HW 6:
You may have already solved the problems below, perhaps differently than my suggestions below. If so, that's good!

5b) Let $f^{n}(x)$ be the results of applying $f n$ times to x.
i) if possible, pick an x_{0} so that $x_{0}<x_{1}<x_{2}<\ldots<x_{n}<\ldots$ where $f^{n}\left(x_{0}\right)=x_{n}$. Use the x_{n} 's to find an (x, x) that is a limit point of the graph of f
ii) otherwise $\forall x \exists n$ for which $f^{n}(x)=f^{n+1}(x)$.

Start wih 0 . For some $n, f^{n}(0)=f^{n+1}(0)=x_{1}$.
Then pick $y>x_{1}$. For some $n, f^{n}(y)=f^{n+1}(y)=x_{2}$
Continue in this way, to define x_{i} for all i. Then look at the points

$$
\left(x_{i}, x_{i}\right)
$$

5c) Follow the hint given. Assume that for all $x,\left(x, \omega_{1}\right) \notin U$

$$
\begin{aligned}
& f(x) \geq \omega_{1} \text {. Prove that for some } x, f(x)=\omega_{1} \\
& \text { (if not, then } f:\left[0, \omega_{1}\right) \rightarrow\left[0, \omega_{1}\right) \text { and } \\
& \text { part b) applies to } f . \text { Therefore } \ldots \text {) }
\end{aligned}
$$

For this x, look at $\left(x, \omega_{1}\right)$

