Right and Left Inverses for a Matrix

 $D \text{ is called a } \underline{\operatorname{right inverse}} \text{ for a } m \times n \text{ matrix } A \text{ if } AD = I_m$ $(so \ D \ must \ be \ n \times m). \text{ For example, if } A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & -1 & 1 & 4 \end{bmatrix}, \text{ then a } \underline{\operatorname{right inverse for}}$ $\underline{A} \text{ is } D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ because } AD = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2.$ But if $E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \text{ then } AE = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2 \text{ also, so } E \text{ is another right inverse for } A.$

If A has a right inverse, it is not necessarily unique.

C is called a <u>left inverse</u> for a $m \times n$ matrix *A* if $CA = I_n$ (so *C* must be $n \times m$)

It turns out that the matrix A above has <u>no</u> left inverse (*see below*). <u>This is no accident</u> ! The following theorem says that if A has <u>both</u> a right and a left inverse, then A must be square.

Theorem If A is $m \times n$ and if

i) D is a a right inverse for A (so $AD = I_m$) and ii) C is a left inverse for A (so $CA = I_n$)

then m = n (so A is square). Moreover, A is invertible and $A^{-1} = C = D$.

Proof Suppose A is $m \times n$

If $AD = I_m$, then the equation $A\boldsymbol{x} = \boldsymbol{b}$ has a solution for every possible \boldsymbol{b} in \mathbb{R}^m (given a \boldsymbol{b} , just let $\boldsymbol{x} = D\boldsymbol{b}$; then $A\boldsymbol{x} = A(D\boldsymbol{b}) = I_m\boldsymbol{b} = \boldsymbol{b}$. Therefore A has a pivot position in every row. This forces $m \leq n$, since every pivot position must be in a different column.

If $CA = I_n$, consider the equation $A\mathbf{x} = \mathbf{0}$. Then $CA\mathbf{x} = C\mathbf{0} = \mathbf{0}$. But $CA\mathbf{x} = I_n\mathbf{x}$ $= \mathbf{x}$, so $\mathbf{x} = \mathbf{0}$. In other wirds, $A\mathbf{x} = \mathbf{0}$ has a unique solution and therefore the columns of A must be linearly independent and therefore each column must be a pivot column. Since each pivot position must be in a different row, this forces $n \leq m$. So, combining the two paragraphs gives that m = n. Since A is now known to be square, the Invertible Matrix Theorem says that A is invertible and that $C = D = A^{-1}$.