Sums of Powers of Natural Numbers

Let's use the symbol S_{k} for the sum of the $k^{t h}$ powers of the first n natural numbers. In other words,

$$
S_{k}=1^{k}+2^{k}+\ldots+n^{k}
$$

Of course, this is a "formula" for S_{k}, but it doesn't help you compute - it doesn't tell you how to find the exact value, say, of $S_{3}=1^{3}+2^{3}+\ldots+15^{3}$. We'd like to get what's called a closed formula for S_{k} - meaning one without the annoying "..." in it.

For $S_{0}=1^{0}+2^{0}+\ldots+n^{0}$, this is easy: since there are n terms, each equal to 1 , so we get

$$
S_{0}=1+1+\ldots+1=1 \cdot n=n
$$

For S_{1}, it's already harder. Here's a neat way of finding a closed formula for S_{1} :
Write down the sum S_{1} twice, in two different orders:

$$
\begin{array}{lllccccc}
S_{1} & =1 & + & 2 & + & 3 & +\ldots & +(n-1)+ \\
S_{1} & = & n & + & (n-1)+ & (n-2)+\ldots & + & 2
\end{array}+1 \text { Then add to get: }
$$

Since $(n+1)$ appears n times on the right side,

$$
2 S_{1}=n(n+1), \text { so }
$$

$$
S_{1}=\frac{n(n+1)}{2}
$$

This is a "usable" closed formula: for example, $1+2+3+\ldots+15=\frac{15(16)}{2}=120$.
The argument above shows how somebody might actually "discover" the formula. (Of course, if someone just gave you this as a proposed formula, you could then verify that it always works using mathematical induction, a method you should have seen in a precalculus course.)

There are lots of such formulas. They often come up in Calculus I when integrals are introduced: they are useful for evaluating integrals like $\int_{0}^{1} x d x, \int_{0}^{1} x^{2} d x, \ldots$ directly from the definition of the integral (without using the Fundamental Theorem of Calculus. (For example, see pp. 368 in the textbook, Stewart, Calculus Early Transcendentals, 8th edition.) Here's a list of some of those formulas. You should try proving one or more of them using induction.

$$
\begin{aligned}
& S_{0}=1^{0}+2^{0}+\ldots+n^{0}=n \\
& S_{1}=1^{1}+2^{1}+\ldots+n^{1}=\frac{n(n+1)}{2} \\
& S_{2}=1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \\
& S_{3}=\left[\frac{n(n+1)}{2}\right]^{2} \quad\left(\text { Curious observation: } S_{3}=\left[S_{1}\right]^{2}\right)
\end{aligned}
$$

Where do these formulas come from? Each one can be proved by induction if you are given the formula. But what, for example is S_{4} ? Did somebody find the S_{3} formula by looking at lots of values of n and then guessing a formula that would fit her calculations?

There is a way to get a formula for each S_{k} once you know the previous ones. This is called a recursive formula for S_{k} : one that's given in terms of the preceding formulas $\mathrm{S}_{0}, S_{1}, \ldots, S_{k-1}$. Here's how it works (an idea I first read in George Polya's book, Mathematical Discovery):

We can see directly that $S_{0}=n$. How can we use S_{0} to find S_{1} ?
For any positive integer j, we know that $(j+1)^{2}-j^{2}=2 j+1$. We write this down for each value $j=1,2, \ldots, n$

$$
(n+1)^{2}-n^{2} \quad=2(n)+1 \quad \text { Adding up the columns on both sides (lots of }
$$ cancellations happen on the left-hand side) gives

Now we know formulas for S_{0} and S_{1}. How can we get a formula for S_{2} ? It's exactly the same idea, but a little more algebra. For any j we know that $(j+1)^{3}-j^{3}=3 j^{2}+3 j+1$. Write this down for each $j=1,2, \ldots, n$.
so $n^{3}+3 n^{2}+3 n+1-1=3 S_{2}+3 S_{1}+S_{0}$.
Then we solve to get $S_{2}: n^{3}+3 n^{2}+3 n-3 S_{1}-S_{0}=3 S_{2}$, so

$$
S_{2}=\frac{n^{3}+3 n^{2}+3 n-3 S_{1}-S_{0}}{3} . \text { This is a recursive formula for } S_{2}
$$

If we like, since we know formulas for S_{1} and S_{0}, we can substitute, simplify, and get

$$
\begin{aligned}
S_{2} \quad & =\frac{n^{3}+3 n^{2}+3 n-3\left[\frac{n(n+1)}{2}\right]-n}{3}=\frac{\frac{2 n^{3}+6 n^{2}+6 n-3 n^{2}-3 n-2 n}{2}}{3} \\
& =\frac{2 n^{3}+3 n^{2}+n}{6}=\ldots=\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

See if you can now derive the formula for S_{3} (mentioned above), making use of the algebraic identity $(j+1)^{4}-j^{4}=4 j^{3}+6 j^{2}+4 j+1$.

$$
\begin{aligned}
& 2^{3}-1^{3} \quad=3\left(1^{2}\right)+3(1)+1 \\
& 3^{3}-2^{3} \quad=3\left(2^{2}\right)+3(2)+1 \\
& 4^{3}-3^{3} \quad=3\left(3^{2}\right)+3(3)+1 \\
& n^{3}-\ldots \\
& (n+1)^{3}-n^{3} \quad=3\left(n^{2}\right)+3(n)+1 \text {. Adding up the columns on both sides } \\
& \text { gives } \\
& (n+1)^{3}-1=3\left(1^{2}+2^{2}+\ldots+n^{2}\right)+3(1+2+\ldots+n)+(1+1+\ldots+1) \\
& \begin{array}{lllll}
=3 & S_{2} & +3 & S_{1} & +
\end{array} S_{0}
\end{aligned}
$$

$$
\begin{aligned}
& 2^{2}-1^{2}=2(1)+1 \\
& 3^{2}-2^{2} \quad=2(2)+1 \\
& 4^{2}-3^{2}=2(3)+1 \\
& \begin{array}{l}
\vdots \\
n^{2}-\ldots
\end{array} \\
& (n+1)^{2}-1=2(1+2+\ldots+n)+n \\
& =2 S_{1}+n \quad \text { so } \\
& n^{2}+2 n+1-1=2 S_{1}+n \quad \text { so } \\
& n^{2}+n=2 S_{1} \quad \text { so } \\
& \frac{n^{2}+n}{2}=\frac{n(n+1)}{2}=S_{1} .
\end{aligned}
$$

Some Additional Material

If you know the binomial formula (from high school) and can therefore expand $(j+1)^{k}$, then the same idea works for any natural number k. But the bigger k is, the more algebra is involved. An outline goes like this.

The formula for the "binomial coefficients" : $\quad\binom{k}{l}=\frac{k!}{l!(k-l)!}$
Suppose we have figured out formulas for $S_{0}, S_{1}, S_{2}, \ldots, S_{k-1}$. We know (from the binomial theorem) that for any j,

$$
(j+1)^{k+1}-j^{k+1}=\binom{k+1}{1} j^{k}+\binom{k+1}{2} j^{k-1}+\binom{k+1}{3} j^{k-2}+\ldots+1
$$

Write this out for each value $j=1,2, \ldots n$.

$$
\begin{aligned}
& 2^{k+1} \quad-1^{k+1} \quad=\binom{k+1}{1} 1^{k}+\binom{k+1}{2} 1^{k-1}+\binom{k+1}{3} 1^{k-2} \ldots+1 \\
& 3^{k+1} \quad-2^{k+1} \quad=\binom{k+1}{1} 2^{k}+\binom{k+1}{2} 2^{k-1}+\binom{k+1}{3} 2^{k-2} \ldots+1 \\
& \text {...... } \\
& (n+1)^{k+1}-n^{k+1} \quad=\binom{k+1}{1} n^{k}+\binom{k+1}{2} n^{k-1}+\binom{k+1}{3} n^{k-2} \ldots+1 . \quad \text { Add the columns: } \\
& (n+1)^{k+1}-1 \quad=\binom{k+1}{1}\left(1^{k}+2^{k}+\ldots+n^{k}\right)+\binom{k+1}{2}\left(1^{k-1}+2^{k-1}+\ldots+n^{k-1}\right) \\
& +\binom{k+1}{3}\left(1^{k-2}+2^{k-2}+\ldots+n^{k-1}\right) \quad \ldots+n \\
& =\binom{k+1}{1} S_{k}+\binom{k+1}{2} S_{k-1}+\binom{k+1}{3} S_{k-2}+\ldots+S_{0} .
\end{aligned}
$$

Then we solve for what we want:

$$
\begin{aligned}
S_{k} & =\left[(n+1)^{k+1}-1-\binom{k+1}{2} S_{k-1}-\binom{k+1}{3} S_{k-2}-\ldots-S_{0}\right] /\binom{k+1}{1} \\
& =\left[(n+1)^{k+1}-1-\binom{2+1}{2} S_{k-1}-\binom{k+1}{3} S_{k-2}-\ldots-S_{0}\right] /(k+1)
\end{aligned}
$$

We are assuming that we already have formulas for $S_{k-1}, S_{k-2}, \ldots S_{1}, S_{0}$ - which we then substitute into this formula to get one closed, if complicated, formula for S_{k} in terms of n. Try it to find a formula for

$$
S_{4}=1^{4}+2^{4}+\ldots+n^{4}=\ldots
$$

