Right and Left Inverses for a Matrix

D is called a right inverse for a $m \times n$ matrix A if $A D=I_{m}$
(so D must be $n \times m$). For example, if $A=\left[\begin{array}{rrrr}1 & 0 & 0 & 2 \\ 0 & -1 & 1 & 4\end{array}\right]$, then a right inverse for \underline{A} is $D=\left[\begin{array}{rr}1 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0\end{array}\right]$ because $A D=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I_{2}$.

But if $E=\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$, then $A E=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I_{2}$ also, so E is another right inverse for A.

If A has a right inverse, it is not necessarily unique.

C is called a left inverse for a $m \times n$ matrix A if $C A=I_{n}$
(so C must be $n \times m$)
It turns out that the matrix A above has no left inverse (see below). This is no accident ! The following theorem says that if A has both a right and a left inverse, then A must be square.

Theorem If A is $m \times n$ and if
i) D is a a right inverse for A (so $A D=I_{m}$) and
ii) C is a left inverse for $A\left(\right.$ so $\left.C A=I_{n}\right)$
then $m=n$ (so A is square). Moreover, A is invertible and $A^{-1}=C=D$.

Proof Suppose A is $m \times n$
If $A D=I_{m}$, then the equation $A \boldsymbol{x}=\boldsymbol{b}$ has a solution for every possible \boldsymbol{b} in \mathbb{R}^{m} (given a \boldsymbol{b}, just let $\boldsymbol{x}=D \boldsymbol{b}$; then $A \boldsymbol{x}=A(D \boldsymbol{b})=I_{m} \boldsymbol{b}=\boldsymbol{b}$.
Therefore A has a pivot position in every row. This forces $m \leq n$, since every pivot position must be in a different column.

If $C A=I_{n}$, consider the equation $A \boldsymbol{x}=\mathbf{0}$. Then $C A \boldsymbol{x}=C \mathbf{0}=\mathbf{0}$. But $C A \boldsymbol{x}=I_{n} \boldsymbol{x}$ $=\boldsymbol{x}$, so $\boldsymbol{x}=\mathbf{0}$. In other wirds, $A \boldsymbol{x}=\mathbf{0}$ has a unique solution and therefore the columns of A must be linearly independent and therefore each column must be a pivot column. Since each pivot position must be in a different row, this forces $n \leq m$.

So, combining the two paragraphs gives that $m=n$. Since A is now known to be square, the Invertible Matrix Theorem says that A is invertible and that $C=D=A^{-1}$.

