An example using the Baire Category Theorem

Suppose that for each irrational p, an equilateral triangle T_{p} (including its interior) is constructed in the plane with one vertex at $(p, 0)$ and its opposite side above and parallel to the x-axis.

Prove that $\bigcup\left\{T_{p}: p \in \mathbb{P}\right\}$ must contain a rectangle of the form $[a, b] \times\left(0, \frac{1}{k}\right]$ for some $a, b \in \mathbb{R}$ and some $k \in \mathbb{N}$.

Proof $N_{k}=\left\{p \in \mathbb{P}: T_{p}\right.$ has height $\left.\geq \frac{1}{k}\right\}$. By hypothesis, $\mathbb{P}=\bigcup_{k=1}^{\infty} N_{k}$ and therefore $\mathbb{R}=\bigcup_{k=1}^{\infty} N_{k} \cup \bigcup_{q \in \mathbb{Q}}\{q\}$. Since \mathbb{R} is second category in itself and each $\{q\}$ is nowhere dense in $\mathbb{R}, \exists k \in \mathbb{N}$ for which N_{k} is not nowhere dense, that is, $\operatorname{int}_{\mathbb{R}} \operatorname{cl}_{\mathbb{R}} N_{k} \neq \emptyset$. Therefore $\operatorname{cl}_{\mathbb{R}} N_{k}$ contains some open interval (a, b).

For this k, we claim that the rectangle $[a, b] \times\left(0, \frac{1}{k}\right] \subseteq \bigcup\left\{T_{p}: p \in \mathbb{P}\right\}$. If $(x, y) \in[a, b] \times\left(0, \frac{1}{k}\right]$, then $x \in[a, b]$. Since $(a, b) \subseteq \operatorname{cl}_{\mathbb{R}} N_{k}$ there are points $p \in N_{k}$ arbitrarily close to x and if we choose such a p sufficiently close to x, it is geometrically clear (since $y>0$) that $(x, y) \in T_{p}$:

Note: In the hypothesis, we could weaken "equilateral" to read "..." ?

