Using the TI-83 for Simpson's Rule

In order to use this information, you need to be familiar with creating and storing lists on the TI-83. This
information is illustrated in the earlier documents Approximating Areas on the TI-83 and The Midpoint
Rule on the TI-83 (see the Daily Assignments section of the web syllabus).

You also need to know an additional fact about handling lists: we have two lists of the same length, the TI-
83 will “multiply” them “term-by-term” to create a new list. For example, if L1 = {2,4,6} and
L2 = {3,2,7}, then on the TI-83

L1*L2 = {2*3, 4%2, 6*7} = {6,8,42}

Recall Simpson's Rule: to approximate fab f(x) dz, subdivide [a, b] into n equal subintervals, each of length
h(orAz) = b;—” For Simpson's Rule, n must be an even positive integer. The endpoints of the
subintervals are zy = a, 1, T2, ..., Tpn_1,Tn = b.

Simpson's approximation to fab f(z) dx is then given by the formula

S = §(f(x0) +4f (1) + 2 (22) +4f (23) + 2f (x2) + o+ 4f (2n-1) + f(20))

For a small n, it's easy to compute this. For a larger n, computing it one term at a time gets tedious, and it's
harder to see how to do it efficiently on the TI-83 (unlike, say, for the Midpoint Rule) because of the
pattern of “switching coefficients" {1,4,2,4,2,4,...,2,4,1}. Here is a series of steps that do the job,
followed by a detailed discussion of why they work.

Enter the function Y1=1/(1+x"2) in the “Y="window.
Store the values of a, b, h (= Ax) in the TI-83

a STO A
b STOB
n STON
(B— A)/NSTOH
Then
seq(A+I*H,,1,N — 1) STO L1
seq(3+(— D1 —-1),I,1,N—1) STO L2
(H/3)*(Y1(A) +sum(Y 1(L1)*L2) + Y1(B)) (Gives the value of S,,)

Here's a step by step discussion of what's happening in a specific case. We compute Sg for f03 ﬁ dx.

Enter Y1(X)=1/(1+x"2) in the “Y=" window.

0STO A Stores 0 in location A
3STOB Stores 3 in location B
8 STON Stores n in location N
(B—-A)NSTOH Stores h = Az = % in location H

The subdivisions of [0, 3] and their endpoints look like

0 3 6 9 12 15 18 21 24
8 8 8 8 8 8 8 8
A=0 3=B

We want to find

Sy = E(Y1(A) +4*¥Y1(2) + 2*¥Y1(§) + 4*Y1(§) + 2*Y1() + 4xY1(%)

+2*Y1(E) + 4*Y1(2) + YI(B))
We need to evaluate the function Y1 at the 9 points in list {A,%, g, %, 18—27 18—57 18—87 28—17 B}
No matter how large n is, A and B are “special”: those are the only points in the sum for S, where the
coefficient in the formula is one. So we treat them as “special” and make a list of the other N — 1 (=7)
points and store in the list variable L1:

seq(A+I*H,I, 1,N — 1) STO L1 Creates the list
Ll_{ 6 9 12 15 18 21

8787828787878
(Be sure you think about why!)

In the formula for Sg, the pattern of coefficients associated with these endpoints looks like

3
}

e ol
» ol
P oo
N mlw
N oo|U‘
» OO|oo
A o2

{5
{4,

We create a list of these coefficients and store it in the list variable L.2:

E

seq(3+(— DI —1),I,1,N—1) STOL2 Creates the list L2 = {4,2,4,2,4,2.4}
(Be sure you think about why!)
The commands:

Y1(LD) Creates
Y1), Y1), Y1), ., Y1)

Y1(L1)*L2 Creates ‘
{4*Y1(23), 2%Y1(9),4*Y1(2), ..., 4*Y1(3)}

sum(Y1(L1)*L2) Creates
AY1(E) 4+ 2*Y1(E) + 4*Y1(D) + ... +4*Y1(E)

Therefore we can get Sg from the command
(H/3)*(Y1(A) +sum(Y1(L1)*L2)+ Y1(B))

If you do these steps on the TI-83, it gives the result 1.24879899. In this example, we happen to know
that the exact value of f03 ﬁ dx = arctan 3. So, just out of curiosity, we can see how good or bad the
approximation is:

Error = (Exact value) — (Approximation) = arctan 3 — 1.248799 ~ 0.000246782.

Of course, if you follow the steps above, it's no more work to compute, say, Sigo.

