Lecture 5, January 27, 2017

Review example:
$$
\int \frac{\cos(5x)}{e^{\sin(5x)}} dx
$$
 (substitute $u = \sin 5x$; then $\frac{1}{5} du = \cos 5x dx$)
\n
$$
= \frac{1}{5} \int \frac{1}{e^u} du = \frac{1}{5} \int e^{-u} du = (\text{substitute } z = -u, \text{ so } -dz = du)
$$
\n
$$
= -\frac{1}{5} \int e^z dz = -\frac{1}{5} e^z + C = -\frac{1}{5} e^{-u} + C = -\frac{1}{5} e^{-\sin(5x)} + C
$$

From last time: a region (shaded) lying between $x = a$ and $x = b$, with top boundary curve $y = f(x)$ and bottom boundary curve $y = g(x)$ has area $\int_a^b f(x) - g(x) dx$ \boldsymbol{b}

Q1: Draw a picture and then write an integral that gives the area between the graphs of $y = x^2$ and $y = x^3$

A)
$$
\int_0^2 x^2 - x^3 dx
$$
 B) $\int_0^1 x^3 - x^2 dx$ C) $\int_0^1 (\sqrt{x} - \sqrt[3]{x}) dx$
D) $\int_0^1 x^2 - x^3 dx$ E) $\int_0^1 \sqrt[3]{x} - \sqrt{x} dx$

Answer

The curves intersect where $x^3 - x^2 = 0$, so, where $x = 0$ and $x = 1$ Between 0 and 1, $x^3 < x^2$ (for example, $(\frac{1}{2})^3 < (\frac{1}{2})^2$)

The shaded area between the curves is

 \int_0^1 (top boundary function – bottom boundary function) = $\int_0^1 x^2 - x^3 dx$ (The value is $\frac{x^3}{3} - \frac{x^4}{4} \Big|^{1} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$. $\frac{x^3}{3} - \frac{x^4}{4} \Big|_0^1 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$.)

Example: Find the shaded region

The region lies between $x = -1$ and $x = 3$. The functions that give the top and bottom boundaries are not given, but we can figure them out:

We have the curve
$$
x = g(x) = 3 - y^2
$$
, so $y^2 = 3 - x$
 $y = \pm \sqrt{3 - x}$

The upper boundary of the region is the graph of the function $y = f(x) = -\sqrt{3-x}$ The lower boundary of the region is the graph of the function $y = g(x) = -\sqrt{3-x}$

The earlier formula then gives

Shaded area
$$
= \int_{-1}^{3} (\sqrt{3-x}) - (-\sqrt{3-x}) dx = \int_{-1}^{3} 2\sqrt{3-x} dx
$$

 $=$ (substitute $u = 3 - x$) $\int_{4}^{0} - 2\sqrt{u} du$
 $=$ (for convenience) $\int_{0}^{4} 2\sqrt{u} du = \frac{4}{3}u^{3/2}\Big|_{0}^{4} = \frac{32}{3}$

We can also use the formula (see textbook/class notes) describing the area in terms of right and left boundary curves" $x = f(y) = 3 - y^2$ and $x = g(y) = -1$.

Form the equation $x = 3 - y^2$, the upper and lower left corner points of the region are $(-1, \pm 2)$. The area is given by

 \int_{-2}^{2} (right boundary curve – left boundary cruve) dy $=\int_{-2}^{2}(3-y^2)-(-1) dy = \int_{-2}^{2}4-y^2 dy$ $=2\int_0^2 4-y^2\,dy=2(4y-\frac{y^3}{3})\Big|_0^2=2(8-\frac{8}{3})=\frac{3}{4}$ $\frac{1}{3}$)_{|0} = $2(8-\frac{1}{3}) = \frac{1}{3}$ $\left| \frac{3}{2} \right|^2 = 2(8 - \frac{8}{2}) = \frac{32}{2}$ \uparrow

optional maneuver to make calcuoations easier: ok because $h(y) = 4 - y^2$ is a even function: see last lecture

Q2: Write a different integral that gives the area between the graphs of $y = x^2$ and $y=x^3$.

A)
$$
\int_0^2 y^2 - y^3 dy
$$
 B) $\int_0^1 y^3 - y^2 dy$ C) $\int_0^1 (\sqrt{y} - \sqrt[3]{y}) dy$
D) $\int_0^1 y^2 - y^3 dy$ E) $\int_0^1 \sqrt[3]{y} - \sqrt{y} dy$

(Refer to Q 1, same drawing.) Written in terms of y, the boundary curves are

right boundary:
$$
y = x^3 \longrightarrow x = \sqrt[3]{y}
$$
 and
left boundary: $y = x^2 \longrightarrow x = \sqrt{y}$

The region lies between $y = 0$ and $y = 1$. The area is

 \int_0^1 (right boundary curve – left boundary curve) dy

$$
= \int_0^1 \sqrt[3]{y} - \sqrt{y} \, dy = \int_0^1 y^{1/3} - y^{1/2} \, dy = \frac{3}{4} y^{4/3} - \frac{2}{3} y^{3/2} \Big|_0^1 =
$$

= $\frac{3}{4} - \frac{2}{3} = \frac{1}{12}$ (same answer, of course, as in Q1)

Example Find the area of the region bounded by $y = \tan x$, $y = \tan(1)$ (a horizontal line!), and $x = 0$ (a vertical line!)

The picture looks like

Method I: the shaded area is $\int_0^1 \tan(1) - \tan \theta$ $\int_0^1 \tan(1) - \tan(x) dx$

$$
= (\tan(1) \cdot x - \ln |\sec x|) \Big|_0^1
$$

= $[\tan(1) \cdot 1 - \ln(\sec 1)] - [\tan(1) \cdot 0 - \ln(\sec 0)]$
= $[\tan(1) \cdot 1 - \ln(\sec 1)] - [\tan(1) \cdot 0 - \ln(1)]$
= $[\tan(1) \cdot 1 - \ln(\sec 1)] - [\tan(1) \cdot 0 - \ln(\sec 0)]$
= $\tan(1) \cdot 1 - \ln(\sec 1) \qquad (\approx 0.9418)$

Method II: The region lies between $y = 0$ and $y = \tan(1)$; the left boundary is $x = 0$ and the right boundary is $x = \arctan y$ (from solving $y = \tan x$ for x), so

the shaded area is
$$
\int_0^{\tan(1)} \arctan y - 0 \, dy = \int_0^{\tan(1)} \arctan y \, dy
$$

We have not yet learned any way to find the antiderivative $\int \arctan y \, dy$. Therefore only Method I works for us right now. However, in fact,

$$
\int \arctan y \, dy = y \arctan y - \frac{1}{2} \ln(1 + y^2) \qquad \text{(which you can verify bydifferentiating!)}
$$

Given that fact:

Area =
$$
\int_0^{\tan(1)} \arctan y \, dy = (y \arctan y - \frac{1}{2} \ln(1 + y^2)) \Big|_0^{\tan(1)}
$$

$$
= \tan(1)\arctan(\tan 1) - \frac{1}{2}\ln(1 + \tan^2(1)) - (0 - \frac{1}{2}\ln(1))
$$

$$
= \tan(1) \cdot 1 - \frac{1}{2}\ln(1 + \tan^2(1))
$$

= tan(1) - $\frac{1}{2}\ln(\sec^2 1) = \tan(1) - \ln((\sec^2 1)^{1/2})$
= tan(1) - ln (sec 1) (same answer as Method I!)

Extra Example, not used in either lecture

This same picture was used in Lecture 4: The areas were computed in terms of x . (See Lecture 4 notes). Here, the boundary curves are written as functions of y .

For the region A1: the part of A1 below the x axis has

right boundary
$$
x = 1 + \sqrt{1 + y}
$$
 and
left boundary $x = 1 + \sqrt{1 + y}$

Then we think of "right boundary curve $-$ left boundary curve as giving the "height" of a rectangular strip (lying sideways) with width Δy . This leads to the integral

$$
\int_{-1}^{0} (1 + \sqrt{1 + y}) - (1 - \sqrt{1 + y}) dy = \int_{-1}^{0} 2\sqrt{1 + y} dy
$$

(substitute $u = 1 + y$)

$$
= \int_{0}^{1} 2\sqrt{u} du = \frac{4}{3}u^{3/2} \Big|_{0}^{1} = \frac{4}{3}
$$

The area for the part of A1 that lies above the x -axis is

$$
\int_0^3 (1 + \sqrt{1 + y} - y \, dy) = \int_0^3 1 + \sqrt{1 + y} \, dy - \int_0^3 y \, dy
$$

(substitute $u = y + 1$ in the first integral)

$$
= \int_0^3 1 + \sqrt{1 + y} \, dy - \int_0^3 y \, dy = \int_1^4 (1 + \sqrt{u}) \, du - \int_0^3 y \, dy
$$

$$
= (y + \frac{2}{3}y^{3/2}) \Big|_1^4 - \frac{y^2}{2} \Big|_0^3 = (4 + \frac{16}{3} - 1 - \frac{2}{3}) - (\frac{9}{2} - 0)
$$

$$
= \frac{24 + 32 - 6 - 4 - 27}{6} = \frac{19}{6}
$$

Putting the 2 areas together, we'd get area A1 = $\frac{4}{3} + \frac{19}{6} = \frac{27}{6} = \frac{9}{2}$ (of course, the same as the answer for area A1 obtained in Lecture 4).