EFFECT OF EROS ON DETERMINANT

- (*)**Theorem** Let A be a square matrix:
- 1) if a multiple of one row of A is added to another to get a matrix B, then det $A = \det B$ (no effect on determinant)
- 2) If two rows of A are interchanged to get B, then det $B = -\det A$ (each interchange reverses sign on determinant)
- 3) If one row of A is multiplied by $k \ (\neq 0)$ to get B, then det $B = k \det A$ (rescaling a row rescales the determinant too)

Example:
$$\det \begin{bmatrix} 5a & 5b \\ c & d \end{bmatrix} = 5 \det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

(3) often used to "factor out" a number

Depends on theorem:

Theorem Suppose E and A are $n \times n$ and that E is an elementary matrix. Then

$$\det{(EA)} = \det(E)\det(A) \quad \text{ and } \quad$$

$$\det E = \left\{ \begin{array}{c} 1 \text{ if } E \leftrightarrow \text{add multiple of one row to another} \\ k \text{ if } E \leftrightarrow \text{rescale a row by factor } k \neq 0 \\ -1 \text{ if } E \leftrightarrow \text{interchange two rows} \end{array} \right.$$

Why true for 2×2 ?

Suppose
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is 2×2 and that E is a 2×2 elementary matrix (\leftrightarrow ERO)
$$E \downarrow$$

$$= \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix} \cdot A = \begin{bmatrix} a & b \\ ka+c & kb+d \end{bmatrix},$$

$$\det(E) = 1$$

$$\det(EA) = ad - bc = \det(A)$$

$$(so this ERO \ doesn't \ change \ det(A))$$

$$= 1 \cdot \det(A)$$

$$= \det(E) \cdot \det(A)$$

 $E\downarrow$

$$\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} \cdot A = \begin{bmatrix} ka & kb \\ c & d \end{bmatrix}$$

$$\det(E) = k$$

$$\det(EA) = k(ad - bc) = k \det(A)$$
 (so this ERO multiplies $\det(A)$ by k)
$$= \det(E) \cdot \det(A)$$

 $E\downarrow$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot A = \begin{bmatrix} c & d \\ a & b \end{bmatrix}$$

$$\det(E) = -1$$

$$\det(EA) = (bc - ad) = (-1)\det(A)$$

$$(so this ERO changes sign of det A)$$

$$= \det(E) \cdot \det(A)$$

Conclusion: for size 2×2 matrices

if E is an elementary matrix, then

$$\det(EA) = \det(E)\det(A)$$

```
 \begin{cases} 1 & \text{if $E$ is: "add a multiple of one row to another"} \\ -1 & \text{if $E$ is: a row interchange} \\ k & \text{if $E$ is: a row rescaling by a factor of $k \neq 0$} \end{cases}
```

 2×2 's, and E elementary: det(EA) = det(E)det(A); this forces the same equation to be true for 3×3 ; this forces the same equation to be true for 4×4 ; etc

Illustrate for 3×3 : for example: "add multiple of one row to another"

$$\det(E) = 1$$

$$E \qquad A$$

$$\begin{bmatrix} 1 & 0 & 0 \\ k & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ d+ka & e+kb & f+kc \\ g & h & i \end{bmatrix}$$

calculate det(EA) going across an "uninvolved" row

$$\det(EA) = g \det \begin{bmatrix} b & c \\ e+kb & f+kc \end{bmatrix}$$

$$-h \det \begin{bmatrix} a & c \\ d+ka & f+kc \end{bmatrix}$$

$$why? + i \det \begin{bmatrix} a & b \\ d+ka & e+kb \end{bmatrix}$$

$$= g \det \begin{bmatrix} b & c \\ e & f \end{bmatrix} - h \det \begin{bmatrix} a & c \\ d & f \end{bmatrix} + i \det \begin{bmatrix} a & b \\ d & e \end{bmatrix}$$

$$= \det(A) = 1 \cdot \det(A) = \det(E) \cdot \det(A)$$