380 [ CHAPTER13 VECTOR FUNCTIONS
13 Review
CONCEPT CHECK
1. A vector function is a function whose domain is a set of real numbers and whose range is a set of vectors. To find the derivative

- (2} The unit normal vector: N{t) =

or integrzl, we can differentiate or integrate each component of the vector function.

. The tip of the moving vector r{t} of a continuous vector function traces out a space curve,

. The tangent vector to a smooth curve at a point P with position vector r{¢) is the vector r'(#). The tangent line at P is the line-
g > p g

e (f)

et

through P parallel to the tangent vector r'(t). The unit tangent vector is T{f} ==

. {a) (a)—{f} See Theorem 13.2.3.

. Use Formula 13.3.2, or equivalently, 13.3.3.

. ar . ‘
. {a) The curvature of a curve is & = \JEQ_\I where T {5 the unit tangent vector,

RSO LIRS O] I €]
O =g A DR = T
T'it)

T The binormal vector: B{t) = T(t) x N{t).

kS

(b} See the discussion preceding Examiple 7 in Section 13.3,

- {2) Ifx(t) is the position vector of the particle on the space curve, the velocity v(t) = r'(¢), the speed is given by |v(¢)],

and the acceleration a(t) = v/{t) = r"(1).

(by & = arT +ayN where ar = o’ and oy = xe’.

. 3ee the statement of Kepler’s Laws on page 892 [ET 868].

TRUE-FALSE QUIZ

. True, If we reparametrize the curve by replacing 1 = #, we have v{u) = ui + 2uj + 3uk, which is a line through the origin
! % Y rep g ) .

with direction vector i + 2 j + 3 k.

. True. Parametric squations for the curve are 2 — 0,y =%, z = 4t, and since t = /4 we have iy — #2 — (2/4)? or
Y / v

Y= 1—16,:/“’ z = 0. This is an equation of a parabola in the yz-plane.

- Faise. The vector function represents a line, hut the line does not pass through the otigin; the z-component is O only for ¢ =

which corresponds to the point (0, 3, 0) not (0, 0, ).

. True. See Theorem 13.2.2.

- False. By Formula § of Theorem 13.2.3, % ) s v(t)) = w'(£) % v{) +ut) x v (1),
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£ False. For example, et r{#) = {(cost,sint). Then lv(f) = /cos? f pein®t =1 = = ie{t) == 0, but

()] = [{(—sint,cont)] = /{~ sin ) - cos

7. False. » is the magnitude of the rate of change of the umit tangent vector T with respect to are length s, not with respect o ¢,

8. False. The binormal vector, by the definition given in Section 133, is B(t) = T(1) x N(#) = ~ [N(#) » T(#)}.

8. True. Atan inflection point where f is twice continvously differentiable we must have /{2 = 0, and by Equetion 13.3.11,
the curvature is O there.

0. True. From Equation 1339, k() =0 = [T} =0 & T{) =0forallt Butthen T(t) = C, a constant vector,
which is true only for a straight line.

.

sy

False, If v{#} is the position of a moving particle at time ¢ and jr{t}{ == 1 then the particle lies on the unit circle or the unit
J & L

sphere, but this does not mean that the speed |r'{¢)] must be constant, As a counterexample, let r{i) = (1,\/1 — {2}, then

?j(f’} = (1 ”fr./W} and |r(f)] =

constant,

2 D= b e = 1+ 621 — #2) = 1/ — 7 which is not

12, True. Sce Example 4 in Section 13.2

13, True. See the discussion preceding Example 7 in Section 13.5.

14, False, For example, & (£) = {t,t; and ra(f) = {21, 2t) both represent the same plane curve (the line y = ), but the tangent
vector v (1) = {1, 1} for all &, while r5{1} = (2,2}, in fact, dil}‘erezﬁ parametrizations give paralle]l tangent veciors at a poin,

but their magnitudes may differ,

EXERCISES

1. (a) The corresponding parametiic equations for the curve arc z = 1,
N o ) o o . - .
¥ = cos wt, ¥ = sin 7. Since y* 4 2° = I, the curve is contained in a
circular eylinder with axis the z-axis. Since = = {, the curve is a helix.
{oyr{t) =ii+cos mlj+sin nik =

r'(tj=i—wsin wij+rmeos mtk =

[Ny b : ot
) w —5 cos T} — w2 gin wik

2. (&) The expressions v/2 — £, {&' — 1)/t and Wt + 1} are all defined when 2 - £ > 00 = <02, ¢t =40,

sndt+1 >0 = > -1 Thusthe doman of ris (~1,0) U {0, 2],

/ ' ; . .
. . e =1, Y - .= '
(by imrlé) = < lim 2 — ¢, lim iﬁmﬁﬁ HmIn{t+ 1} 5 = ( VvZ— 0 m —, In(0 + 1)
[ L0 =0 ¢ ) / \ i—0 1
= {V2,1,0) [using I’Hoespital’s Rule in the y-component]
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(e = (LT i__..f’ 14 /o1 te —e'+1 1 3
(L)r(é)”<df b g 1)>M< I 12 i1/

3. The projection of the curve ' of intersection anto the zy-plane is the circie 2 + y* =18, z = 0. Se¢ we can write
@ =4cost, y=4sint, 0 < ¢ < 2n. From the equation of the plane, we have z = 5 — ¢ = § — 4 cog £, 50 pararnetric
squations for U'are z = 4cost, y =4sint, z =5 —dcost, 0 < £ < 2, and the corresponding vector function is

r(t) =4dcosti+ dsinti+ (5 dcost)k, 0 <t < 2

4 The curve is given by r{f) = (2sint, 2sin 2¢, 2sin 3t), so _ 4 e

v'(t) = (2cost, 4 cos 2t, 6 cos 3t). The point (1, /3, 2) corresponds to ¢ = z
{or = + 2k, & an integer), so the tangent vector there is r(E) = <\/§ 2,0). 0

Then the tangent line has direction vector {+/3, 2, 0) and includes the point

! 4 }
(1, V3, '2), 50 parametric squations are z = 1 + /34, y = 3 - 26, 2 == 2, _‘L'M‘—“‘“"—w/g{y : ]

(31

L i teos w ]+ sin e k) df = (j;,l 2 dt) P (joi tcos Wtdt)j-é— (fG sin Wtdt) k
= [étﬂ;é it (%am 'ﬂf‘f}é - fol Lsin Trtdi)j+ -1 cos m‘]é k

k

3 oo

i+ [Eeosm) i 2k=tio Aje
where we integrated by parts in the y-component.
B. (a) C' intersects the wz-plane where y = 0 = 2 —1 =0 => {= 3, so0 the point
s (2= (3. 0.m ) = (3,0,~n2).
(b} The curve is given by r{t) = (2 — %, 24 ~ 1, Int}, so v'(¢) = {~3t%,2,1/t). The point {1, 1,0) corresponds w0t L so:--:

the tangent vector there is r'{1) == {—3,2, 1}. Then the tangent line has direction vector {--3,2,1} and includes the point

{1, 1,0), so parametric equations are z = 1 — 3¢, y wm ob Bz e g

(¢) The normal plane has normal vector r'(1) = (—3,2, 1} and equation —3{z — 1} -+ 2(y — D+ 2z =0ordz — 2y — 2z = L.

Toe(t) = (%6 = 2 = (26,3, 4% = ()] = VAR TOE T 160 and
L= joa e’ (t)] di = fo VAR + 901 4 1645 dt. Using Simpson’s Rule with f{t) = 4% & 92 + 1605 and . = 5 we

30

have &t = =5

— 1
= 7 and

Low BLTHO)+47(3) + 2 (1) + (3 22+ 458 + F3)]

=3 1 TF0F 04 y/4(3 +8(2) + 16(3) + 2. JATDP TO007 T 160)F

8

|

w43 +9G) +16(3) + 2 AT T IR T TR

Fa/45F + 903 + 163 + AEE T O T 16030

[E——1

7 86,631
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B r'{t) = <3t”2, —2sin 2t 2cos 21‘.>, [r' (£)] = /9t + 4(sin® 2 4 cos? 2} = /Of + 4.

372

313
W

Thus L= [ OT+ ddt = [ 2ub/? du = = &(13%7 - 8),

[re3 =
(RN

14

& The angle of inersection of the two curves, #, is the angle between their respective tangents at the point of intersection,

For both curves the point (1,0, () occurs when ¢ = (0.

CHAPTER 13 REVIEW

ri{f) = ~sinti+costj+k = r{0)=jf-+kandei(d) = i+2j+3°k = rp@) =i

ri(0) - ry{0) = (j+ k)i =0. Therefore, the curves intersect in a right angle, that is, 8 = 7.

10. The parametric value corresponding to the point (1.6, 1) is ¢t = 0.

r'(t) =e'ietcost +sind)j+ e(cost —ginthk = [r{¢)] = &'\ /T (cost § sin )2 + (coBf — sint)E = /B’

\ /
and s{t) = [(f e"V3du= 3" —1) = t= h’lkl + \%—e)

Therefore, r(t{s)) = (1 + —ﬁ9> P+ (l + 7%%) gin ln(l + %s)j + (1 + }g») cos ln(l -+ —\}——gs) k.

P (enly (@1
L HELD] T VR

. (a) T(r) =

0 T(E) = =3¢+ 6% + 1) 732 (s® L 20) (B0, 1) + (0 47 4+ )72 (26,1,0)

o
VR SRy O (#.8,1) +
(T

wre e e ho

(=20° -~ =0 = 2% 2P+ W Lo P10y (Pt 1 -2t )

(#h = ¢2 4 )32

(‘ﬁd o+ 2 + }_}3/2

B e e e e e e e R i A T

)] = =

(tt +£7 4 1)3/2 (4 )RR

(B + 261 — 5 —2® 1)
VIR EBIE B BT T

N(t) =

(VEFR G 5T AT VAT T
) (1% + 12+ 1)2 (t% + 12 153/

12 Using Exercise 13.3.42, we have ¥/ (i) = {—3sing dcost), r''(#) = {~3cosi, —4sint),

.
w5 = (\/9Si1‘]2t+4(}082ﬁ) and then

_ [{=3smt)(—dsint} — {dcost)(—3cost)] 12

A"C{ﬂ 3 T - ki) b VS
& {Osin® ¢+ 1600 1)5/2 {(Bain®t + 16 cos? ¢)3/2

At(3,0),¢ = Oand & (0) = 12/(16)*% = 1 = & At(0.4),¢ = T and s(§) = 12/¢%% = 1

3 G4
5 . ! A
] L2e”] 12

RV so(l) = 777

[ — 19m? " !
%y =407,y = 1227 and k(x) RGeS T
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4,

8.

7.

18

19,

12z% — 2
o) | ] 655 : :
"= ErEr g T O =2 : \ ] _ :
S0 the osculating circle has radius 3 and center (0, —3). “19 / 12

e

‘ L 1h2
Thus its equation is x° + (¥ + 5) =

—-1.2
r{t) = {sin 2. ¢, cos 2?) = r'(t) = (2cos2f, 1, ~2sin2t) = T(H) = m\/—-g (ZcosZt, 1, -2sin2) =
Tt = ﬁ (—4sin2f,0, ~4cos2t) = N(f) = (—- sin 22,0, ~cos 25, So N = N{x) = (0,0, ~1) and
B=TxN-= -\}_§ {1, éj 0}. So a normal 1o the osculating piane is (1, 2, 0) and an equation is
e —0)+ 2y~ 7))+ 0{z— 1)y =Dorz — 2y + 2r = 0,
(a) The average vefocity over 13, 3.2] is given by !

P .
r{3.2) — r{3) \ <

= 5{r{3.2) — »(3}], so we draw a

32-3 (3) average
velocity
vector with the same direction but 5 times the length F3.2) -
of the vector {r{3.2) — r{3)]. .
x
‘ {3 h) —r(3)
Y ) = —I-.-—‘—-.-w..,f_....__.
®) v(3) = '(3) = lim T
y
' (3) i . N
(e} T(3) = —-==t, a unit vector in the same direction as 1
‘ (3 C
1
v'(3), that is, paraile! to the tangent line to the curve at (3
r{3), peinting in the direction comesponding 1o v3.2) T3)
increasing ¢, and with length 1. 5 ! .
1

rli)=tlnti+tj+re "k vit)=r'{t)=(1+hii+j—etk

£l

vil= 0 +me)2+12 4 {—e ()2 = v2+tint+{int)? +em? alt)=vi(t)=dive'k

vit) = [altydt = [(61i+1265 — 61k}t = 3% 1+ 4455 — 3% k + C, buti— j -+ 3k = v(0) =0+,
so0C=i—j+3kandv(t) = (3t + )i+ (4 - 1)j+ (3 - 3P k.

¥ty = [vi{t)ydt = (F 01+ (" ~ 0+ (3t —Hk + D.

Butr(0) = 0,50 D = 0 and v{£) = (£ - 6)i + (¢ = £)] + (3 — ) k.

We set up the axes so that the shot leaves the athiete’s hand 7 ft above the ori gin. Then we are given v{0) = 7j,
(v(0)f = 43 ft/s, and v{(0) has direction given hy a4 45° angle of elevation. Then a unit vecior in the direction of v(0) is

Ll+]) = v = f% (1), Assuming air resistance is negligible, the only external force is due to gravity, so as in

Example 13.4.5 we have a = —g j where here g = 32 ft/s”. Since v/(¢) = a(t), we integrate, giving v{(¢) = —gt j -+ C
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where O = v(0) = %(: + j) = vty =i+ (j,”% - gt) J- Since v'(t) = v(#) we integrate again, so

(a) Al 2 seconds, the shot is at r{2) = %(2) i (%{2) — £g(2)% + 7)5 22 60.81 4 3.8, so the shot is about 3.8 ft above

the ground, at 2 horizontal distance of 6(1.8 ft from the athlete.

(B} The shot reaches its maximum height when the vertical component of velocity is (¢ f% —gt =0 =

= o 7 0.95 5. Then r(0.95) ~ 28.91 + 21.4 ], so the maximum height is approximately 21 .4 &.
Vg
{c) The shot hits the ground when the vertical component of v(2) is {, so %7‘ 3 G2 +7=0 =

—16¢% + f%t +T7=0 = t=21ils r(2.11) 6421~ 0.08] thus the shot lands approximately 64.2 # from the

athlelte‘

2or'(t) =124 08k () =2k, (8} = T+ A4S 477 = AT LE

Then ar =

(1) - (8) 4t ) (@] JAi— 2 23
O ' r =

‘2. {(a) Instead of proceeding directly, we use Formula 3 of Theorem 13.2.3: r{t) = t R{f) =
v o= () = R+t R(#) = coswti 4 sinwi] +tva.
(b} Using the same method as in part (a) and starting with v = R(f) + t (), we have
a=v =R+ R+t R = 2R+t R"(#) = 2vy ~tag.
{c) Here we have rif) = e ' coswii-k e sinwi = ¢t R(£). So, as in parts (a) and (b),
vt = TR - e TR = e TR - R =

a=v

ft

eTHR(1) - RN - e TR/ (1) - R{) = e TTIR() - 2R/ () + R{1)]
= fag—2 "vg e TR

Thus, the Coriotis acceleration (the sum ofthe “extra” terms not invelving ag) is —2e P vy + e T R.

1 T e Al ' if <0
TEEE e - E
= Fla) = Vier iises V2 = Fligy={4-2/vT—27 f0<a< :ﬁ—j =
VI itz = N ifm>_%
0 if z <0
Frzy = ¢ ~1/(1- 2P if o< < —\/"-i
0 if 2> L
Since - [~z (1 — 22) "M = —(1 — £8)7VE - g2 — 2?) 2 = (1 - 22y,

pre

Now lim +/1-2¢=1=F(0land lim Vi-2i=3 = F(;,%), 50 F is continuous. Alse, since
Ll ::.‘m'-(l /'\/5) - ' WY
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