\frac{12}{8}$ | $\frac{15}{8}$ | $\frac{18}{8}$ | $\frac{21}{8}$ | $\frac{24}{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{A}$ |  |  |  |  |  |  |  | 3 |
| $=$ | $B$ |  |  |  |  |  |  |  |

We want to find

$$
\begin{aligned}
S_{8}=\frac{\mathrm{H}}{3}(\mathrm{Y} 1(\mathrm{~A})+ & 4 * \mathrm{Y} 1\left(\frac{3}{8}\right)+2 * \mathrm{Y} 1\left(\frac{6}{8}\right)+4^{*} \mathrm{Y} 1\left(\frac{9}{8}\right)+2 * \mathrm{Y} 1\left(\frac{12}{8}\right)+4 * \mathrm{Y} 1\left(\frac{15}{8}\right) \\
& \left.+2 * \mathrm{Y} 1\left(\frac{18}{8}\right)+4 * \mathrm{Y} 1\left(\frac{21}{8}\right)+\mathrm{Y} 1(\mathrm{~B})\right)
\end{aligned}
$$

We need to evaluate the function Y1 at the 9 points in list $\left\{\mathrm{A}, \frac{3}{8}, \frac{6}{8}, \frac{9}{8}, \frac{12}{8}, \frac{15}{8}, \frac{18}{8}, \frac{21}{8}, \mathrm{~B}\right\}$
No matter how large $n$ is, A and B are "special": those are the only points in the sum for $S_{n}$ where the coefficient in the formula is one. So we treat them as "special" and make a list of the other $\mathrm{N}-1(=7)$ points and store in the list variable L1:
$\operatorname{seq}(\mathrm{A}+\mathrm{I} * \mathrm{H}, \mathrm{I}, 1, \mathrm{~N}-1)$ STO L1 Creates the list

$$
\mathrm{L} 1=\left\{\frac{3}{8}, \frac{6}{8}, \frac{9}{8}, \frac{12}{8}, \frac{15}{8}, \frac{18}{8}, \frac{21}{8}\right\}
$$

(Be sure you think about why!)
In the formula for $S_{8}$, the pattern of coefficients associated with these endpoints looks like

$$
\begin{aligned}
& \left\{\frac{3}{8}, \frac{6}{8}, \frac{9}{8}, \frac{12}{8}, \frac{15}{8}, \frac{18}{8}, \frac{21}{8}\right\} \\
& \{4,2,4,2,4,2,4\}
\end{aligned}
$$

We create a list of these coefficients and store it in the list variable L2:

The commands:

Y1(L1)

Y1(L1)*L2
$\operatorname{sum}(\mathrm{Y} 1(\mathrm{~L} 1) * \mathrm{~L} 2)$

## Creates

 $\left\{\mathrm{Y} 1\left(\frac{3}{8}\right), \mathrm{Y} 1\left(\frac{6}{8}\right), \mathrm{Y} 1\left(\frac{9}{8}\right), \ldots, \mathrm{Y} 1\left(\frac{21}{8}\right)\right\}$Creates
$\left\{4^{*} \mathrm{Y} 1\left(\frac{3}{8}\right), 2 * \mathrm{Y} 1\left(\frac{6}{8}\right), 4 * \mathrm{Y} 1\left(\frac{9}{8}\right), \ldots, 4^{*} \mathrm{Y} 1\left(\frac{21}{8}\right)\right\}$
Creates

$$
4 * \mathrm{Y} 1\left(\frac{3}{8}\right)+2 * \mathrm{Y} 1\left(\frac{6}{8}\right)+4 * \mathrm{Y} 1\left(\frac{9}{8}\right)+\ldots+4 * \mathrm{Y} 1\left(\frac{21}{8}\right)
$$

Therefore we can get $S_{8}$ from the command

$$
(\mathrm{H} / 3) *(\mathrm{Y} 1(\mathrm{~A})+\operatorname{sum}(\mathrm{Y} 1(\mathrm{~L} 1) * \mathrm{~L} 2)+\mathrm{Y} 1(\mathrm{~B}))
$$

If you do these steps on the TI-83, it gives the result 1.24879899. In this example, we happen to know that the exact value of $\int_{0}^{3} \frac{1}{1+x^{2}} d x=\arctan 3$. So, just out of curiosity, we can see how good or bad the approximation is:

$$
\text { Error }=(\text { Exact value })-(\text { Approximation })=\arctan 3-1.248799 \approx 0.000246782
$$

Of course, if you follow the steps above, it's no more work to compute, say, $S_{100}$.

