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Mote that an incoming flow of 3400 {3/ is not within the domain we established in Problem 2, so we cannot simily use our
previons work 10 give the optimal distibution. We will need to use ail three wrbines, due to the capacity limitations of each
individual turbine, but 3400 is less than the maximum combined capacity of 3445 f%/5, 50 we atill must decide how to
distribute the Hows, From the graph in Prebiem 4, Turbine 3 produces the most power for the higher flows, so it seems
ceasonable to use Turbine 2 at its mastimum cepacity of 1225 and distmibute the remaining 2175 /s low betwaen Turbines }
and 2. We can again use the technigue of Fagrange multipliers to determine the optimal distribution. Following the procedure
we nsed i Problem 5, we wish w maximize KW 4 K'Wa subject to the constraint 1 + @y = Qr where JJr = 217h. We
can eguivalenily maximize

KWy + AW

= (1880 - 0.1277Q1 — 4.08 - W077QF) + (~24.51 + 0.1358C - 4.69 - 0708

subject 1o the constraint g{@1, (2 = {1 + Qo = Gy Then we solve VF(Ch, Qo) = AVg{d, G2) =2

01277 - 2(4.08 - 107°) = A and 0.1358 - 2{4.66 - 10 Qg == A, thus

54
01977 — 2408 1070y = 0.1358 — 2(4.89 10750z = Qo = —99.2647 + 11495 Substituting
o (J1 + (o == (Qr gives —99.2647 + 1148507 + {3 = 2375 = QJz == 10B8.0, and then {31 == 1117.0. This value for

i1 is larger than the allowable maximum Aow 10 Turbine 1, but the result indicates that the flow 1o Turbine | shonld be

mazimized. Thus we shonld recommend that the company apportion the maximum allowable fows to Turbines | and 3, 1110
and 1995 ft¥/s, and the remaining 1065 fi/s to Turbine 2. Checking nearby distributions within the domain verifies that we

have indeed found the optimal distribution.

14 Review

1. (a} A function f of twe variables is a rule that assigns to each ordered pair {u, y) of real numbers in its domain a unique real

number densted by fla, y).
(b} One way to visualize a function of two variables is by graphing it resulting in the surface # = f{x.y). Another method for
visuatizing a function of two variables is a contour map. The comtour map consists of level curves of the function which are
horizontal traces of the graph of the function projected onte the zy-plane. Also, we can use an arrow diagram such as
Figure | in Section 14,1

5 A function f of threé variables is 2 rule that assigns to sach ordered friple {2, y, 2) in its domain a unigue real niunher

fla,y, ). We can visualize a function of three variabies by examining its level surfaces f (.3, z) = k, where k is a constant.

3, Hm  f{xy) = L means the values of f{w,y) approach the number £, as the point (x, ) approaches the pomt {a, b}

Loy )= Lanb) .

along oriy paih that is within the domain of f. We can show that a limii at a point does not exist by finding two different paths

approaching the point along which Flo,y) has differsnt &
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. (2} See Definition 14.2.4,

{bY I 7 s continuous on B2, its graph will appear as a surface without holes or breaks.

. {a) See {2y and (3} in Section 14.3,

~

() See “Interpretations of Partial Derivatives™ on page 527 [ET 903,
{c) To find fo. vegard y as a constant and differentiate f{x, y) with respect to z. To find f,, regard 2 a8 2 constant and

differentiate f{z,y) with respect 10 9.

i
4

. Bee the statement of Clairaut’s Theorem on page 931 [ET 907).

. {ay See (2) in Section 14.4.

{b) See (19) and the preceding discussion in Section 14.6.

. See (3} and {4} and the accompanying discussicn n Section 14.4. We can interpret the linearization of f at {a, ) geometrically

as the linear function whose grapl is the tangent plane to the graph of f at (@, b). Thus it is the linear function which best

approximates [ near (g, b},

. {2} See Definition 14.4.7.

by Use Theorem {4.4.8,

. See {10) and the associated discussion in Section 14.4.
. See (2) and (3} in Secuon 14.5.
. See (7) and the preceding discussion in Section 14.5.

. {2} See Definition 14.6.2. We can interpret i as the rate of change of  at (2o, yo) i the direction of 1. Geometrically, if P is

the point (0, yo. flae, yol) on the grapk: of f and C' is the corve of intersection of the graph of f with the vertical plane
thai passes through F in the direction u, the directional derivative of £ at {zq, 40} in the direction of u is the slope of the
tangent Hie to O at . (See Figure 5 in Section 14.6.)

{b} See Theorem 14.6.3.

{a} See (8) and {13} in Section 14,6,

b} Dy fla,y) = Ve gy -vor Dy fle,y,2) = Ve, p2)-u

(¢} The gradient vector of a function points in the direction of maximum tate of increase of the function. On a graph of the
function, the gradient points in the direction of stezpest ascent,

fa) f haes a lecal maximum at {a, b) i flr, 30 < fla, b) when (2, 9) is near (a, &)

(b} f has an absolute maxamum at (a, b) if f{x, ) = fla, b) for all points (2, 1) in the domain of f.

{c) f has a local minimum at fa. b) if f{z,y) = fla,b) when {z,y) is near (a. b).

{d) f has an absolute minimum at{a, 5} if f{z.y) = fla,b) for all points {z, y) in the domain of i

{e} [ has a saddle peint at (a, b) if f{a,b) is a local maximum in one direction but a local minimum in another.
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(a) By Theorem 14.7.2, if f has a Jocal maximum at (a, b) and the first-order partial derivatives of f exist there, then
Fela,b) = 0and fy(a,b) = 0.

(0) A critical point of f is a point {a, b} such that f.{a.5) = 0 and fy{a.b) = 0 or one of these partial derivatives does

not exist,

. See (3) in Section 14,7,

. () See Figure 11 and the accompanving discussion in Section [4.7.

(b) See Theorem 14.7.8.
{c) Ses the procedure outlined in (9) in Section 14.7.

See the discussion beginning on page 981 [ET 9577; see “Two Consiraints” on page 985 [ET 961).

TRUE-FALSE GUIZ

10,

1.

12.

 True. fy(a,b) = lim

. Halse, fz, =

f(aab+h}"—‘ {ab}

1 p from Cquation 1433 Leth =y —h Ash — (, y — b. Then by substituting,
F— )

May) — flo.b)

we get fy(a,b) = Lrﬁ "

. False. If'there were such a finction, then Foy = 2y and fuz = 1. S0 foy o fy.. which contradicts Clairaut’s Theorem.

57

Oy dx”

- True. From Equation 14.6,14 we get Dy i, v, 2) = YV f{z, v, 2p 0,0, = fulzy, 2)
. False. See Example 14.2.3,
- False. See Exercise 14.4.46(a).

- True. If 7 has a local minimum and f is differentiabie at (q, b) then by Theorem 14.7.2, fo(a,b) = Cand f, (s, b) = 0, s0

Vfla, by = {fu(a,b), fyla, b)) = (0,0} = 0.

. False. If [ is not continuous at (2. 5), then we can have  lim flz.y) # 7(2.5). (See Exampie 14.2.7)

{2, (2,5)

- False. Vi (x,y) = (0, 1/y).

True. This is part {c) of the Second Derivatives Test (14.7.3).

True. Vf = {cosz,cosy), s0 [V = /eos & + cos® . But leas Bl < 1, 50 IV < /2. Now

—

Dy fley) =V aw= Vil lualcos b, but uis a unit veetor, 50 | Dy flz, 1)l £ V2 1-1= /2

False. See Exercise 14.7.37.
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1. In{w+y+ 1) is defined only whenz +y -+ 1 >0 < ¢ > —x—1,
so the domain of f is {(x,¥) | v > —~a — 1], all those points above the

imey = —ux— L

VL R R 4 is defined only when 4 — % — yz 0 e 1 yg < 4, and i
iyt g
v1—z7isdefinedonly when 1 — 2% > 0 & —1 <2 < 1, so the domain of
Fis z,y) | =1 <2 <1, =4 — 5% <y < /14—~ 2 |, which consists of those - ‘
VT Y Y i x
‘points on or inside the circle 2% + y* = 4 for ~1 < < 1.
3.z = fiz, ¥} = 1 —¢°, a parabolic cylinder bz = flr,y) = z° + (y ~ 2)%, 5 circular paraboloid with
, P Y P

5. The level curves are /4a? +y2 = kor
do” + o = k%, k > 0. a family of ellipses.

¥

family of exponential curves.

vertex (0, 2, 0) and axis paraliel to the z-axis

6 Thelevelcurvesare o +y =k ory = —e” + k,a
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8. f is a rational function, o it is continuous on its domain, Since [ is defined at {1, 1), we use direct substitution 10 evaiuate

0. As (2, y} -~ (0,0) aleng the z-axis, f{z,0) = O/a® =0 forz £ 0,50 flw,y) — 0 along this line. But

Fle,2) = 222/ (3a%) = ;; so as (2,5} ~ (0,0) aleng the line = = v, f{x, ¥} — %. Thus the limit doesn’t exist,
. _ T{6+ B4 - T6, 4
M. (@) T.{6,4) = fimgx} 6xh ~h), (6.4)

, 30 we can approximate T5,{6, 4} by considering & = =2 and
. L ) T(8.4) — T(6.4 B6 — 80
using the values given in the table: T5,(6,4) =~ I8 4 - (6.4) =2 5 = 3,
4,4y —T{6.4) T2 &

Loy~ TAGZTON 7250

= 4. Averaging these VEULEEES., we estimate 7 i (f) 4\ to be ap roximaw}v
& ging J pp b
3.;)0(',7‘/11’1. Simiiar]y.‘ T:U (6,

T(6.4 -+ h)—T(8,4 . . . L
4) = _Ii.m} (6.4 ?}] (6. 4) , which we can approximate with i = £2:
fr—{ 1
o {6,6) — T8, 4] 75— & o e e e T{6,2) - T(6.4y 87 —8&0 .
7,6, 4) o L8 ZTOA) T80 o 6,4y~ ©.2 - TEA) _ 87780 4 5 Averaging these
2 2 —2 -2
values, we estimate 73 (8, 4) to be approximately —3.0°C/m.
!
=
(b)Y Herew = vl

1
vy

:%> so by Equation 14.6.9, D, T{8,4) = VT(6,4} - v = T,{6,4) = + T}(6.4) ~\/5§ Using our
estimates from part (a), we have D, T(6,4) =~ (3.5} =5+ (—8.0) % = 3o (3.35. This means that as we move
through the point {6, 4) in the direction of 1, the temperature increases at a rate of approximately 0.36°C/m.

T(6+hsd+hdy) —T(6,49)
Aliernatively, we can use Definition 14.6.2: Do T{6,4} = [Em}} : L

( h ’
. . . . . TIR,6) — T8, 4 30— 80
which we can estimate with & = 22, Then D, T{6,4) = (8,6) — 6,4) B il o wm {),
213 272
o T4, 2) — 716, 4) T4 - B0 B . - ,
D, T6,4) = A ) ,_‘j‘ Lo 48 = . Averaging these values, we have D, T(8, 4) = ,Sf— =2 1170 /m.
’ ~2/2 —22 2 WA
, 5 o Tzt h) - Tl T (B, AR = TR(6,4)
(€) Taplz. y} = = Ll )l = lim To(z,y & 1) "‘{‘J), 50 Ty (6, 4) = lim 18 h) = T:(6,4) which we can
(_}y - ’ ) I h—0 h
estimate with £ = =2. We have T, (8, 4) #z ?

3.5 from part (2), but we will also need values for T5,(6, 6) and 7. (8, 2). fwe
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use h = =2 and the values given in the table, we have

T(8,6) — T(6,6) 80 — 75 L T4,8) - T(6,6) 68 75

3, 6% = :xr-ﬁ ‘T{‘-.) = Gad,
T:(6,6) 5 T 2.5, T-{8,6) ~5 — 5
Averaging these values, we estimate T%(6, 6) = 3.0. Similarly,

,2) — TL(6, 94 — 87 4.2 —7T(6,2) | — &7
CT6.2) T{8,2) — T.{6,2) _ 90 T 5. T0{6,2) ~ T{4.2) _ {6,2) _ 74 — 87 — 85

2 2 -2 -2

Averaging these values, we estimate 75(6,2) ~ 4.0. Finally, we estimate 7,,,{8, 43:

To{6,6) — Tp(6,4) 3.0 — 3.5
2 T2

T(6,2) — To(6,4) 0 —-35 .
= —0.25, Ty (6, 4) = = /“2 -t - 48A23 = -—0.25.

Ty (6,4) =

Averaging these values, we have Th, (6, 4) & ~0.25.

- From the table, T'(6, 4) = 80, and from Exercise 11 we estimated T3.(6, 4) = 3.5 and T, (6, 4) & —3.0, The lincar

approximation then is

Ty y) = T(6.4) + To(6,4)(z ~ 6) + T,(6,4) (y — 4) ~ 80 < 3.5{z — 6) — 3(y — 4) = 3.5z~ Jy + 71
Thus at the point (8, 3.8). we can use the lincar approximation to estimate T(5, 3.8) = 3.5(8) - 3{3.8) + 71 = 77.1°C.
Faoy) = (6y* +22%y)% = fo = 8(5y° + 220%y) " (day) = 32ay(5y® + 22%y)7,

fu = 8{6y" + 207y (150% 4 22%) = (1627 12097 (5y” + 22%y)"

. . -k 20 ()1 — (w = 20) (20 oF - o —
Q(U,,’U) = -7 5 = Gu = FRTNACIY) ‘ = R L V)
w2 gt {u? + o) {12 4+ v?)
(T~ (u + 20 (20) 2w — 2P - 2w
= {0 22 T (u? e e2)2
Floy8) =’ In(e® + 5% = F,=qd" ! (2a) + Infe” + £%) - 20 = —2-33—» F 2 lnfa® + 6%)
gty — 3 L - S (12“7*,’32 A ) *sz_!_ﬁ):z‘r L ),
1 204
Fy = o - 28) = — -
’ ot + 37 (26) ot - B
Gz, y,z) = " siﬁ{y/zj = Ga =26 sin(y/z), Gy = e cos{y/z)(1/z) = (" /z) cos(y/2),

H o

G =% - cosly/z)(—y/2%) +sin(y/z) - pe™ = ¢ lwsin{y/z) — (y/2*) cos(y/z))|

i

o y . i w1
S v, w) e varctan{vyw) = 8, = arctan({v /i), Sy = ot e () = —
Vs A \/ ; At ;

1 (o) T+otw’

: 1 S 195 wy
S’u.: EREAY e (’U LW /2) el
f+ (wya® Nt 2w {1 v

C = 1449.2 + 487 — 0.0557° + 0.000207 % + (1.34 — 0.01T)S — 35) + 0.016D =
GOJOT = 4.6 ~ 0.11T 4 0.000877°% — 0.01{5 ~ 35}, 3C/8S = 1.34 — 0.017, and 9C/8D = 0.016. When T’ = 10,
S == 35, and 1 = 100 we have 8C /8T = 4.6 — 0.11(10) 4 C.00087(10)° — (0.0L{35 — 35) =~ 3.587, thus in 10°C water

with salinity 35 parts per thousand and a depth of 100 m, the speed of sound increases by about 3.59 m /s for every degree

MRS el Lt
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Celsius that the water temperature rises. Similarly, 5C/85 = 1.34 — 0.01{10) = 1.24, so the speed of sound increases by
about 1.24 m/s for every part per thousand the salinity of the water increases. 4C/8D = (.0186, so the speed of sound

increases by about 0.016 m/s for every meter that the depth is increased,

19, fla,y) =40° —wy® = fo =120 =07, fy o= 22wy, fao = 248, Sy = 222, foy = fue = -2
Wozm=ae” m g, =me W gy = 23e T, e =0, 4y = dme Y, 2oy = 2y = —27
9. f{éﬁyy,zj — ;‘L‘k?jg;’m i f:z, — kw}cﬁ”gyizm.’ fy - ‘Z:},I,A;?’,E—izm1 fz — mwhyl’zmwl’ 'la:m : k(k _ ;E_}x.'s:—zyizm,
fug = )‘(Z _ l)aﬁk:yii'QZm, fzz — m(m " 1);‘6';':‘])32'7“_2, f:c;y . fq;b — IL“j:Eia:ml,yi——lZm,5 fu:z - f“z _ fi}?’l’lwkily‘,‘szl
fyz — fzy - hnmkyl—lzm—l
2 v=roos(s+2t) = U = cos{s 4 2), v, = —rsins +28), v = —2rsins + 2L), ver = 0, vy = —7 cos{s + 1),
gy = =47 cos{s + 28, Ues = Ver = — 505+ Y Ure = Ve = =205 + 2L}, vy = vy = —27 cos(‘s =+ 2t)
Bz =y +aeT o= oo =y ¥ g/t DD —p g8/ and
Y o7 T ay :
Hz Oz Y yiz o _yi= ' y/ im yiw ; y/z . v/
I oy S = ;n(y o g# T WY )—»ﬁ—y(w 4oV ) oy — ye¥ T dme? T fopy b ye?’ T = 2y oy doxe’T = ay ez
dx Jy : .
28, r = sin(x +sint) = 2z = cosly + sin ) oz = gos {2+ sint) cosf
S ' T ot ' ’
3%z . . o .
Segr = T HB {z + sint)cost, %&é = —gin{x + sint) and
bz Bz . ‘ . . L o D2
im = cgs(a: 4 sint) [~sin (z +sint) cos#] = cos (z + sint) (cost) [—sin{z +sint}] = Eraet
B (@) z, =022 = zdl, -2 =S8and iz = -2y = z,{1, —2) = 4, 50 an equation of the tangent plane is
z—1=8z -1} +4y+2)orz=8z+4y+ 1L .
b) A normal vector o the tangent plane (and the surface} at (1, —2, 1) is (8,4, —1}. Then parametric equations for the nermal
. ‘ . -1 2 z-1
linethereare v = 1 -+ 8,y == —2 4 44, 2 = 1 — ¥, and symmetric eguations are z 7 =4 —I o -
26 (8) ze = e¥cosy =  %00,0)=landz, = —e%siny =  2,(0,0) = 0, so an equaticn of the tangent plane i3
z—1=1{z-MN+0y—0jorz=x+1 .
(b) A normal vector to the tangent plane (and the surface) at (0,0, 1) is (1,0, ~1}. Then parametric equations for the normal’ -
linethereare x = £, y == 0, z = 1 ~ ¢, and symmetric equations are t = 1 — z, y = 0.
27, (@) Let Flz,y, 2) = 2% + 2% — 32°. Then Fy, = 22, F, = dy, Fl, = 62,50 Fo(2, -1, 1) = 4, F,(2, -1, 1) = ~4,

F.(2,—1,1) = ~6. From Equation 14.6.19, an equation of the tangent plane is 4(z — 2) — 4{y + 1) ~ 6(z — 1} =D

or, equivalently, 2x — 2y — 3z = 3.

. . . . T -2 y + 1 z-1
(b) From Equations 14.5.20, symmetric equations for the normal line are < T Y 2 =
- -6
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& (a)Let Fizmy.2) =xy-+yer+ox Then Fr =y + 2, Fy=a+z F. =24y, s0
Fol 1) = Fy(1,1,1) = F.(1,1,1) = 2. From Equation 14.6.19, an equation of the tangent piane is
e — 1)+ 2y — 1)+ 2(z ~ 1) = O or, equivalently, » + y + 2 = 2,

=1 4} o

(b} From Equations 14.6,20, symmetric cquations for the normal line are ——= = = o Z or, equivalently,

yurrd

@

y=z

2 (o) Let Flz,y,z) = ¢+ 2y + 8z — sin(zyz). Then Fy = 1 — yzcos{zyz), F, y o= 2~ preos(zys), Fo = 3 — xy cos(ayz),
50 (2, -1,0) = 1, Fy(2, - 1.0) = 2, Fo{2, —1,0) = 5. From Equation 14.6.19, an equation of the tangent plane is

Hr—~2)+2{y+1)+5(z—0) =0orx+ 2y + bz = 0.

o . o . , .. €T +1 z y+1 z
{b) From Equations 14.6.20, svmmetric equations for the normal line are ~e—Z = Y = Zortg e 2w Y = Z
i 2 5 2 5

Farametric equations are w = 2+ 4,y = —1 + 24, = = 5.

30 Let flz,y) = 2 £ 4% Then fo(c, y) = 2z and Solz,y) = 4y, s (;—”m{é.,
fu(1,1) = 4 and an eguation of the tangent plane is z 2 = 2(z — 1) -+ 4{y — 1)

or 2% + 4y — = = 4. A normal vector to the tangent plane is {2, 4, —1} s0 the

o —=1 oy r—2 .
normal fire is given by 5 = : = 7 orx =142t y=1+4,
=2 -t
31, The hyperboloid is a level surface of the function F(i, v, 2) = »* + 497 , 8¢ & normal vector 1o the surface at (0, Yo, 20)
is VF{zoy. 20) = (25, 8ya, —2za). A normal vector for the plane 27 + 2y + 2 = 5 is { {2,2,1). For the planes to be

paraliel. we need the normal vectors to he parallel, so {3z, 8ye, ~ 2200 s k{2,2, 1}, ov ey =k, yo = %k and zp = —1

1,3 L2 . 2 5 I ¢ :
k? T =3k =4 = k=4 = k= %2 Sothers are two such points:

. éh
32 u=In{l +s5*") = 5 - "{;“ it =
ot

= folz,y2) = 307 Y0

50 £(2,3,4) = 8(5) = 40, £.(2,5.4) = 3(4) vT5 =

Hnear approximation of f at (2.3, 4) is

Floy, ey me F(2.8.4) + 202,840z — 25 + (2. 8. 4){(y — 8) + f.(2, 3,4z~ 45
4

=40 + 60{x — 2) -

Then (1.98)" /750172 + (3.9712 = F(1.98.3.01.3.97) %66(1.98)

tovy
JL,

4 (3.01) + 22{3.97) ~ 120 = 38.656.

PN - . PRI T v e O S S S T .
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{a) dA = %—L{ dz + %ﬁl« dy = 2ydr + tzdyand |Az] < 0.002, [Ay} < 0.002. Thus the maximum errof in the calculated:

area is about A4 = 6(0.002} + 2(0.002) = 0.017 m® or 170 em?

(b) 2= /22 +y?, de e T = - m"_:g____ dy and [Ax] < 0.002, |Ay| < 0.002, Thus the maximum error in the:
NeEs AR

,_‘

cajculated hypotenuse length is about dz = 5(0.002) + 32(0.002) = =2 3.0026 m or 0.26 cm.

\Jl

du  Budr  Judy  Oudz . 3 ‘ 3 .
3 — + + = 2y (L + 6p) + Saty  {pe” + ") + 427 (peosp + sing
5 dp = dp (91; i e dp oy (1 + 6p) + 3z*y” (pe? + e”) ' (peosp + sinp)

Gu 57} (3'13 a'U C}’!j y a9 . P
SR 2y A 2 S ' EY Y )
% ds  dz ds ay EN (Qm siny +ye ) {1) + (& cosy +zye™ + ™) (¢)

s=0t=1 = ao=2y=( 50‘?3~0*(4+1)()

v Gvdxr | Gudy 2y By Y fo) o B
iy +@y i = (2msiny + y*e™) {2) + (2% cosy + wye™ + ™) {5) =04 0 =0,

bz _ dz 8z Oz 8y

37. By the Chai
y the Chain Rule, — s Gz 0s | Oy ds

CWhens=land{=2r=¢{1,2) =3andy = h{1,2) = §, 50

dz _ ; Lrofeoa v 1y _ _ Jz {92@ dsz
= =03, 6)0: (1, 2) + fy (3,61 he{1,2) = (TH—1) + (B)(—5) = —47. Similarly, = 5 A B +dy ek

% J={3,6)0:{1.2) + fy (3,6) he(1,2) = (T){4) = (8){10) = 108.

38. w Using the tree diagram as a guide, we have

8p 7t (3;0 " uop | Bu op 8q Ot Oq + Ju g | v dg-

H i J2! .
TN /TN /TN e _mwa susn owoy  ow_ower swss suwow
7 oq v s p q.r s p g4 r ¥ :

Br Bt ar  Dudr  dudr OG5 Ot s Buds v Os

L 0f 2 2 Az < 3 J ot df
39, e 2wfi{a® —y), 5y =1 -2yf(z* — 94 i{th)mf = W} Then

8z
) - -
Y5 ~ ia 5y ayf (e -y +x - 2zyf(a® ) =

T , ‘ dd 1, . dx . dy g
A = daysind, de/dt = | dy/dt = —2 {dt = 0. g —— e 3 - s Rl w44 3 ——i.
0. A= Fpysind, de/db =3, dy/di 2, df/dt = (.05, and s L(ysm@} 7 + {zsind) o A4 (zy cosd) dtj
Sowhenw =40,y = 50 and 6 = T, %‘é = % (25)(3) (20)(—2) -+ (1000 /3 }(0. 05)] = 35+ )O me ~ 60.8 in%/s!
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iy a C)z 2 —~y & [0z Zy Hz 8%z 8%z — o G,
:y__‘( >+%y,§fm,m_w ,._J:_my_s{,w..y( %34)+_g/f° -y, wy}

8 dv 2 Pz \ Ov xd S Gu2 " Bodu 22 2 Kdug z? " Budv

2y bz o Oz WP Bz U &z
z* o du?  z? Hudv * P

= ke e
Oz Oubv

et &z N, N &z 1 8%
T b T Budy | of dur ;

&y ad /az 18 [/oz &z &z 1 !
R el Bl B el e B B Tt e |~
dy* dy \ Ou x oy \ v el Gvbux @

Thus
Fggizmgﬁzzmggé?:“}_rzgﬁzz“vz Fz oyt _ e 3%_212 8%y i
52V BRT T Y R T Gaty T mae TV ga W udv  z° e
2y &x . Pz Bz &z
= o Ay e = 21— — e
T ov Y Bu o v Hubo

. >y 2
sincey = sv = — ory’ = uw,
¥

42 cos{zyz) = 1+ 2%y + 2%, s0 let Fiz,y,2) = 1 + 2°9° + 2* — cos(zyz) = G. Then by

z F 2zy” s LYz 2zy” + yrsin{x
Equations 14.5.7 we have i el = _Zmy” dsin(ayz) -y m — :cy .‘i Y :;m(fryz)
ax E. z - sin{rys} - zy 2z + pysin(ryz)
8r B, Wfy+smfoyz)-axz 22% -+ zzsmizyz)
by~ F. 2z+sin{zyz)-zy 23 4 aysinzye)

L2 _ . wa? 2 g 2 L2 2 pa?
83 flz,y.2) =2 = Vfi={fu,fof)= -<2xe"“ L 2he¥ R e 23;2> = <2.’r:ey” , T22PeV 2p?yzets
. i

44, (a) By Theorem 14.6.15, the maximum value of the directional derivative occurs when u has the same direction as the gradient

yector.

(b} It is 2 minimum when u is in the direction. opposite to that of the gradient vector (that is, w is in the direction of =V ),

since [y f == [V f] cos 8 (see the proof of Theoremn 14.6.15) has a minimum when 6 = 7.
{c) The directional derivative is 0 when u is perpendicular to the gradient vector, sitice then Iy, f = VJ 1 = 0,

{d) The directionai derivative is half of its maximum value when Dy, f == |V /| casf = % Wl & cosd= =3

[3=11

rafw

45

fle,y)=2%¥ = Vfe={Gze™¥, —x%e™¥), Vf{-2,0) = (—4,—4). The direction is given by {4, —3}, 50

f

(4, =3) = 24, =3) and Dy f(—2,0) = VF(=2,0) - u = (-4, —4) - $(4, -3} = 316 = 12) -

=1}

h \/44—( 87"

4. V= 2oy + T 2,08 0/ (23T F2)), VAG,2,8) = (6,11} u= {41 -2 Then Dy f{1,2,3) = 2.

BT N S S P P f
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A7V = (2ay, 2+ 1/ (2.0, IVA2,1)] = 1{4, 2)]. Thus the maximum rate of change of fat (2,1} is X122 in the
: ; i i3

Y

direction {4, 3 )

48,V f = laye™, zme®™, €7V, VF(D,1,2) = (2,0,1) is the direction of most rapid increase while the rate is 1{Z,0,1)| = /5.

48. First we draw 2 line passing through Homestead and the eye of the hurricane. We can approximate the directional derivative at
Homestead in the direction of the eve of the uricane by the average tate of change of wind speed between the points where
this line intersects the contour lines closest to Homestead. In the direction of the eye of the hurricane, the wind spesd changes

from 45 to 50 kuots. We estimate the distance between these two points to be approximately 3 miles, so the rate of change of

wind speed in the direction given is approximately 2528 = £ = 0,625 knot/mi.

8

50. The surfaces are flo oy, z}=2— 257 + y* = Dand g(z, y, 2) = 2 — 4 = 0. The tangent line is perpendicular to both V f

and Vo at {~2,2,4). The vector v == Vf Vg is therefore parallel to the line. V f{z. y,2) = {4z, 2y, 1) =

Ti(—2,2,4) = (8,4,1), Vglz,p,2) = {0,0,1) = Vag(=d2 4y = (0,0, 1). Hence

i k|
‘ i

v=VixVg=|8 4 1
lo 0 1]

= 4} — 8 ). Thus, parametric squarions are: @ = —2+4f, ¥y = 28, z =4

51, flz,y) =1 —ay+yt 0 -Gy + 10 = fo=lz—-y+5
fy= =2+ 2 =6, fur =25 fyy foy = —1. Then fx = Gand fy = 0imply
y =1,z = —4. Thus the only critical point is (—4, 1) and Foa(—~4,1) >0,

D{—4,1) = 3 > 0,50 f{—4,1) = ~11 is-a local minimum.

52, flmy) =2 —bay +8y° = fo=32" -6y, fy =6+ 2y*, fow = B,
Fuy = 48y, fan = —6. Then fo = 0 implies y = «°/2, substituting tnto fy, =0
implies 6z{x” — 1} = , so the critical points are (0, 0, {1,1).

D{0,0) = —36 < 050 (0,0} is a saddle point while fe (1.4)=6>0and

D(1,3) = 108 > O s0 f(1, 1) = —1is alocal minimum.

53 flay) = day — Py —ay® = fo= 3y 2oy - y:, [y = 3~ z° — 2zy,
Fow = =20, Fuy = =22, foy = 3 — 22~ 2y. Then f= = 0 implies
y(3— 92z —y) =0soy = Cory =3~ 2 Substituting into fy = 0 implies
2(3 -z} = 0 or 3z(—1+4 x) = 0. Hence the eritical points are (0,0), (3,0,
(0,3) and (1, 1), D(0,8) = D(3.0) = D(0,3) = —9 < 050 (0,0}, (3,0), and
{0, 3) are saddle peints, D(1,1) = 3 > 0and fau(1,1) = =2 < 0,50

F{1,1} = 1is 2 local maximum.
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54, flmy) = (2 +yje¥? = fo=2we¥? fy =2 420 +1)/2,
Jor = 2e¥/% fuo = ¥4 £ 2¥ £ y) /4, foy = ze¥/%, Then f, = 0 implies
z=0,80 fy =0implies gy = —2. Bt fou (0, =2 > L. N0, -2 =™ -0 > 0

©s0 f{0, ~2) = —2/e is a local minimum.

55, First solve inside 0. Here f, = 437 — 2zy” — 4%, fu = 8oy — 200y — Bay”
Then fr == Oimplies y = Oory = 4 — 2, bul y == 0 isn’t inside D). Substiruting
y =4 Zrinto f, = Cimpliesz =(, z . 2orz =1, bute =0isn'tinside I,
and when @ = 2, y == 0 but (2,0} isn’t inside D. Thus the oniy critical point inside
Dis (1,2} and £(i,2) = 4. Secondly we consider the boundary of I,
On Ly f(z,0) =0andso f=0on iy OnLs: 3= —y +6and

Fl~y+6,y) = (6 — y){~2) = —2(61% — 1) which has critica! points

CHAPTER 14

REVIEW O

ity

0,0

{6, 0}

aty = Oandy = 4. Then f{6,0) = 0 while f{2,4} = —64 On Lz f{0,9) = 0.50 f = 0 on L3. Thus on [ the absoiute

maximuam of [ is f(L, 2} = 4 while the absolute minimum is (2, 4) = —64.

56, Inside Dt fo = Qwe™™ V(] — gt 247} = O implies £ = O or 2% + 2y* = 1. Then if x = 0,

fu = 23/6*3’2*3’2 (2 — 2% — 2y*) = 0 implies y = 0 or 2 — 2% = 0 giving the critical points (0,0), (G, £1}. If

#? ++ 2y® = 1, then f, = 0 implies y = © giving the critical points {£1, 0). Now £(0,0) =0, HEL0) =" and |

J(0,£1) = 27", On the boundary of 11 * +¢° = 4,50 f(z,y} = e™* {4 + ) and f is smallest when y = 0 and largest

when 3% == 4, But f{£2,0) = 4e™*, £(0, £2} = 8% Thus on D the absolute maximum of fis F{0,%1) = 2e™* and the

absolute minimum is (0,0} = 0.

5. flzy) =2° =3z +y* ~ 3t

2 j
=t
2 el o
AT 7N z 1
o X ' £
W Nan?
% /lo‘t‘@ ﬂ%
% —a .
-1 1
¥

i.

8

«U : ] :
e

-1

5

i

From the graphs, it appears that f has a local maximum f{—1,0) =~ 2, local minima f{1,41) & —2, and saddie points at

{—1,%x1)and (1,0).

To find the exact quantities, we caiculate f, = 32" - 5=0 <« z = =£1 and fo=dy —dy'=0 =

y = 0, 1, giving the critical points estimated above. Also fee = 82, faoy = {, fyy = 12y° — 4, 50 using the Second

FIN AR Pramnn 1 st MLl T -
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58.

58,

61.

Drerivatives Test, D{—1,0) = 24 > Dapd fou{—1,0) = ~6 < 0 indicating a locai maximum f{—1,0) = 2
D{1,41) = 48 > 0and fzz{1, 1) = 6 > O indicating local minima f(1, 1} = —3 and D(~1, &1} = --48 and

D{1,0) = ~24, indicating saddle poinis.

Flry) =124 10y - 227 —Szy —y* = fulzmy) = —4x — By, fule,y) = 10— 8z — 47 Now falz,y) =0 =

x = —32r, and substituting this into fy(z, y) = 0 gives 10 + 16y — 4 =0 = 548y~ 2% =0,

12
Aol
=5 \

From the first graph, we see that this is true when ¥ A2 —1.542, —0.717, or 2.260. (Alternatively, we could have found the
solutions to f = fy = 0 using a CAS.) So to three decimal places, the critical points are {3.085, ~1.542), (1.434, —0.717),
and (—4.519, 2.260). Now in order to use the Second Derivatives Test, we caloulate foo = —4, foy = —8, fjy = ~12y%, and:
D = 4847 — 64. S0 since (3,085, —1.542) > 0, D(1.434, ~0.717) < 0, and D{—4.519,2.260) > G, and fr. is aiways
negative, f(x, ¢} has local maxima F(~4.519, 2.260) = 49.373 and f(3.085, —1.542} = 9.948, _ané a saddle point at

approximately (1,434, ~0.717). The highest point on the graph is approximately (-—4.518, 2.260, 49.373).

=gty gley) =2 i =1 = V= (Qay,) = AVg = (2hz,20y). Then 2zy = 2Az impiies 2 = 0 or

y = A Ifz = Othen 2 + 4 = 1 gives y = 1 and we have possible points (0, £1) where f (G,:1) = 0. Ify = Athen

z* = 2y implies &* = 2y? and substitution mto z° +3° = lgives 3y’ =1 = y=tmanda= :\/@3_* The

o . ) l
corresponding possible points are (:h/%,xﬁ) The absolute maximum is f (;L; Z, 75) = 3_% while the absolute
minimum is f{j:\{/g_’ _ﬁ) = 3@

Pl =1z 1y gloy) =1/ + 1/ =1 = V= (272 -y = AVg = (~2"% -22y~%). Then
wp™? = —2\a% or@ = 2) and Hy_? = 2y~ Pory =2\ Thusz =y, 50 I/z® + 1/y° =2/2° = 1 implies & = /2

and the possible points are {£+/2, £+/2). The absolute maximum of f subject to 2 y? = listhen F{V2,v2) = V2

and the absolute minimum is f{—v2, =2 ) = V2.

Flayy,2) = ayz, gloy 2z =" + >+ 27 =3 . V=AYV = (yz.oyoyy = M2z, 2y,22). Hany ol o, y,0r 238
zero, then @ = y = z = O which contradicts z° + y° + 27 = 3. Then A = gi = 52% = z% = Wlr=2%% =
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y* = ¥, and simitarly 2y2° = 22%y = 2% = z® Substituting into the constraint equation gives ¥ 4 2% 4 22 =3 =
2* =1 =y* = 2°. Thus the possible points are (1,1, 1), (1, =1, £1),{=1,1,41), {~1, ~1, 1). The absolute maximum
s AL = f1, -1, -1y = f(-1,1,-1) = fl—=1,-1,1) = 1 and the absolute

minimum 18 f(1, 1, 1) = f{l, -1, 1) = f(~1,1,1) = f(~1.—1,~1) = —1,

CFley ) = 2% 27 4 325, gy gl =cty+z=L by s —y L2 =2 =

V= {2e,4y,62) = AVg + pVh = (A+p, 2 — g, A+ 2u) and 22 = A+ p (1), dy = ) — o2y, 6z= )42y (3),
T+y-+z=1}, ©—y+22=2 (5. Then six times (1) plus three times {2} plus two times (3} implies
120z -y +2) =110 + Tu, so (4) gives 114 4 T = 12, Also six fimes {1} minus three times (2} plus four times (3} implies

12z —y +22) = T + 175, s0 {5y gives TA + 17 = 24, Solving 1A+ 7 = 12, TA + 17 = 24 simultaneously gives

A= -%, = Substltutmg it (1), (23, and (3} implies © = ﬁ-g« Y = ;’3 z gmng only one point. Then

f(%% —, %) = £ Now since (0,0, 1) satisfies both consiraints and £{0,0,1) = 3 > 8 OHE - ) = Bisan
absoluie minimum, and there is no absolute maximun.

Flagy =+ + 2% glay ) =oy’2® =2 = Vf= (220, 2 = AWg = (MP2% 2hay®, 3wyt 27,

Since w2’ = LA 0y #Oand x #£ 0,50 22 = AP2% (1, 1= Awe® (@), 2= 3Azmy®z (3). Then €2y and {3} imply

2

9 . .
DEECI PP

1 - .y e e ’; et H
po il pye ory’ = gz Psoy = £z \/3 Similarly (1) and (3) imply

2 __ .2 RN
or dx =280 = e But

[

oy®e® = 2 50 w and 2 must have the same sign, that is, © = % Thus g{x,y, 2) = 2 implies Sr2(325)% =20
7 = £3"* and the possible points are {371/, 3714 /3 48174y (g-1/4 _g~1/4 V2,344, However at cach of these
points f takes on the same value, 2 /2. But {2, 1, 1} also satisfies g(w, ¥, 2) = 2and F{2,1,1) = 6 > 2+/3. Thus f has an

absolute minimum value of 2 +/3 and ne absclute maximurm subject to the constraint zy*z” = 2.

«

. . o by
Alrernate solution: glz,y,z) = 2" = 2 implies o° = so minimize f{z, z) = z° + o e 2%, Then
Tz

z28’
. & 24
fwﬁgm“ B’f ““'”””2""4"2~,f.7-»rm2+ 37fx'Z:
. Tz TG xz

20°2% —2=0orz=1/z. Substituting into f;, = 0 implies —62% + 227! = Dorz = -1, 50 the two eritical points are

(i L ,::\/—) TnenD( ——;i{‘/ﬁ) (2+4){2+ 2 ——(%)Q>Gandfm(i:] V3 >M6>G so each point

is 2 minimum. Finally, 37 = 2 so the four points closest to the origin are (v*-i X2 4 d 3) (1—1— ~L 247
) ’ ? o ? . - %: & v %5 i s ] .

% V = zyz, say xisthe lengthand 2 -+ 2y + 22 < 108, 2 > 0, y >0, z > 0. First max'zmize V subject to = + 2y + 22 = 108

with z, y, z all positive, Then (yz, zz, 3y} = (A, 2X, 2)) implies 2yz = rzorz = Sy and 72 = @y or 2 = 4. Thus

glx, y, z) = 108 implies 6y = 108 os’y = 18 = z, 3 = 3§, so the volume is V = 11,664 cubic units. Since (104, 1, 1) also



